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Abstract: Controlled navigation in the phase diagram of protein crystallization and probing by 

advanced Dynamic Light Scattering (DLS) technology provided new information and more 

insights about the early processes during the nucleation process. The observed hydrodynamic 

radius distribution pattern clearly reveals a two-step mechanism of nucleation and the occurrence 

of liquid dense protein clusters, which were verified by transmission electron microscopy. The 

growth kinetics of these protein clusters, forming distinct radii fractions, is analyzed in real -time. 

Further, the data confirmed that critical nuclei show a distinct different radius distribution than the 

liquid dense clusters. The data and results provide experimental evidence that during nucleation, a 

formation of distinct liquid clusters with high protein concentration occur prior to a transition to 

crystal nuclei by increasing the internal structural order of these clusters, subsequently. 
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In protein crystallization, a protein solution is typically brought into supersaturation to induce 

the thermodynamically driven crystal formation. In classical crystallization the formation of a few 

crystal nuclei, which can then grow to individual large protein crystals by addition of free protein 

from the bulk, is favored.1 For the preparation of protein nanocrystals, to be used for diffraction 

data collection applying serial crystallography (SFX),2 this conventional approach needs to be 

modified, in order to increase the number of nucleation events in the crystallization droplet.3,4 

Additionally, a better understanding of the nucleation process itself is required to adapt the existing 

methods to the new requirements in nanocrystallography. Protein crystallography is a well -

established method for several decades, however the fundamental understanding of the nucleation 

process is still incomplete and till now an active area of ongoing research.5–15 In the classical 

nucleation theory, the crystal formation is considered to be a first-order phase transition.15 A 

simplified version of the phase diagram can be defined by three phases, the dilute solution, a dense 

liquid and a crystalline state.15 These states can be described by the two parameters concentration 

and internal order. According to the classical theory, a nucleation event can be considered as a 

simultaneous transition of both parameters, from the dilute solution with low concentration and 

low internal order to a crystalline state with high concentration and high internal order. Based on 

these fundamentals, the classical theory was extended to a model considering a two-step 

mechanism of nucleation.13,16 In this theory it is assumed that for many proteins the nucleation 

process occurs in two consecutive steps. Firstly, a transition to a higher concentration occurs due 

to the formation of a dense liquid phase and secondly, a transition to higher internal order of these 

clusters takes place.14,17–20 This two-step nucleation model has additional plausibility, because it 

allows explaining the large discrepancy between the predicted nucleation rates by the classical 

nucleation theory and the experimentally obtained nucleation rates.16,20 
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Due to the small size of the clusters and low frequency in occurrence in the supersaturated 

solution, experimental evidence for the hypothesis that the second step during nucleation, a 

transition to a higher order, occurs inside these clusters is still rare.21–23 This roots in the fact that 

following the nucleation process and early crystal growth by optical microscopy is not feasible, 

because of the optical resolution limit. Therefore, alternative methods need to be applied to study 

the nucleation process in detail. For several reasons, dynamic light scattering (DLS) depicts to be 

one of the most suitable methods. The size of the particles that can be investigated by DLS covers 

a large range from one nanometer up to a few micrometers. Additionally, DLS is an extreme ly 

sensitive method to detect a small number of larger particles in solution. Consequently, the 

occurrence of larger particle clusters during nucleation can be detected by DLS, even if the 

frequency of their occurrence (volume fraction) in the crystallization solution is rather  low (< 10-3 

%).24 

In crystallization experiments the protein solution has to be dragged into supersaturation to 

overcome the energy barrier and to induce the nucleation process as well as crystal growth. [7] In 

order to allow a feedback controlled navigation in the phase diagram the XtalController technology 

was developed.25 In the instrument, a single droplet of protein solution is placed on a highly 

sensitive microbalance in a precisely temperature and humidity controlled experimental chamber 

(Scheme 1). In order to add precipitant and water to the sample, two piezoelectric dispensing heads 

are installed, allowing contact-free addition in nanoliter increments as well as evaporation or 

dilution of the droplet. This set-up allows following an arbitrary path through the phase diagram. 

Additionally, DLS measurements can be continuously performed throughout the whole 

experiment, providing information about the radius distribution of the particles in solution. In the 

experiments performed in this study it was intended to follow the nucleation process online by 
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DLS, in order to obtain new experimental insights about the model of the two-step nucleation 

mechanism. The proteins Aminopeptidase P (APP, from Plasmodium falciparum), Thioredoxin 

(from Wuchereria bancrofti), 5-(hydroxyethyl)-4-methylthiazole kinase (ThiM, from 

Staphylococcus aureus), thaumatin (from Thaumatococcus daniellii) and Mistletoe lectin I (MLI, 

from Viscum album) were investigated to enhance the general validity of drawn conclusions about 

the nucleation mechanism. Exemplarily, the experiments and data obtained for MLI are described 

and summarized in the following section, while the experimental data and results obtained for the 

other proteins are shown in the supplementary section. 

  

Scheme 1. Schematic presentation of the temperature- and humidity-controlled experimental 

chamber of the XtalController instrument. 

 

Mistletoe lectin I (MLI) from Viscum album with a concentration of 3.2 mg mL-1 was tested by 

placing 3.5 µL of the protein solution on the cover slip fixed on a microbalance. The radius 
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distribution, the recorded weight, as well as the calculated concentration of protein and precipitant 

over time are shown in Figure 1 (A and B). At the beginning of the experiment the initial 

hydrodynamic radius of the protein heterodimer can be seen. After a few initial DLS measurements 

the injection of precipitant was started and continued until a change in the radius distribution was 

observed. A second radius fraction with particles of a size around 200 nm became visible after 

approximately 15 minutes, indicating supersaturation of the protein solution. The particles 

continued to grow in size, while more precipitant was added, until a final precipitant concentration 

of 0.75 M ammonium sulfate was reached. From this time point onwards the condition of the 

droplet was kept constant by compensating evaporation via corresponding water injection. The 

hydrodynamic radius of the particles obtained in a second radius fraction was determined to be 

approximately 400 nm. The size of the particles grew further over time and three hours after 

initiation of the experiment particles with a hydrodynamic radius of approximately 1 µm were 

detected. Additionally, a third fraction with a radius of approx. 200 - 300 nm formed between the 

large particles and the heterodimer-fraction, which remained constant. 

In order to visualize the transition of the heterodimeric MLI, in the beginning of the experiment, 

to the complex radius distribution after injection of precipitant, the recorded autocorrelation 

function (ACF) is plotted over time for the first 1.5 hours of the experiment and shown in figure 1 

C. It can be seen, that the ACF changed from a monomodal decay with a decay time constant of 

21 µs to a multimodal decay, from which three decay time constants have been fitted by the 

CONTIN algorithm (35.5 µs, 2.2 ms and 9.8 ms).26 Although the increase in viscosity during 

precipitant injection has been taken into account for the hydrodynamic radius calculation 

(supporting information), a slight increase in the radius of the MLI heterodimer fraction is 

observed. This indicates that electrostatic interactions, induced by the altered chemical 



 6 

environment upon precipitant injection, might have a minor influence on the calculated absolute 

hydrodynamic radius. 

 

Figure 1. Controlled induction of MLI crystal nucleation, applying the XtalController. [A] The 

graph shows the evolution of the hydrodynamic particle radii in the crystallization droplet over 

time. Precipitant injection up to 0.75 M induces nucleation and results in the formation of a 

complex radius distribution pattern with three distinct radius fractions. The size of the particles in 

the largest fraction grows proportionally to t0.5, while the other two fractions remain constant in 

size. [B] The change in the recorded weight (black curve) of the sample over time and the hence 
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calculated changes in protein (red curve) and precipitant concentration (blue curve) is presented. 

Please note the break in the x-axis in the lower graph for a better visualization of the precipitant 

injection. [C] The autocorrelation function (ACF) for the first 1.5 hours of the experiment is plotted 

in a surface presentation. A transition from a monomodal decay in the beginning of the experiment 

to a multimodal decay after addition of precipitant can be seen. [D] The ACF of the first (black) 

and last (red) DLS measurement as well as the fit from the CONTIN algorithm is shown. The 

calculated hydrodynamic radius of all identified radius fractions with relative error (polydispersity 

index) is listed. All graphs have been prepared using the software Origin (OriginPro 9.1, 

OriginLab, Northampton, USA). 

It has been proposed by P. Vekilov that the nucleation process of crystallization for many 

proteins is a two-step mechanism, where the transition to higher order occurs after a transition to 

higher concentration.16 He proposed that liquid-liquid dense clusters represent stable intermediates 

in supersaturated protein solutions and that the nucleation of crystals occurs within these clusters.20 

This model is supported by a study where the nucleation within protein clusters could be followed 

by depolarized oblique illumination dark-field microscopy.23 

A detailed analysis of the particles detected by DLS applying visualizing methods is challenging, 

because the labile samples need to be chemically cross-linked before, in order to stabilize the 

particles in the high vacuum applied on samples for electron microscopy. 

The recorded transmission electron microscopy (TEM) images of the MLI sample, negative 

stained with uranyl acetate, are shown in figure 2. TEM microscopy images indicate protein 

clusters with a size between 200 nm and around 1 µm have formed, corresponding to the larger 

radius fractions in the DLS radius pattern. Most of the particles have an irregular spherical shape, 

comparable to macroscopic phase separation, commonly seen in crystallization experiments. 
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However, in the same sample also particles with a defined triangular shape are visible (Figure 2 

B). A similar tetrahedral morphology was observed in a TEM image of a MLI nanocrystal 

produced by a crystallization experiment applying the XtalController and published by Meyer et 

al.25 Therefore, it can be assumed that the shaping structure in these particles are a result of first 

nuclei of MLI crystals, which have formed inside a protein dense liquid cluster and have grown to 

nanocrystals over time. These images demonstrate the first microscopic observation of the 

transition from a cluster with high protein concentration to a crystal with higher order, as postulated 

by the two-step nucleation model. 

 
Figure 2. Transmission electron microscopy images of a MLI sample obtained via the 

XtalController experiment. [A] The sample is negative stained with uranyl acetate and shows 

protein dense liquid clusters with a size of 200 nm to 1 μm, as identified in the radius distribution 

pattern from the DLS measurements. The particles mostly possess an irregular spherical shape. [B] 
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Additionally, geometrically ordered particles with triangular shape and surrounded by amorphous 

protein are visible. This provides additional indication that the nucleation occurs in protein dense-

liquid clusters during the two-step mechanism of nucleation. 

 

Similar hydrodynamic radius distribution patterns over time have been observed for the proteins 

ThiM, APP, Thaumatin and Thioredoxin and all corresponding data and results are shown and 

summarized in the supplementary information. The dimensions of the observed particle clusters 

obtained via the XtalController experiments are shown in Figure 1 (and Figure S2-5). They are in 

good agreement with so far reported cluster sizes detected within nucleation and reported in other 

studies.24,27 The growth kinetics of the protein clusters, forming the different radius fractions, was 

analyzed to obtain more information about their composition. It has been shown by Lifshitz & 

Slezov that the particle size of clusters increases asymptotically with the cube root of time when 

diffusion-limited growth in supersaturated solutions is present (t0.33).28 This theory was extended 

by Wagner, who described that the size evolves with t0.5 in case of interface-limited growth.29 In 

the experiment shown in Figure 1, the size of the largest radius fraction (fraction 3) increases 

proportionally to t0.5. This demonstrates that the rate of mass increase during cluster evolution is 

constant and reveals that the cluster aggregation follows interface-limited growth. In contrast, the 

growth kinetics of the cluster size in the experiments with the proteins thioredoxin, APP and 

thaumatin revealed diffusion-limited growth (supporting information, Figure S1, S3 and S4). 

The XtalController technology allows a feedback controlled navigation in the phase diagram and 

was applied to gain new information about the nucleation behavior of proteins during 

crystallization. After initial formation of particle clusters with a hydrodynamic radius of 

approximately 100 nm a complex radius distribution pattern evolved over time. The growth 
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kinetics of protein dense clusters, forming a distinct radius fraction, reveal that the rate of mass 

increase during cluster evolution is constant and provides evidence that the cluster growth is either  

mainly diffusion-limited or interface-limited. 

Characterization of the sample suspensions by TEM confirms that the observed radius 

distribution pattern is a result of the two-step nucleation mechanism. It can be seen that protein 

dense liquid clusters represent stable intermediates in supersaturated protein solutions. Further, the 

postulation that crystal nucleation occurs within these clusters can be supported by the presence of 

geometrically ordered particles. Therefore, the presented results demonstrate a so far unique 

microscopic observation of the transition from a cluster with high protein concentration to a crystal 

with higher structural order. 
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Synopsis: 

Controlled navigation in the phase diagram of protein crystallization and probing by advanced 

Dynamic Light Scattering (DLS) technology provided new information and detailed insights about 

the two-step mechanism of crystal nucleation. The real-time observed hydrodynamic radii 

distribution reveals the occurrence of liquid dense protein clusters prior to transition to crystal 

nuclei. 
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