Dataset Open Access

The Aerial Elephant Dataset

Naudé, Johannes J.; Joubert, Deon


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nmm##2200000uu#4500</leader>
  <controlfield tag="005">20200124192535.0</controlfield>
  <controlfield tag="001">3234780</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Innoventix</subfield>
    <subfield code="a">Joubert, Deon</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">16301383887</subfield>
    <subfield code="z">md5:40c3cfb859ec5974b2cfdc1555df9f97</subfield>
    <subfield code="u">https://zenodo.org/record/3234780/files/AED.tar.gz</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-05-30</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire_data</subfield>
    <subfield code="o">oai:zenodo.org:3234780</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Innoventix</subfield>
    <subfield code="a">Naudé, Johannes J.</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">The Aerial Elephant Dataset</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/publicdomain/zero/1.0/legalcode</subfield>
    <subfield code="a">Creative Commons Zero v1.0 Universal</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Aerial surveying is a key tool for effective wildlife management. However, the high costs associated with large scale surveys means that this tool is often underutilized. We believe that computer vision can be used to dramatically decrease the costs associated with surveying, while at the same time improving the consistency of results. We present the Aerial Elephant Dataset, a challenging dataset to enable research on game detection under real-world conditions. The dataset consists of 2 074 images containing a total of 15 581 African bush elephants in their natural habitats, imaged with a consistent methodology over a range of background types, resolutions and times-of-day.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3234779</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3234780</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">dataset</subfield>
  </datafield>
</record>
2,516
2,164
views
downloads
All versions This version
Views 2,5162,521
Downloads 2,1642,164
Data volume 35.3 TB35.3 TB
Unique views 2,2062,210
Unique downloads 1,1051,105

Share

Cite as