Journal article Open Access

Learning From Errors: Detecting Cross-Technology Interference in WiFi Networks

Croce, Daniele; Garlisi, Domenico; Giuliano, Fabrizio; Inzerillo, Nicola; Tinnirello, Ilenia


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2018-03-15</subfield>
  </datafield>
  <controlfield tag="005">20190529190538.0</controlfield>
  <controlfield tag="001">3234412</controlfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:3234412</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;In this paper, we show that inter-technology interference can be recognized using commodity WiFi devices by monitoring the statistics of receiver errors. Indeed, while for WiFi standard frames the error probability varies during the frame reception in different frame fields (PHY, MAC headers, and payloads) protected with heterogeneous coding, errors may appear randomly at any point during the time the demodulator is trying to receive an exogenous interfering signal. We thus detect and identify cross-technology interference on off-the-shelf WiFi cards by monitoring the sequence of receiver errors (bad PLCP, bad FCS, invalid headers, etc.) and propose two methods to recognize the source of interference based on artificial neural networks and hidden Markov chains. The result is quite impressive, reaching an average accuracy of over 95% in recognizing ZigBee, microwave, and LTE (in unlicensed spectrum) interference.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">DEIM, Università di Palermo</subfield>
    <subfield code="0">(orcid)0000-0001-6256-2752</subfield>
    <subfield code="a">Garlisi, Domenico</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">DEIM, Università di Palermo</subfield>
    <subfield code="0">(orcid)0000-0001-5784-6902</subfield>
    <subfield code="a">Giuliano, Fabrizio</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">DEIM, Università di Palermo</subfield>
    <subfield code="0">(orcid)0000-0002-7253-9350</subfield>
    <subfield code="a">Inzerillo, Nicola</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">DEIM, Università di Palermo</subfield>
    <subfield code="0">(orcid)0000-0002-1305-0248</subfield>
    <subfield code="a">Tinnirello, Ilenia</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">962093</subfield>
    <subfield code="z">md5:0dc96fe54306af2ad6ad740c9bb6df11</subfield>
    <subfield code="u">https://zenodo.org/record/3234412/files/Learning.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">DEIM, Università di Palermo</subfield>
    <subfield code="0">(orcid)0000-0001-7663-4702</subfield>
    <subfield code="a">Croce, Daniele</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Wireless fidelity</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Interference</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Long Term Evolution</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">ZigBee</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Monitoring</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Hidden Markov models</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Throughput</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1109/TCCN.2018.2816068</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Learning From Errors: Detecting Cross-Technology Interference in WiFi Networks</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">688156</subfield>
    <subfield code="a">Symbiosis of smart objects across IoT environments</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
</record>
2
3
views
downloads
Views 2
Downloads 3
Data volume 2.9 MB
Unique views 2
Unique downloads 3

Share

Cite as