Software Open Access

Massive evaluation and analysis of Poincaré recurrences

Ivan I. Shevchenko; Guillaume Rollin; Alexander V. Melnikov; José Lages


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Ivan I. Shevchenko</dc:creator>
  <dc:creator>Guillaume Rollin</dc:creator>
  <dc:creator>Alexander V. Melnikov</dc:creator>
  <dc:creator>José Lages</dc:creator>
  <dc:date>2019-05-25</dc:date>
  <dc:description>We present a novel numerical method aimed to characterize global behaviour, in particular chaotic diffusion, in dynamical systems. It is based on an analysis of the Poincaré recurrence statistics on massive grids of initial data or values of parameters. We concentrate on Hamiltonian systems, featuring the method separately for the cases of bounded and non-bounded phase spaces. The embodiments of the method in each of the cases are specific. This new method allows one to construct, in some approximation, charts of local diffusion timescales.</dc:description>
  <dc:identifier>https://zenodo.org/record/3228905</dc:identifier>
  <dc:identifier>10.5281/zenodo.3228905</dc:identifier>
  <dc:identifier>oai:zenodo.org:3228905</dc:identifier>
  <dc:language>eng</dc:language>
  <dc:relation>doi:10.25666/DATAOSU-2019-01-11</dc:relation>
  <dc:relation>doi:10.1016/j.cpc.2019.106868</dc:relation>
  <dc:relation>doi:10.5281/zenodo.3228904</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode</dc:rights>
  <dc:title>Massive evaluation and analysis of Poincaré recurrences</dc:title>
  <dc:type>info:eu-repo/semantics/other</dc:type>
  <dc:type>software</dc:type>
</oai_dc:dc>
105
33
views
downloads
All versions This version
Views 105105
Downloads 3333
Data volume 132.7 kB132.7 kB
Unique views 8383
Unique downloads 1919

Share

Cite as