Software Open Access

Massive evaluation and analysis of Poincaré recurrences

Ivan I. Shevchenko; Guillaume Rollin; Alexander V. Melnikov; José Lages


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.3228905</identifier>
  <creators>
    <creator>
      <creatorName>Ivan I. Shevchenko</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-9706-0557</nameIdentifier>
      <affiliation>Institute of Applied Astronomy, RAS, 191187 Saint Petersburg, Russia</affiliation>
    </creator>
    <creator>
      <creatorName>Guillaume Rollin</creatorName>
      <affiliation>Institut UTINAM, OSU THETA, CNRS, Université de Bourgogne Franche-Comté, Besançon 25030, France</affiliation>
    </creator>
    <creator>
      <creatorName>Alexander V. Melnikov</creatorName>
      <affiliation>Tomsk State University, 634050 Tomsk, Russia</affiliation>
    </creator>
    <creator>
      <creatorName>José Lages</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-5965-8876</nameIdentifier>
      <affiliation>Institut UTINAM, OSU THETA, CNRS, Université de Bourgogne Franche-Comté, Besançon 25030, France</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Massive evaluation and analysis of Poincaré recurrences</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2019</publicationYear>
  <dates>
    <date dateType="Issued">2019-05-25</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Software"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3228905</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsReferencedBy">10.25666/DATAOSU-2019-01-11</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsSupplementTo">10.1016/j.cpc.2019.106868</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3228904</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode">Creative Commons Attribution Non Commercial Share Alike 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;We present a novel numerical method aimed to characterize global behaviour, in particular chaotic diffusion, in dynamical systems. It is based on an analysis of the Poincar&amp;eacute; recurrence statistics on massive grids of initial data or values of parameters. We concentrate on Hamiltonian systems, featuring the method separately for the cases of bounded and non-bounded phase spaces. The embodiments of the method in each of the cases are specific. This new method allows one to construct, in some approximation, charts of local diffusion timescales.&lt;/p&gt;</description>
  </descriptions>
</resource>
105
33
views
downloads
All versions This version
Views 105105
Downloads 3333
Data volume 132.7 kB132.7 kB
Unique views 8383
Unique downloads 1919

Share

Cite as