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Abstract: Representing a set of vertices in a graph means of a matrix was introduced by E.

Sampath Kumar. Let G(V, E) be a graph and S ⊆ V be a set of vertices. We can represent

the set S by means of a matrix as follows, in the adjacency matrix A(G) of G replace the

aii element by 1 if and only if, vi ∈ S. In this paper we study the special case of set S being

dominating set and corresponding domination energy of some class of graphs.
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§1. Introduction

A set D ⊆ V of G is said to be a Smarandachely k-dominating set if each vertex of G is

dominated by at least k vertices of S and the Smarandachely k-domination number γk(G) of

G is the minimum cardinality of a Smarandachely k-dominating set of G. Particularly, if k =1,

such a set is called a dominating set of G and the Smarandachely 1-domination number of G is

called the domination number of G and denoted by γ(G) in general.

The concept of graph energy arose in theoretical chemistry where certain numerical quan-

tities like the heat of formation of a hydrocarbon are related to total π electron energy that

can be calculated as the energy of corresponding molecular graph. The molecular graph is a

representation of the molecular structure of a hydrocarbon whose vertices are the position of

carbon atoms and two vertices are adjacent if there is a bond connecting them.

Eigen values and eigenvectors provide insight into the geometry of the associated linear

transformation. The energy of a graph is the sum of the absolute values of the Eigen values of

its adjacency matrix. From the pioneering work of Coulson [1] there exists a continuous interest

towards the general mathematical properties of the total π electron energy ε as calculated within

the framework of the Huckel Molecular Orbital (HMO) model. These efforts enabled one to

get an insight into the dependence of ε on molecular structure. The properties of ε(G) are

discussed in detail in [2,3,4,5].

The importance of Eigen values is not only used in theoretical chemistry but also in ana-

lyzing structures. Car designers analyze Eigen values in order to damp out the noise to reduce

1Received March 7, 2018, Accepted December 8, 2018.



104 M.Kamal Kumar, Johnson Johan Jayersy and R. Winson

the vibration of the car due to music. Eigen values can be used to test for cracks or deformities

in a solid. Oil companies frequently use Eigen value analysis to explore land for oil. Eigen

values are also used to discover new and better designs for the future [6].

Representation of a set of vertices in a graph by means of a matrix was first introduced

by E. Sampath Kumar [7]. Let G(V,E)be a graph and S ⊆ V be a set of vertices. We can

represent the set S by means of a matrix as follows:

In the adjacency matrix A(G) of G replace the aii element by 1 if and only if vi ∈ S.

The matrix thus obtained from the adjacency matrix can be taken as the matrix of the set S

denoted by AS(G). The energy E(G) obtained from the matrix AS(G) is called the set energy

denoted by ES(G). In this paper we consider the set S as dominating set and the corresponding

matrix as domination matrix denoted by Aγ(G) of G. Thus the energy E(G) obtained from

the domination matrix Aγ(G) is defined as domination energy denoted by Eγ(G).

Let the vertices of G be labeled as v1, v2, v3, · · · , vn. The domination matrix of G is

defined to be the square matrix Aγ(G) corresponding to the dominating set of G. The Eigen

values of the domination matrix denoted by κ1, κ2, κ3, · · · , κn are said to be the Aγ Eigen

values of G. Since the Aγ matrix is symmetric, its Eigen values are real and can be ordered

κ1 > κ2 > κ3 > · · · > κn. Therefore, the domination energy

Eγ = Eγ(G) =
n
∑

i=1

|κi|. (1)

This equation has been chosen so as to be fully analogous to the definition of graph energy [2].

E = E(G) =

n
∑

i=1

|λi|, (2)

where λ1 > λ2 > λ3 > · · · ,> λn are the Eigen values of the adjacency matrix A(G). Recall that

in the last few years, the graph energyE(G) and domination energy [20,21] or covering energy [8]

has been extensively studied in mathematics [8-13] and mathematic-chemical literature [14-24].

Definition 1.1(Minimal domination energy) A dominating set D in G is a minimal dominating

set if no proper subset of D is a dominating set. The domination energy Eγ(G) obtained for a

minimal dominating set is called the minimal domination energy denoted by Eγ−min(G).

Definition 1.2(Maximal domination energy) A dominating set D in G is a maximal dominating

set if D contains all the vertices of G. The domination energy Eγ(G) obtained for a maximal

dominating set is called the maximal domination energy denoted by Eγ−max(G).

Similarly to domination energy of graph G, distance domination energy can also be defined

as follows:

Let the vertices of G be labeled as v1, v2, v3, · · · , vn. The distance matrix of G is denoted by

D(G) is defined to be the square matrixD(G) = [dij ], where dij is the shortest distance between

the vertex vi and vj in G. The Eigen values of the distance matrix denoted by µ1, µ2, µ3, · · · , µn

are said to be the D Eigen values of G. Since the D(G) matrix is symmetric, its Eigen values
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are real and can be ordered µ1 > µ2 > µ3 > · · · > µn. Therefore, the distance energy

ED = ED(G) =

n
∑

i=1

|µi|. (3)

This equation has been chosen so as to be fully analogous to the definition of graph energy [2].

In the distance matrix D(G) of G replace the aii element by 1 if and only if vi ∈ S. The

matrix thus obtained from the distance matrix can be considered as the distance matrix of the

set S denoted by DS(G). The energy E(G) obtained from the matrix DS(G) is called the

distance set energy denoted by DS(G). In this paper we consider the set S as dominating set

and the corresponding matrix is distance domination matrix denoted by Dγ(G) of G. Thus

the energy E(G) obtained from the distance domination matrix Dγ(G) is defined as distance

domination energy denoted by EDγ(G).

The distance domination matrix of G is defined to be the square matrix Dγ(G) correspond-

ing to the dominating set of G. The Eigen values of the distance domination matrix denoted

by σ1, σ2, σ3, · · · , σn are said to be the Dγ Eigen values of G. Since the Dγ(G) matrix is sym-

metric, its D-Eigen values are real and can be ordered σ1 > σ2 > σ3 > · · · > σn. Therefore,

the distance domination energy

EDγ = EDγ(G) =

n
∑

i=1

|σi|. (4)

This equation has been chosen so as to be fully analogous to the definition of graph energy [2].

E = E(G) =
n
∑

i=1

|λi|, (5)

where λ1 > λ2 > λ3 > . . . ,> λn are the Eigen values of the adjacency matrix A(G).

Definition 1.3(Minimal distance domination energy) A dominating set D in G is a minimal

dominating set if no proper subset of D is a dominating set. The distance domination energy

EDγ(G) obtained for a minimal dominating set is called the minimal domination energy denoted

by EDγ−min(G).

Definition 1.4(Maximal distance domination energy) A dominating set D in G is a maximal

dominating set if D contains all the vertices of G. The distance domination energy EDγ(G)

obtained for a maximal dominating set is called the maximal domination energy denoted by

EDγ−max(G).

§2. Different Energies of Graph with γ(G) = 1

In this section, we characterize graphs with respect to the unique domination set and hence

find their different domination energies.

Remark 2.1 For the complete graph Kn the matrices A(G) = D(G) and Aγ(G) = Dγ(G).
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Hence, the energy of complete graph Kn is given by 2(n−1), i.e., E(Kn) = ED(Kn) = 2(n−1).

Theorem 2.1 Let G = Kn. Then,

Eγ−min(Kn) = EDγ−min(Kn) =
√

n2 − 2n+ 5 + (n− 2), n > 3.

Proof Calculation enables one to find the characteristic polynomial of Kn for n > 3

directly. Label the vertices of Kn as v1, v2, v3, · · · , vn such that v1 is the dominating set. The

domination matrix and the distance domination matrix are same. Hence, in the domination

matrix or distance domination matrix a11 = 1 and aii = 0, i 6= 1.

The characteristic polynomial of domination matrix and the distance domination matrix is

given by κn+q1κ
n−1+q2κ

n−2+· · ·+qn−1κ+qn = 0 and σn+q1σ
n−1+q2σ

n−2+· · ·+qn−1σ+qn =

0 respectively.

The domination matrix and the characteristic polynomial of K3 are given by

Aγ(G) = Dγ(G) =









1 1 1

1 0 1

1 1 0









and κ3 − κ2 − 3κ− 1 = (κ+ 1)
(

κ2 − 2κ− 1
)

.

The domination matrix and the characteristic polynomial of K4 are given by

Aγ(G) = Dγ(G) =















1 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0















and κ4 − κ3 − 6κ2 − 5κ− 1 = (κ+ 1)
2 (
κ2 − 3κ− 1

)

.

The domination matrix and the characteristic polynomial of K5 are given by

Aγ(G) = Dγ(G) =





















1 1 1 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0





















and κ5 − κ4 − 10κ3 − 14κ2 − 7κ− 1 = (κ+ 1)
3 (
κ2 − 4κ− 1

)

.

Therefore, the characteristic polynomial of Kn using domination matrix is

(κ+ 1)
n−2 (

κ2 − (n− 1)κ− 1
)

= 0.
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Solving the equation we get

(κ+ 1)
n−2

= 0 or
(

κ2 − (n− 1)κ− 1
)

= 0.

κ = −1,−1,−1, · · · ,−1(n− 2) times

κ2 − (n− 1)κ− 1 = 0

Therefore,

κ =
n− 1±

√

(n− 1)2 − 4(1)(−1)

2
=
n− 1±

√
n2 − 2n+ 5

2
,

where n > 3. Hence the roots are

κ1 =
n− 1 +

√
n2 − 2n+ 5

2
, κ2 = −

(√
n2 − 2n+ 5− (n− 1)

2

)

and

Eγ−min(Kn) =

n
∑

i=1

|κi|

=
n− 1 +

√
n2 − 2n+ 5 +

√
n2 − 2n+ 5− (n− 1)

2
+ n− 2,

Eγ−min(Kn) = EDγ−min(Kn) =
√

n2 − 2n+ 5 + (n− 2).

Hence, we get the proof. 2
Remark 2.2 All four types of energies of a complete graph can be compared as follows:

E(Kn) = ED(Kn) = 2(n− 1) > Eγ−min(Kn)

= EDγ−min(Kn) =
√

n2 − 2n+ 5 + (n− 2).

Remark 2.3 Energy of a star graph K1,n−1 is given by 2
√
n− 1.

Theorem 2.2([21]) Let G = K1,n−1, n > 3. Then,

Eγ−min (K1,n−1) =
√

4n− 3.

Remark 2.4 E (K1,n−1) = 2
√
n− 1 6 Eγ−min (K1,n−1) =

√
4n− 3.

Theorem 2.3 Let G = K1,n−1, n > 3. Then,

ED (K1,n−1)= 2n− 4 +
√

n2 − 3n+ 3.

Proof Calculation enables one to find the characteristic polynomial of K1,n−1 for n > 3

directly. Label the vertices of K1,n−1 as v1, v2, v3, · · · , vn. The characteristic polynomial of
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distance matrix D(G) is given by

µn + q1µ
n−1 + q2µ

n−2 + · · ·+ qn−1µ+ qn = 0.

The distance matrix and the characteristic polynomial of K1,2 are given by

D(G) =









0 1 1

1 0 2

1 2 0









and µ3 − 6µ− 4 = (µ+ 2)
(

µ2 − 2µ− 2
)

.

The distance matrix and the characteristic polynomial of K1,3 are given by

D(G) =















0 1 1 1

1 0 2 2

1 2 0 2

1 2 2 0















and µ4 − 15µ2 − 28µ− 12 = (µ+ 2)
2 (
µ2 − 4µ− 3

)

.

The distance matrix and the characteristic polynomial of K1,4 are given by

D(G) =





















0 1 1 1 1

1 0 2 2 2

1 2 0 2 2

1 2 2 0 2

1 2 2 2 0





















and µ5 − 28µ3 − 88µ2 − 96µ− 32 = (µ+ 2)
3 (
µ2 − 6µ− 4

)

.

The distance matrix and the characteristic polynomial of K1,5 are given by

D(G) =



























0 1 1 1 1 1

1 0 2 2 2 2

1 2 0 2 2 2

1 2 2 0 2 2

1 2 2 2 0 2

1 2 2 2 0 2



























and µ6 − 45µ4 − 200µ3 − 360µ2 − 288µ− 80 = (µ+ 2)
4 (
µ2 − 8µ− 5

)

.

Therefore the characteristic polynomial of K1,n−1 using distance matrix is

(µ+ 2)
n−2 (

µ2 − (2n− 4)µ− (n− 1)
)

.
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Solving the equation we get

(µ+ 2)
n−2

= 0 or µ2 − (2n− 4)µ− (n− 1) = 0,

µ = −2,−2,−2, · · · ,−2(n− 2)(times) or µ2 − (2n− 4)µ− (n− 1) = 0.

Therefore,

µ =
(2n− 4)±

√

(2n− 4)2 − 4(−(n− 1))

2
=

(2n− 4)±
√

4 (n2 − 3n+ 3)

2

where n > 3. Hence the roots are

µ1 =
(n− 4) +

√
n2 − 3n+ 3

2
and µ2 = −

(√
n2 − 3n+ 3− (n− 4)

2

)

.

ED (K1,n−1) =

n
∑

i=1

|µi|

=
2
√
n2 − 3n+ 3

2
+ 2(n− 2)

= 2n− 4 +
√

n2 − 3n+ 3.

Hence, we get the proof. 2
Theorem 2.4 Let G = K1,n−1, n > 3. Then,

EDγ (K1,n−1)= 4n− 7.

Proof Calculation enables one to find the characteristic polynomial of K1,n−1 for n > 3

directly. Label the vertices of K1,n−1 as v1, v2, v3, · · · , vn.

The characteristic polynomial of distance domination matrix Dγ(G) is given by

σn + q1σ
n−1 + q2σ

n−2 + · · ·+ qn−1σ + qn = 0.

The distance domination matrix and the characteristic polynomial of K1,2 are given by

Dγ(G) =









1 1 1

1 0 2

1 2 0









and σ3 − σ2 − 6σ = (σ + 2)
(

σ2 − 3σ + 0
)

.

The distance domination matrix and the characteristic polynomial of K1,3 are given by
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Dγ(G) =















1 1 1 1

1 0 2 2

1 2 0 2

1 2 2 0















and σ4 − σ3 − 15σ2 − 16σ + 4 = (σ + 2)
2 (
σ2 − 5σ + 1

)

.

The distance domination matrix and the characteristic polynomial of K1,4 are given by

Dγ(G) =





















1 1 1 1 1

1 0 2 2 2

1 2 0 2 2

1 2 2 0 2

1 2 2 2 0





















and σ5 − σ4 − 28σ3 − 64σ2 − 32σ + 16 = (σ + 2)
3 (
σ2 − 7σ + 2

)

.

The distance domination matrix and the characteristic polynomial of K1,5 are given by

Dγ(G) =



























1 1 1 1 1 1

1 0 2 2 2 2

1 2 0 2 2 2

1 2 2 0 2 2

1 2 2 2 0 2

1 2 2 2 0 2



























and σ6 − σ5 − 45σ4 − 160σ3 − 200σ2 − 48σ + 48 = (σ + 2)
4 (
σ2 − 9σ + 3

)

.

Therefore the characteristic polynomial of K1,n−1 using distance domination matrix is

(σ + 2)
n−2 (

σ2 − (2n− 3)σ + (n− 3)
)

= 0.

Solving the equation we get

(σ + 2)n−2 = 0 or σ2 − (2n− 3)σ + (n− 3) = 0.

Whence, σ = −2,−2,−2, · · · ,−2 ((n− 2) times) or σ2 − (2n− 3)σ + (n− 3) = 0. Therefore,

σ =
(2n− 3)±

√

(2n− 3)2 − 4((n− 3))

2
=

(2n− 3)±
√

4n2 − 16n+ 21

2
,
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where n > 3, i.e., the roots are

σ1 =
(2n− 3) +

√
4n2 − 16n+ 21

2
,

σ2 =
(2n− 3)−

√
4n2 − 16n+ 21

2

and

EDγ (K1,n−1) =

n
∑

i=1

|σi|

= (2n− 3) + 2(n− 2) = 4n− 7.

Hence, we get the proof. 2
§3. Domination Energies for the Graph with γ(G) = 2

During the study of chemical graphs and its Weiner number, the Yugoslavian chemist Ivan

Gutman introduced the concept of Thorn graphs. This idea was further extended to the broader

concept of generalized thorny graphs by Danail Bonchev and Douglas J Klein of USA. This

class of graphs gain importance in Spectral theory as it represents the structural formula of

aliphatic and aromatic hydrocarbons9[.

Theorem 3.1 Let G = P2,t, n = 2t. Then,

E (P2,t) = 2
√

4t− 3.

Proof Calculation enables one to find the characteristic polynomial of G = P2,t for n = 2t

directly. For t = 1, P2,1 is a path with 2 vertices, t = 2, P2,2 is a path with 4 vertices.

The adjacency matrix and the characteristic polynomial of P2,3 are given by

A(G) =



























0 0 1 0 0 0

0 0 1 0 0 0

1 1 0 1 0 0

0 0 1 0 1 1

0 0 0 1 0 0

0 0 0 1 0 0



























and λ6 − 5λ4 + 4λ2 = λ2(λ2 − λ− 2)(λ2 + λ− 2).
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The adjacency matrix and the characteristic polynomial of P2,4 are given by

A(G) =







































0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0

1 1 1 0 1 0 0 0

0 0 0 1 0 1 1 1

0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0







































and λ8 − 7λ6 + 9λ4 = λ4(λ2 − λ− 3)(λ2 + λ− 3).

The adjacency matrix and the characteristic polynomial of P2,5 are given by

A(G) =



















































0 0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

1 1 1 1 0 1 0 0 0 0

0 0 0 0 1 0 1 1 1 1

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0



















































and λ10 − 9λ8 + 16λ6 = λ6(λ2 − λ− 4)(λ2 + λ− 4).

The adjacency matrix and the characteristic polynomial of P2,6 are given by

A(G) =































































0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

1 1 1 1 1 0 1 0 0 0 0 0

0 0 0 0 0 1 0 1 1 1 1 1

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0






























































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and λ12 − 11λ10 + 25λ8 = λ8(λ2 − λ− 5)(λ2 + λ− 5).

Therefore the characteristic polynomial of P2,t using adjacency matrix is

λ2t−4(λ2 − λ− (t− 1))(λ2 + λ− (t− 1)).

Solving the equation we get

λ2t−4 = 0, λ2 − λ− (t− 1) = 0 or λ2 + λ− (t− 1) = 0,

i.e.,

λ = 0, 0, 0, · · · , 0((2t− 4) times), λ2 − λ− (t− 1) = 0.

Therefore,

λ =
1±
√

1 + 4t− 4

2
= 1±

√
4t− 3,

where t > 3. Hence the roots are

λ1 = 1 +
√

4t− 3 and λ2 = −
(√

4t− 3− 1
)

and

E =

n
∑

i=1

|λi| =
1 +
√

4t− 3 +
√

4t− 3− 1

2
=
√

4t− 3.

Similarly, solving the equation λ2 + λ− (t− 1) = 0 we get that

E =
√

4t− 3.

Whence,

E (P2,t) = 2
√

4t− 3.

Hence, we get the proof. 2
Theorem 3.2([21]) Let G = P2,t, n = 2t. Then,

Eγ−min (P2,t) = 2
√
t− 1 + 2

√
t.

Theorem 3.3 Let G = P2,t, n = 2t. Then,

ED (P2,t)=

√

25t2 − 28t+ 20 + (5t− 6).

Proof Calculation enables one to find the characteristic polynomial of P2,t for n = 2t

directly. For t = 1, P2,1 is a path with 2 vertices, t = 2, P2,2 is a path with 4 vertices.

The characteristic polynomial of P2,t using distance matrix D(G) is given by

µn + q1µ
n−1 + q2µ

n−2 + · · ·+ qn−1µ+ qn = 0.
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The distance matrix and the characteristic polynomial of P2,3 are given by

D(G) =



























0 2 1 2 3 3

2 0 1 2 3 3

1 1 0 1 2 2

2 2 1 0 1 1

3 3 2 1 0 2

3 3 2 1 2 0



























and

µ6 − 65µ4 − 296µ3 − 504µ2 − 352µ− 80 = (µ+ 2)
2 (
µ2 − 9µ− 10

) (

µ2 + 5µ+ 2
)

.

The distance matrix and the characteristic polynomial of P2,4 are given by

D(G) =







































0 2 2 1 2 3 3 3

2 0 2 1 2 3 3 3

2 2 0 1 2 3 3 3

1 1 1 0 1 2 2 2

2 2 2 1 0 1 1 1

3 3 3 2 1 0 2 2

3 3 3 2 1 2 0 2

3 3 3 2 1 2 2 0







































and

µ8 − 136µ6 − 1040µ5 − 3468µ4 − 6112µ3 − 5792µ2 − 2688µ− 448

= (µ+ 2)
4 (
µ2 − 14µ− 14

) (

µ2 + 6µ+ 2
)

.

The distance matrix and the characteristic polynomial of P2,5 are given by

D(G) =



















































0 2 2 2 1 2 3 3 3 3

2 0 2 2 1 2 3 3 3 3

2 2 0 2 1 2 3 3 3 3

2 2 2 0 1 2 3 3 3 3

1 1 1 1 0 1 2 2 2 2

2 2 2 2 1 0 1 1 1 1

3 3 3 3 2 1 0 2 2 2

3 3 3 3 2 1 2 0 2 2

3 3 3 3 2 1 2 2 0 2

3 3 3 3 2 1 2 2 2 0


















































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and

µ10 − 233µ8 − 2512µ7 − 12624µ6 − 36800µ5 − 66400µ4 − 74496µ3

−49664µ2 − 17408µ− 2304 = (µ+ 2)
6 (
µ2 − 19µ− 18

) (

µ2 + 7µ+ 2
)

.

Therefore, the characteristic polynomial of P2,t using distance matrix is

(µ+ 2)2t−4 (µ2 − (5t− 6)µ− (4t− 2)
) (

µ2 + (t+ 2)µ+ 2
)

,

i.e.,

(µ+ 2)
2t−4

= 0, µ2 − (5t− 6)µ− (4t− 2), or µ2 + (t+ 2)µ+ 2 (µ+ 2)
2t−4

= 0.

Solving the equation (µ+ 2)
2t−4

we get µ = −2,−2,−2, · · · ,−2((2t− 4) times. Similarly,

Solving the equation µ2 − (5t− 6)µ− (4t− 2) we get

µ =
(5t− 6)±

√

(5t− 6)2 + 4(4t− 2)

2

, and the equation +(t+ 2)µ+ 2 we get

µ =
−(t+ 2)±

√

(t+ 2)2 − 8

2
.

Therefore,

ED (P2,t) =

n
∑

i=1

|µi| =
√

25t2 − 28t+ 20 + (t+ 2) + (4t− 8)

=
√

25t2 − 28t+ 20 + (5t− 6).

Hence, we get the proof. 2
Theorem 3.4 Let G = P2,t, n = 2t. Then,

EDγ (P2,t) =







√
25t2 − 54t+ 45 +

√
t2 + 6t− 3 + (4t− 8) t = 3, 4

(5t− 5) +
√
t2 + 6t− 3 + (4t− 8) t > 5

and for t = 5,

EDγ (P2,t) =
(5t− 5) +

√
25t2 + 54t+ 45

2
+
√

t2 + 6t− 3 + (4t− 8).

Proof Calculation enables one to find the characteristic polynomial of P2,t for n = 2t

directly. For t = 1, P2,1 is a path with 2 vertices, t = 2, P2,2 is a path with 4 vertices.

The characteristic polynomial of P2,t using distance domination matrix Dγ(G) is given by
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σn + q1σ
n−1 + q2σ

n−2 + · · ·+ qn−1σ + qn = 0.

The distance domination matrix and the characteristic polynomial of P2,3 are given by

Dγ(G) =



























0 2 1 2 3 3

2 0 1 2 3 3

1 1 1 1 2 2

2 2 1 1 1 1

3 3 2 1 0 2

3 3 2 1 2 0



























and σ6 − 2σ5 − 64σ4 − 188σ3 − 124σ2 + 64σ + 16 = (σ + 2)
2 (
σ2 − 10σ − 2

) (

σ2 + 4σ − 2
)

.

The distance domination matrix and the characteristic polynomial of P2,4 are given by

Dγ(G) =







































0 2 2 1 2 3 3 3

2 0 2 1 2 3 3 3

2 2 0 1 2 3 3 3

1 1 1 1 1 2 2 2

2 2 2 1 1 1 1 1

3 3 3 2 1 0 2 2

3 3 3 2 1 2 0 2

3 3 3 2 1 2 2 0







































and

σ8 − 2σ7 − 135σ6 − 800σ5 − 1877σ4 − 1704σ3 + 88σ2 + 736σ + 48

= (σ + 2)4
(

σ2 − 15σ − 1
) (

σ2 + 5σ − 3
)

.

The distance domination matrix and the characteristic polynomial of P2,5 are given by

Dγ(G) =



















































0 2 2 2 1 2 3 3 3 3

2 0 2 2 1 2 3 3 3 3

2 2 0 2 1 2 3 3 3 3

2 2 2 0 1 2 3 3 3 3

1 1 1 1 1 1 2 2 2 2

2 2 2 2 1 1 1 1 1 1

3 3 3 3 2 1 0 2 2 2

3 3 3 3 2 1 2 0 2 2

3 3 3 3 2 1 2 2 0 2

3 3 3 3 2 1 2 2 2 0



















































and
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σ10 − 2σ9 − 232σ8 − 2088σ7 − 8480σ6 − 18208σ5 − 19584σ4

−5504σ3 + 7424σ2 + 5120σ = (σ + 2)
6 (
σ2 − 20σ − 0

) (

σ2 + 6σ − 4
)

.

The distance domination matrix and the characteristic polynomial of P2,6 are given by

Dγ(G) =





























































0 2 2 2 2 1 2 3 3 3 3 3

2 0 2 2 2 1 2 3 3 3 3 3

2 2 0 2 2 1 2 3 3 3 3 3

2 2 2 0 2 1 2 3 3 3 3 3

2 2 2 2 0 1 2 3 3 3 3 3

1 1 1 1 1 1 1 2 2 2 2 2

2 2 2 2 2 1 1 1 1 1 1 1

3 3 3 3 3 2 1 0 2 2 2 2

3 3 3 3 3 2 1 2 0 2 2 2

3 3 3 3 3 2 1 2 2 0 2 2

3 3 3 3 3 2 1 2 2 2 0 2

3 3 3 3 3 2 1 2 2 2 2 0





























































and

σ12 − 2σ11 − 355σ10 − 4300σ9 − 24885σ8 − 83856σ7 − 172368σ6 − 206400σ5 − 108000σ4

+39680σ3 + 80384σ2 + 28672σ − 1280 = (σ + 2)
8 (
σ2 − 25σ + 1

) (

σ2 + 7σ − 5
)

.

Therefore, the characteristic polynomial of P2,t using distance domination matrix is

(σ + 2)
2t−4 (

σ2 − (5t− 5)σ + (t− 5)
) (

σ2 + (t+ 1)σ − (t− 1)
)

,

i.e.,

(σ + 2)
2t−4

, σ2 − (5t− 5)σ + (t− 5) or σ2 + (t+ 1)σ − (t− 1).

Solving the equation (σ + 2)
2t−4

= 0 we get σ = −2,−2,−2, · · · ,−2 ((2t − 4) times).

Similarly, solving the equation σ2 − (5t− 5)σ + (t− 5) we get

σ =
(5t− 5)±

√

(5t− 5)2 − 4(t− 5)

2

and the equation σ2 + (t+ 1)σ − (t− 1) implies

σ =
(t+ 1)±

√

(t+ 2)2 + 4(t− 1)

2
.
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Therefore,

EDγ (P2,t) =

n
∑

i=1

|σi| =







√
25t2 − 54t+ 45 +

√
t2 + 6t− 3 + (4t− 8), t = 3, 4

(5t− 5) +
√
t2 + 6t− 3 + (4t− 8), t > 5.

and for t = 5,

EDγ (P2,t) =
(5t− 5) +

√
25t2 + 54t+ 45

2
+
√

t2 + 6t− 3 + (4t− 8). 2
Theorem 3.5 Let G = P3,t, n = 2t+ 1. Then,

E (P3,t) = 2
√
t− 1 + 2

√
t+ 1.

Proof Calculation enables one to find the characteristic polynomial of P3,t for n = 2t+ 1

directly. For t = 1, P3,1 is a path with 3 vertices, t = 2, P3,2 is a path with 5 vertices.

The adjacency matrix and the characteristic polynomial of P3,3 are given by

A(G) =

































0 0 1 0 0 0 0

0 0 1 0 0 0 0

1 1 0 1 0 0 0

0 0 1 0 1 0 0

0 0 0 1 0 1 1

0 0 0 0 1 0 0

0 0 0 0 1 0 0

































and λ7 − 6λ5 + 8λ3 = λ3(λ2 − 2)(λ2 − 4).

The adjacency matrix and the characteristic polynomial of P3,4 are given by

A(G) =













































0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0

1 1 1 0 1 0 0 0 0

0 0 0 1 0 1 0 0 0

0 0 0 0 1 0 1 1 1

0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0













































and λ9 − 8λ7 + 15λ5 = λ5(λ2 − 3)(λ2 − 5).



Different Domination Energies in Graphs 119

The adjacency matrix and the characteristic polynomial of P3,5 are given by

A(G) =























































0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

1 1 1 1 0 1 0 0 0 0 0

0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 1 0 1 1 1 1

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0























































and λ11 − 10λ9 + 24λ7 = λ7(λ2 − 4)(λ2 − 6).

Therefore the characteristic polynomial of P3,t using adjacency matrix is

λ2t−3(λ2 − (t− 1))(λ2 − (t+ 1)).

Solving the equation we get

E (P3,t) = 2
√
t− 1 + 2

√
t+ 1.

Hence, we get the proof. 2
Theorem 3.6([21]0) Let G = P3,t, n = 2t+ 1. Then,

Eγ−min (P3,t) =
√

4t− 3 +
√

4t+ 5.

Theorem 3.7 Let G = P3,t, n = 2t + 1 Then, the characteristic polynomial of P3,t using

distance matrix of G is

(µ+ 2)2t−4 (µ2 + (2t+ 2)µ+ 4
) (

µ3 − (6t− 6)µ2 − (12t− 6)µ− 4t
)

= 0.

Proof Calculation enables one to find the characteristic polynomial of P3,t for n = 2t+ 1

directly. For t = 1, P3,1 is a path with 3 vertices, t = 2, P3,2 is a path with 5 vertices.

The characteristic polynomial of distance matrix D(G) is given by

µn + q1µ
n−1 + q2µ

n−2 + · · ·+ qn−1µ+ qn = 0.
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The distance matrix and the characteristic polynomial of P3,3 are given by

D(G) =

































0 2 1 2 3 4 4

2 0 1 2 3 4 4

1 1 0 1 2 3 3

2 2 1 0 1 2 2

3 3 2 1 0 1 1

4 4 3 2 1 0 2

4 4 3 2 1 2 0

































and

µ7 − 134µ5 − 804µ4 − 1904µ3 − 2112µ2 − 1056µ− 192

= (µ+ 2)2
(

µ2 + 8µ+ 4
) (

µ3 − 12µ2 − 30µ− 12
)

.

The distance matrix and the characteristic polynomial of P3,4 are given by

D(G) =













































0 2 2 1 2 3 4 4 4

2 0 2 1 2 3 4 4 4

2 2 0 1 2 3 4 4 4

1 1 1 0 1 2 3 3 3

2 2 2 1 0 1 2 2 2

3 3 3 2 1 0 1 1 1

4 4 4 3 2 1 0 2 2

4 4 4 3 2 1 2 0 2

4 4 4 3 2 1 2 2 0













































and

µ9 − 258µ7 − 2412µ6 − 9864µ5 − 21984µ4 − 28128µ3 − 20160µ2

−7296µ− 1024 = (µ+ 2)
4 (
µ2 + 10µ+ 4

) (

µ3 − 18µ2 − 42µ− 16
)

.
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The distance matrix and the characteristic polynomial of P3,5 are given by

D(G) =

























































0 2 2 2 1 2 3 4 4 4 4

2 0 2 2 1 2 3 4 4 4 4

2 2 0 2 1 2 3 4 4 4 4

2 2 2 0 1 2 3 4 4 4 4

1 1 1 1 0 1 2 3 3 3 3

2 2 2 2 1 0 1 2 2 2 2

3 3 3 3 2 1 0 1 1 1 1

4 4 4 4 3 2 1 0 2 2 2

4 4 4 4 3 2 1 2 0 2 2

4 4 4 4 3 2 1 2 2 0 2

4 4 4 4 3 2 1 2 2 2 0

























































and

µ11 − 422µ9 − 5380µ8 − 31584µ7 − 108160µ6 − 233920µ5− 326784µ4 − 290560µ3

−155648µ2− 44544µ− 5120 = (µ+ 2)
6 (
µ2 + 12µ+ 4

) (

µ3 − 24µ2 − 54µ− 20
)

.

Therefore, the characteristic polynomial of P3,t using distance matrix is

(µ+ 2)
2t−4 (

µ2 + (2t+ 2)µ+ 4
) (

µ3 − (6t− 6)µ2 − (12t− 6)µ− 4t
)

= 0. 2
Theorem 3.8 Let G = P3,t, n = 2t + 1 Then, the characteristic polynomial of P2,t using

distance domination matrix of G, is given by

(σ + 2)
2t−4 (

σ2 + (2t+ 1)σ − (2t− 4)
) (

σ3 − (6t− 5)σ2 − (6t+ 2)σ + (4t+ 8)
)

= 0.

Proof Calculation enables one to find the characteristic polynomial of P3,t for n = 2t+ 1

directly. For t = 1, P3,1 is a path with 3 vertices, t = 2, P3,2 is a path with 5 vertices.

The characteristic polynomial of distance domination matrix Dγ(G) is given by

σn + q1σ
n−1 + q2σ

n−2 + · · ·+ qn−1σ + qn = 0.

The distance domination matrix and the characteristic polynomial of P3,3 are given by

Dγ(G) =

































0 2 1 2 3 4 4

2 0 1 2 3 4 4

1 1 1 1 2 3 3

2 2 1 0 1 2 2

3 3 2 1 1 1 1

4 4 3 2 1 0 2

4 4 3 2 1 2 0
































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and

σ7 − 2σ6 − 133σ5 − 586σ4 − 824σ3 − 176σ2 + 240σ − 32

= (σ + 2)
2 (
σ2 + 7σ − 2

) (

σ3 − 13σ2 − 20σ + 4
)

.

The distance domination matrix and the characteristic polynomial of P3,4 are given by

Dγ(G) =













































0 2 2 1 2 3 4 4 4

2 0 2 1 2 3 4 4 4

2 2 0 1 2 3 4 4 4

1 1 1 1 1 2 3 3 3

2 2 2 1 0 1 2 2 2

3 3 3 2 1 1 1 1 1

4 4 4 3 2 1 0 2 2

4 4 4 3 2 1 2 0 2

4 4 4 3 2 1 2 2 0













































and

σ9 − 2σ8 − 257σ7 − 1966σ6 − 6152σ5 − 8816σ4 − 4048σ3 + 2464σ2 + 1792σ − 512

= (σ + 2)
4 (
σ2 + 9σ − 4

) (

σ3 − 19σ2 − 26σ + 18
)

.

The distance domination matrix and the characteristic polynomial of P3,5 are given by

Dγ(G) =























































0 2 2 2 1 2 3 4 4 4 4

2 0 2 2 1 2 3 4 4 4 4

2 2 0 2 1 2 3 4 4 4 4

2 2 2 0 1 2 3 4 4 4 4

1 1 1 1 1 1 2 3 3 3 3

2 2 2 2 1 0 1 2 2 2 2

3 3 3 3 2 1 1 1 1 1 1

4 4 4 4 3 2 1 0 2 2 2

4 4 4 4 3 2 1 2 0 2 2

4 4 4 4 3 2 1 2 2 0 2

4 4 4 4 3 2 1 2 2 2 0






















































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and

σ11 − 2σ10 − 421σ9 − 4626σ8 − 22736σ7 − 60832σ6 − 89568σ5 − 59072σ4 + 9728σ3

+32768σ2 + 6912σ − 4608 = (σ + 2)
6 (
σ2 + 11σ − 6

) (

σ3 − 25σ2 − 32σ + 12
)

.

Therefore the characteristic polynomial of P2,t using distance domination matrix of G is

(σ + 2)2t−4 (σ2 + (2t+ 1)σ − (2t− 4)
) (

σ3 − (6t− 5)σ2 − (6t+ 2)σ + (4t+ 8)
)

= 0. 2
Theorem 3.9 Let G = P4,t, n = 2t+ 2. Then, the characteristic polynomial using adjacency

matrix of G is given by

λ2t−4(λ3 − λ2 − tλ+ (t− 1))(λ3 + λ2 − tλ− (t− 1)).

Proof Calculation enables one to find the characteristic polynomial of P4,t for n = 2t+ 2

directly. For t = 1, P4,1 is a path with 4 vertices, t = 2, P4,2 is a path with 6 vertices.

The adjacency matrix and the characteristic polynomial of P4,3 are given by

A(G) =







































0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0

1 1 0 1 0 0 0 0

0 0 1 0 1 0 0 0

0 0 0 1 0 1 0 0

0 0 0 0 1 0 1 1

0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0







































and λ8 − 7λ6 + 13λ4 − 4λ2 = λ2(λ3 − λ2 − 3λ+ 2)(λ3 + λ2 − 3λ− 2).

The adjacency matrix and the characteristic polynomial of P4,4 are given by

A(G) =

















































0 0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

1 1 1 0 1 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0

0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 1 0 1 1 1

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0
















































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and λ10 − 9λ8 + 22λ6 − 9λ4 = λ4(λ3 − λ2 − 4λ+ 3)(λ3 + λ2 − 4λ− 3).

The adjacency matrix and the characteristic polynomial of P4,5 are given by

Aγ(G) =





























































0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

1 1 1 1 0 1 0 0 0 0 0 0

0 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 0 1 0 1 1 1 1

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0





























































and

λ12 − 11λ10 + 33λ8 − 16λ6 = λ6(λ3 − λ2 − 5λ+ 4)(λ3 + λ2 − 5λ− 4).

Therefore, the characteristic polynomial of P4,t using adjacency matrix of G is

λ2t−4(λ3 − λ2 − tλ+ (t− 1))(λ3 + λ2 − tλ− (t− 1)).

Hence, we get the proof. 2
Theorem 3.10([21]) Let G = P4,t, n = 2t + 2. Then, the characteristic polynomial using

domination matrix of G is given by

κ2t−4(κ3 − (t+ 1)κ− (t− 1))(κ3 − 2κ2 − (t− 1)κ+ (t− 1)).

Theorem 3.11 Let G = P4,t, n = 2t+ 2. Then, the characteristic polynomial using distance

matrix of G is given by

(µ+ 2)
2t−4

(µ3 − (7t− 5)µ2 − (22t− 8)µ− (8t+ 4))(µ3 + (3t+ 2)µ2 + (2t+ 8)µ+ 4).

Proof Calculation enables one to find the characteristic polynomial of P4,t for n = 2t+ 2

directly. For t = 1, P4,1 is a path with 4 vertices, t = 2, P4,2 is a path with 6 vertices.



Different Domination Energies in Graphs 125

The distance matrix and the characteristic polynomial of P4,3 are given by

D(G) =







































0 2 1 2 3 4 5 5

2 0 1 2 3 4 5 5

1 1 0 1 2 3 4 4

2 2 1 0 1 2 3 3

3 3 2 1 0 1 2 2

4 4 3 2 1 0 1 1

5 5 4 3 2 1 0 2

5 5 4 3 2 1 2 0







































and µ8 − 248µ6 − 1904µ5 − 5932µ4− 9248µ3 − 7456µ2− 2944µ− 448 = (µ+ 2)2 (µ3 − 16µ2 −
58µ− 28)(µ3 + 12µ2 + 14µ+ 4).

The distance matrix and the characteristic polynomial of P4,4 are given by

D(G) =



















































0 2 2 1 2 3 4 5 5 5

2 0 2 1 2 3 4 5 5 5

2 2 0 1 2 3 4 5 5 5

1 1 1 0 1 2 3 4 4 4

2 2 2 1 0 1 2 3 3 3

3 3 3 2 1 0 1 2 2 2

4 4 4 3 2 1 0 1 1 1

5 5 5 4 3 2 1 0 2 2

5 5 5 4 3 2 1 2 0 2

5 5 5 4 3 2 1 2 2 0



















































and µ10−449µ8−5032µ7−24768µ6−67808µ5−110944µ4−109440µ3−62720µ2−18944µ−2304 =

(µ+ 2)4 (µ3 − 23µ2 − 80µ− 36)(µ3 + 15µ2 + 16µ+ 4).

The distance matrix and the characteristic polynomial of P4,5 are given by

D(G) =





























































0 2 2 2 1 2 3 4 5 5 5 5

2 0 2 2 1 2 3 4 5 5 5 5

2 2 0 2 1 2 3 4 5 5 5 5

2 2 2 0 1 2 3 4 5 5 5 5

1 1 1 1 0 1 2 3 4 4 4 4

2 2 2 2 1 0 1 2 3 3 3 3

3 3 3 3 2 1 0 1 2 2 2 2

4 4 4 4 3 2 1 0 1 1 1 1

5 5 5 5 4 3 2 1 0 2 2 2

5 5 5 5 4 3 2 1 2 0 2 2

5 5 5 5 4 3 2 1 2 2 0 2

5 5 5 5 4 3 2 1 2 2 2 0




























































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and

µ12 − 708µ10 − 10464µ9 − 70860µ8 − 281664µ7 − 718016µ6 − 1214208µ5

−1365888µ4− 998400µ3 − 448512µ2 − 110592µ− 11264

= (µ+ 2)6 (µ3 − 30µ2 − 102µ− 44)(µ3 + 18µ2 + 18µ+ 4).

Therefore the characteristic polynomial of P4,t using distance matrix of G is

(µ+ 2)
2t−4

(µ3 − (7t− 5)µ2 − (22t− 8)µ− (8t+ 4))

×(µ3 + (3t+ 2)µ2 + (2t+ 8)µ+ 4).

Hence, we get the proof. 2
Theorem 3.12 Let G = P4,t, n = 2t+ 2. Then, the characteristic polynomial using distance

domination matrix of G is given by

(σ + 2)
2t−4

(σ3 − (7t− 4)σ2 − (5t)σ + (10t− 20))

×(σ3 + (3t+ 2)σ2 + (8 − t)σ + 4).

Proof Calculation enables one to find the characteristic polynomial of P4,t for n = 2t+ 2

directly. For t = 1, P4,1 is a path with 4 vertices, t = 2, P4,2 is a path with 6 vertices.

The distance domination matrix and the characteristic polynomial of P4,3 are given by

Dγ(G) =







































0 2 1 2 3 4 5 5

2 0 1 2 3 4 5 5

1 1 1 1 2 3 4 4

2 2 1 0 1 2 3 3

3 3 2 1 0 1 2 2

4 4 3 2 1 1 1 1

5 5 4 3 2 1 0 2

5 5 4 3 2 1 2 0







































and

σ8 − 2σ7 − 247σ6 − 1504σ5 − 3277σ4 − 2472σ3 + 216σ2 + 480σ − 80

= (σ + 2)
2
(σ3 − 17σ2 − 45σ + 10)(σ3 + 11σ2 + 5σ − 2).

The distance domination matrix and the characteristic polynomial of P4,4 are given by
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Dγ(G) =



















































0 2 2 1 2 3 4 5 5 5

2 0 2 1 2 3 4 5 5 5

2 2 0 1 2 3 4 5 5 5

1 1 1 1 1 2 3 4 4 4

2 2 2 1 0 1 2 3 3 3

3 3 3 2 1 0 1 2 2 2

4 4 4 3 2 1 1 1 1 1

5 5 5 4 3 2 1 0 2 2

5 5 5 4 3 2 1 2 0 2

5 5 5 4 3 2 1 2 2 0



















































and

σ10 − 2σ9 − 448σ8 − 4264σ7 − 16936σ6 − 33376σ5 − 29968σ4 − 3328σ3 + 10496σ2

+2560σ− 1280 = (σ + 2)
4
(σ3 − 24σ2 − 60σ + 20)(σ3 + 14σ2 + 4σ − 4).

The distance domination matrix and the characteristic polynomial of P4,5 are given by

Dγ(G) =































































0 2 2 2 1 2 3 4 5 5 5 5

2 0 2 2 1 2 3 4 5 5 5 5

2 2 0 2 1 2 3 4 5 5 5 5

2 2 2 0 1 2 3 4 5 5 5 5

1 1 1 1 1 1 2 3 4 4 4 4

2 2 2 2 1 0 1 2 3 3 3 3

3 3 3 3 2 1 0 1 2 2 2 2

4 4 4 4 3 2 1 1 1 1 1 1

5 5 5 5 4 3 2 1 0 2 2 2

5 5 5 5 4 3 2 1 2 0 2 2

5 5 5 5 4 3 2 1 2 2 0 2

5 5 5 5 4 3 2 1 2 2 2 0































































and

σ12 − 2σ11 − 707σ10 − 9212σ9 − 53597σ8 − 173456σ7 − 326864σ6 − 332864σ5 − 107744σ4

+105216σ3 + 90624σ2 − 11520 = (σ + 2)6 (σ3 − 31σ2 − 75σ + 30)(σ3 + 17σ2 + 3σ − 6).

Therefore the characteristic polynomial of P4,t using distance domination matrix of G is

(σ + 2)
2t−4

(σ3 − (7t− 4)σ2 − (5t)σ + (10t− 20))(σ3 + (3t+ 2)σ2 + (8− t)σ + 4).

Hence, we get the proof. 2
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§4. Generalized Characteristic Polynomial Can Not Be Obtained

It is not easy to find the generalized characteristic polynomial with respect to domination

energies for all class of graphs, as the problem of finding the characteristic polynomial for an

arbitrary matrix is still open. Here we illustrate that for paths, cycles and wheel graphs finding

the generalized characteristic polynomial is not possible. Hence for this kind of graphs the

absolute energies cannot be found. Therefore only the upper and lower bound can be obtained.

Theorem 4.1 Let G = Pn, n > 3. Then the exact E(Pn) cannot be calculated as characteristic

polynomial cannot be generalized.

Proof Calculation does not enable one to find the characteristic polynomial of Pn for n > 3

directly. Label the vertices of Pn as v1, v2, v3, · · · , vn.

The characteristic polynomial of adjacency matrix A(G) is given by

λn + q1λ
n−1 + q2λ

n−2 + · · ·+ qn−1λ+ qn = 0.

The adjacency matrix and the characteristic polynomial of P3 are given by

A(G) =









0 1 0

1 0 1

0 1 0









and λ3 − 2λ = λ(λ2 − 1).

The adjacency matrix and the characteristic polynomial of P4 are given by

A(G) =















0 1 0 0

1 0 1 0

0 1 0 1

0 0 1 0















and λ4 − 3λ2 + 1 = (λ2 − λ− 1)(λ2 + λ− 1).

The adjacency matrix and the characteristic polynomial of P5 are given by

A(G) =





















0 1 0 0 0

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

0 0 0 1 0





















and λ5 − 4λ3 + 3λ = λ (λ− 1) (λ+ 1)(λ2 − 3).
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The adjacency matrix and the characteristic polynomial of P6 are given by

A(G) =



























0 1 0 0 0 0

1 0 1 0 0 0

0 1 0 1 0 0

0 0 1 0 1 0

0 0 0 1 0 1

0 0 0 0 1 0



























and

λ6 − 5λ4 + 6λ2 − 1 = (λ3 − λ2 − 2λ+ 1)(λ3 + λ2 − 2λ− 1).

Hence, we get the proof. 2
Theorem 4.2 Let G = Pn, n > 3. Then the exact Eγ(Pn) cannot be calculated as characteristic

polynomial cannot be generalized.

Proof Calculation does not enable one to find the characteristic polynomial of Pn for n > 3

directly. Label the vertices of Pn as v1, v2, v3, · · · , vn.

The characteristic polynomial of domination matrix Aγ(G) is given by κn + q1κ
n−1 +

q2κ
n−2 + · · ·+ qn−1κ+ qn = 0.

The domination matrix and the characteristic polynomial of P3 are given by

Aγ(G) =









0 1 0

1 1 1

0 1 0









and κ3 − κ2 − 2κ = κ(κ+ 1)(κ− 2).

The domination matrix and the characteristic polynomial of P4 are given by

Aγ(G) =















0 1 0 0

1 1 1 0

0 1 0 1

0 0 1 1















, Aγ(G) =















0 1 0 0

1 1 1 0

0 1 1 1

0 0 1 0















or Aγ(G) =















1 1 0 0

1 0 1 0

0 1 0 1

0 0 1 1















whose polynomial are respectively

κ4 − 2κ3 − 2κ2 + 3κ+ 1,

κ4 − 2κ3 − 2κ2 + 2κ+ 1 = (κ− 1)(κ+ 1)(κ2 − 2κ− 1),

κ4 − 2κ3 − 2κ2 + 4κ = κ(κ− 2)(κ2 − 2).
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The domination matrix and the characteristic polynomial of P5 are given by

Aγ(G) =





















1 1 0 0 0

1 0 1 0 0

0 1 0 1 0

0 0 1 1 1

0 0 0 1 0





















or Aγ(G) =





















0 1 0 0 0

1 1 1 0 0

0 1 0 1 0

0 0 1 1 1

0 0 0 1 0





















whose polynomial are respectively

κ5 − 2κ4 − 3κ3 + 5κ2 + 2κ− 1 = (κ2 − κ− 1)(κ3 − κ2 − 3κ+ 1)

κ5 − 2κ4 − 3κ3 + 4κ2 + 3κ = κ(κ2 − κ− 3)(κ2 − κ− 1).

The domination matrix and the characteristic polynomial of P6 are given by

Aγ(G) =



























0 1 0 0 0 0

1 1 1 0 0 0

0 1 0 1 0 0

0 0 1 0 1 0

0 0 0 1 1 1

0 0 0 0 1 0



























and

κ6 − 2κ5 − 4κ4 + 6κ3 + 5κ2 − 2κ− 1 = (κ3 − 3κ− 1)(κ3 − 2κ2 − κ+ 1).

Hence, we get the proof. 2
Theorem 4.3 Let G = Pn, n > 3. Then the exact ED(Pn) cannot be calculated as characteristic

polynomial cannot be generalized.

Proof Calculation does not enable one to find the characteristic polynomial of Pn for n > 3

directly. Label the vertices of Pn as v1, v2, v3, · · · , vn.

The characteristic polynomial of Pn using distance matrix D(G) is given by µn + q1µ
n−1 +

q2µ
n−2 + · · ·+ qn−1µ+ qn = 0.

The distance matrix and the characteristic polynomial of P3 are given by

D(G) =









0 1 2

1 0 1

2 1 0









and µ3 − 6µ− 4 = (µ+ 2)
(

µ2 − 2µ− 2
)

.
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The distance matrix and the characteristic polynomial of P4 are given by

D(G) =















0 1 2 3

1 0 1 2

2 1 0 1

3 2 1 0















and µ4 − 20µ2 − 32µ− 12 =
(

µ2 − 4µ− 6
) (

µ2 + 4µ+ 2
)

.

The distance matrix and the characteristic polynomial of P5 are given by

D(G) =





















0 1 2 3 4

1 0 1 2 3

2 1 0 1 2

3 2 1 0 1

4 3 2 1 0





















and µ5 − 50µ3 − 140µ2 − 120µ− 32 =
(

µ2 + 6µ+ 4
) (

µ3 − 6µ2 − 18µ− 8
)

.

The distance matrix and the characteristic polynomial of P6 are given by

D(G) =



























0 1 2 3 4 5

1 0 1 2 3 4

2 1 0 1 2 3

3 2 1 0 1 2

4 3 2 1 0 1

5 4 3 2 1 0



























and µ6 − 105µ4 − 448µ3 − 648µ2 − 384µ− 80 = (µ+ 1)
(

µ2 + 8µ+ 4
) (

µ3 − 9µ2 − 36µ− 20
)

.

Hence, we get the proof. 2
Theorem 4.4 Let G = Pn, n > 3. Then the exact EDγ(Pn) cannot be calculated as character-

istic polynomial cannot be generalized.

Proof Calculation does not enable one to find the characteristic polynomial of Pn for n > 3

directly. Label the vertices of Pn as v1, v2, v3, · · · , vn.

The characteristic polynomial of Pn using distance domination matrix Dγ(G) is given by

σn + q1σ
n−1 + q2σ

n−2 + · · ·+ qn−1σ + qn = 0.
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The distance domination matrix and the characteristic polynomial of P3 are given by

Dγ(G) =









0 1 2

1 1 1

2 1 0









and σ3 − σ2 − 6σ = σ (σ + 2) (σ − 3) .

The distance domination matrix and the characteristic polynomial of P4 are given by

Dγ(G) =















0 1 2 3

1 1 1 2

2 1 0 1

3 2 1 1















, Dγ(G) =















0 1 2 3

1 1 1 2

2 1 1 1

3 2 1 0















or Dγ(G) =















1 1 2 3

1 0 1 2

2 1 0 1

3 2 1 1















and

σ4 − 2σ3 − 19σ2 − 12σ =
(

σ2 − 5σ − 3
) (

σ2 + 3σ − 1
)

,

σ4 − 2σ3 − 19σ2 − 4σ + 3 = σ (σ + 3)
(

σ2 − 5σ − 4
)

,

σ4 − 2σ3 − 19σ2 − 20σ − 5 =
(

σ2 − 5σ − 5
) (

σ2 + 3σ + 1
)

.

The distance domination matrix and the characteristic polynomial of P5 are given by

Dγ(G) =





















0 1 2 3 4

1 1 1 2 3

2 1 0 1 2

3 2 1 1 1

4 3 2 1 0





















or Dγ(G) =





















1 1 2 3 4

1 0 1 2 3

2 1 0 1 2

3 2 1 1 1

4 3 2 1 0





















and

σ5 − 2σ4 − 49σ3 − 70σ2 = σ2 (σ + 5)
(

σ2 − 7σ − 14
)

,

σ5 − 2σ4 − 49σ3 − 85σ2 − 30σ.

The distance domination matrix and the characteristic polynomial of P6 are given by

Dγ(G) =



























0 1 2 3 4 5

1 1 1 2 3 4

2 1 0 1 2 3

3 2 1 0 1 2

4 3 2 1 1 1

5 4 3 2 1 0


























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and

σ6 − 2σ5 − 104σ4 − 300σ3 − 180σ2 = σ2
(

σ2 − 10σ − 30
) (

σ2 + 8σ + 6
)

.

Hence, we get the proof. 2
Theorem 4.5 Let G = Cn, n > 3. Then the exact E(Cn) cannot be calculated as characteristic

polynomial cannot be generalized.

Proof Calculation does not enable one to find the characteristic polynomial of Cn for n > 3

directly. Label the vertices of Cn as v1, v2, v3, · · · , vn.

The characteristic polynomial of adjacency matrix A(G) is given by

λn + q1λ
n−1 + q2λ

n−2 + · · ·+ qn−1λ+ qn = 0.

The adjacency matrix and the characteristic polynomial of C3 are given by

A(G) =









0 1 1

1 0 1

1 1 0









and λ3 − 3λ− 2 = (λ− 2)(λ+ 1)2.

The adjacency matrix and the characteristic polynomial of C4 are given by

A(G) =















0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0















and λ4 − 4λ2 = λ2(λ− 2)(λ+ 2).

The adjacency matrix and the characteristic polynomial of C5 are given by

A(G) =





















0 1 0 0 1

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

1 0 0 1 0





















and λ5 − 5λ3 + 5λ− 2 = (λ− 2) (λ2 + λ− 1)2.
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The adjacency matrix and the characteristic polynomial of C6 are given by

A(G) =



























0 1 0 0 0 1

1 0 1 0 0 0

0 1 0 1 0 0

0 0 1 0 1 0

0 0 0 1 0 1

1 0 0 0 1 0



























and λ6 − 6λ4 + 9λ2 − 4 = (λ− 2) (λ− 1)2(λ+ 1)2(λ + 2).

The adjacency matrix and the characteristic polynomial of C7 are given by

A(G) =

































0 1 0 0 0 0 1

1 0 1 0 0 0 0

0 1 0 1 0 0 0

0 0 1 0 1 0 0

0 0 0 1 0 1 0

0 0 0 0 1 0 1

0 0 0 0 1 0

































and λ7 − 7λ5 + 14λ3 − 7λ− 2 = (λ− 2)(λ3 + λ2 − 2λ− 1)2. Hence, we get the proof. 2
Theorem 4.6 Let G = Cn, n > 3. Then the exact Eγ(Cn) cannot be calculated as characteristic

polynomial cannot be generalized.

Proof Calculation does not enable one to find the characteristic polynomial of Cn for n > 3

directly. Label the vertices of Cn as v1, v2, v3, · · · , vn.

The characteristic polynomial of domination matrix Aγ(G) is given by

κn + q1κ
n−1 + q2κ

n−2 + · · ·+ qn−1κ+ qn = 0.

The domination matrix and the characteristic polynomial of C3 are given by

Aγ(G) =









0 1 1

1 1 1

1 1 0









and κ3 − κ2 − 3κ− 1 = (κ+ 1)(κ2 − 2κ− 1).
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The domination matrix and the characteristic polynomial of C4 are given by

Aγ(G) =















1 1 0 1

1 0 1 0

0 1 1 1

1 0 1 0















or Aγ(G) =















0 1 0 1

1 1 1 0

0 1 1 1

1 0 1 0















and

κ4 − 2κ3 − 3κ2 + 4κ = κ(κ− 1)(κ2 − κ− 4) or κ4 − 2κ3 − 3κ2 + 4κ− 1.

The domination matrix and the characteristic polynomial of C5 are given by

Aγ(G) =





















1 1 0 0 1

1 0 1 0 0

0 1 0 1 0

0 0 1 1 1

1 0 0 1 0





















and κ5 − 2κ4 − 4κ3 + 6κ2 + 4κ− 4 = (κ2 − 2)(κ3 − 2κ2 − 2κ+ 2).

The domination matrix and the characteristic polynomial of C6 are given by

Aγ(G) =



























1 1 0 0 0 1

1 0 1 0 0 0

0 1 0 1 0 0

0 0 1 1 1 0

0 0 0 1 0 1

1 0 0 0 1 0



























and κ6 − 2κ5 − 5κ4 + 8κ3 + 7κ2 − 6κ− 3 = (κ− 1) (κ+ 1)
(

κ2 − 3
)

(κ2 − 2κ− 1).

The domination matrix and the characteristic polynomial of C7 are given by

Aγ(G) =

































1 1 0 0 0 0 1

1 0 1 0 0 0 0

0 1 1 1 0 0 0

0 0 1 0 1 0 0

0 0 0 1 1 1 0

0 0 0 0 1 0 1

0 0 0 0 1 0

































and κ7−3κ6−4κ5 +14κ4 +5κ3−17κ2−3κ+1 = (κ3−3κ−1)(κ4−3κ3−κ2 +6κ−1). Hence,
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we get the proof. 2
Theorem 4.7 Let G = Cn, n > 3. Then the exact ED(Cn) cannot be calculated as character-

istic polynomial cannot be generalized.

Proof Calculation does not enable one to find the characteristic polynomial of Cn for n > 3

directly. Label the vertices of Cn as v1, v2, v3, · · · , vn.

The characteristic polynomial of Pn using distance matrix D(G) is given by

µn + q1µ
n−1 + q2µ

n−2 + · · ·+ qn−1µ+ qn = 0.

The distance matrix and the characteristic polynomial of C3 are given by

D(G) =









0 1 1

1 0 1

1 1 0









and µ3 − 3µ− 2 = (µ− 2)(µ+ 1)2.

The distance matrix and the characteristic polynomial of C4 are given by

D(G) =















0 1 2 1

1 0 1 2

2 1 0 1

1 2 1 0















and µ4 − 12µ2 − 16µ = µ (µ− 4) (µ+ 2)
2
.

The distance matrix and the characteristic polynomial of C5 are given by

D(G) =





















0 1 2 2 1

1 0 1 2 2

2 1 0 1 2

2 2 1 0 1

1 2 2 1 0





















and µ5 − 25µ3 − 60µ2 − 35µ− 6 = (µ− 6)
(

µ2 + 3µ+ 1
)2
.
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The distance matrix and the characteristic polynomial of C6 are given by

D(G) =



























0 1 2 3 2 1

1 0 1 2 3 2

2 1 0 1 2 3

3 2 1 0 1 2

2 3 2 1 0 1

1 3 2 2 1 0



























and µ6 − 56µ4 − 203µ3 − 190µ2 − 72µ = µ (µ+ 4) (µ− 9)
(

µ3 + 5µ2 + 5µ+ 2
)

.

The distance matrix and the characteristic polynomial of C7 are given by

D(G) =

































0 1 2 3 3 2 1

1 0 1 2 3 3 2

2 1 0 1 2 3 3

3 2 1 0 1 2 3

3 3 2 1 0 1 2

2 3 3 2 1 0 1

1 2 3 3 2 1 0

































and µ7 − 98µ5 − 490µ4 − 707µ3 − 434µ2 − 119µ− 12 = (µ− 12)
(

µ3 + 6µ2 + 5µ+ 1
)2
. Hence,

we get the proof. 2
Theorem 4.8 Let G = Cn, n > 3. Then the exact EDγ(Cn) cannot be calculated as charac-

teristic polynomial cannot be generalized.

Proof Calculation does not enable one to find the characteristic polynomial of Cn for n > 3

directly. Label the vertices of Cn as v1, v2, v3, · · · , vn.

The characteristic polynomial of Pn using distance domination matrix Dγ(G) is given by

σn + q1σ
n−1 + q2σ

n−2 + · · ·+ qn−1σ + qn = 0.

The distance domination matrix and the characteristic polynomial of C3 are given by

Dγ(G) =









0 1 1

1 1 1

1 1 0









and σ3 − σ2 − 3σ − 1 = (σ + 1)(σ2 − 2σ − 1).
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The distance domination matrix and the characteristic polynomial of C4 are given by

Dγ(G) =















1 1 2 1

1 0 1 2

2 1 1 1

1 2 1 0















and σ4 − 2σ3 − 11σ2 − 4σ + 4 = (σ + 1) (σ + 2)
(

σ2 − 5σ + 2
)

.

The distance domination matrix and the characteristic polynomial of C5 are given by

Dγ(G) =





















1 1 2 2 1

1 0 1 2 2

2 1 0 1 2

2 2 1 1 1

1 2 2 1 0





















and σ5 − 2σ4 − 24σ3 − 30σ2 + 4σ = σ (σ + 2)
(

σ3 − 4σ2 − 16σ + 2
)

.

The distance domination matrix and the characteristic polynomial of C6 are given by

Dγ(G) =



























1 1 2 3 2 1

1 0 1 2 3 2

2 1 0 1 2 3

3 2 1 1 1 2

2 3 2 1 0 1

1 3 2 2 1 0



























and

σ6 − 2σ5 − 55σ4 − 129σ3 − 12σ2 + 38σ + 24

= (σ + 4)
(

σ2 − 10σ + 6
) (

σ3 + 4σ2 + 3σ + 1
)

.

The distance matrix and the characteristic polynomial of C7 are given by

Dγ(G) =

































1 1 2 3 3 2 1

1 0 1 2 3 3 2

2 1 1 1 2 3 3

3 2 1 0 1 2 3

3 3 2 1 1 1 2

2 3 3 2 1 0 1

1 2 3 3 2 1 0
































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and

σ7 − 3σ6 − 95σ5 − 281σ4 − 10σ3 + 60σ2 + 8σ

= σ
(

µ2 + 5σ + 2
) (

µ4 − 8µ3 − 57µ2 + 20µ+ 4
)

.

Hence, we get the proof. 2
Theorem 4.9 Let G = Wn, n > 3. Then the exact E(Wn) cannot be calculated as characteristic

polynomial cannot be generalized.

Proof Calculation does not enable one to find the characteristic polynomial of Wn for

n > 3 directly. Label the vertices of Wn as v1, v2, v3, · · · , vn.

The characteristic polynomial of adjacency matrix A(G) is given by

λn + q1λ
n−1 + q2λ

n−2 + · · ·+ qn−1λ+ qn = 0.

The adjacency matrix and the characteristic polynomial of W4 are given by

A(G) =















0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0















and λ4 − 6λ2 − 8λ− 3 = (λ− 3)(λ+ 1)3.

The adjacency matrix and the characteristic polynomial of W5 are given by

A(G) =





















0 1 1 1 1

1 0 1 0 1

1 1 0 1 0

1 0 1 0 1

1 1 0 1 0





















and λ5 − 8λ3 − 8λ2 = λ2 (λ+ 2) (λ2 − 2λ− 4).

The adjacency matrix and the characteristic polynomial of W6 are given by

A(G) =



























0 1 1 1 1 1

1 0 1 0 0 1

1 1 0 1 0 0

1 0 1 0 1 0

1 0 0 1 0 1

1 1 0 0 1 0



























and λ6 − 10λ4 − 10λ3 + 10λ2 + 8λ− 5 =
(

λ2 − 2λ− 5
) (

λ2 + λ− 1
)2
.
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The adjacency matrix and the characteristic polynomial of W7 are given by

A(G) =































0 1 1 1 1 1 1

1 0 1 0 0 0 1

1 1 0 1 0 0 0

1 0 1 0 1 0 0

1 0 0 1 0 1 0

1 0 0 0 1 0 1

1 1 0 0 0 1 0































and

λ7 − 12λ5 − 12λ4 + 21λ3 + 24λ2 − 10λ− 12 = (λ− 1)2(λ+ 1)2(λ+ 2)(λ2 − 2λ− 6).

Hence, we get the proof. 2
Theorem 4.10 Let G = Wn, n > 3. Then the exact Eγ(Wn) cannot be calculated as charac-

teristic polynomial cannot be generalized.

Proof Calculation does not enable one to find the characteristic polynomial of Wn for

n > 3 directly. Label the vertices of Wn as v1, v2, v3, · · · , vn.

The characteristic polynomial of domination matrix Aγ(G) is given by

κn + q1κ
n−1 + q2κ

n−2 + · · ·+ qn−1κ+ qn = 0.

The domination matrix and the characteristic polynomial of W4 are given by

Aγ(G) =















1 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0















and κ4 − κ3 − 6κ2 − 5κ− 1 = (κ+ 1)2(κ2 − 3κ− 1).

The domination matrix and the characteristic polynomial of W5 are given by

Aγ(G) =





















1 1 1 1 1

1 0 1 0 1

1 1 0 1 0

1 0 1 0 1

1 1 0 1 0





















and κ5 − κ4 − 8κ3 − 4κ2 = κ2(κ+ 2)(κ2 − 3κ− 2).
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The domination matrix and the characteristic polynomial of W6 are given by

Aγ(G) =



























1 1 1 1 1 1

1 0 1 0 0 1

1 1 0 1 0 0

1 0 1 0 1 0

1 0 0 1 0 1

1 1 0 0 1 0



























and κ6 − κ5 − 10κ4 − 5κ3 + 10κ2 + 3κ− 3 = (κ2 − 3κ− 3)(κ2 + κ− 1)2.

The domination matrix and the characteristic polynomial of W7 are given by

Aγ(G) =

































1 1 1 1 1 1 1

1 0 1 0 0 0 1

1 1 0 1 0 0 0

1 0 1 0 1 0 0

1 0 0 1 0 1 0

1 0 0 0 1 0 1

1 1 0 0 0 1 0

































and κ7 − κ6 − 12κ5 − 6κ4 + 21κ3 + 15κ2 − 10κ− 8 = (κ− 1)2(κ+ 1)3(κ+ 2)(κ+ 4). Hence, we

get the proof. 2
Theorem 4.11 Let G = Wn, n > 3. Then the exact ED(Wn) cannot be calculated as charac-

teristic polynomial cannot be generalized.

Proof Calculation does not enable one to find the characteristic polynomial of Wn for

n > 3 directly. Label the vertices of Wn as v1, v2, v3, · · · , vn.

The characteristic polynomial of Wn using distance matrix D(G) is given by

µn + q1µ
n−1 + q2µ

n−2 + · · ·+ qn−1µ+ qn = 0.

The distance matrix and the characteristic polynomial of W4 are given by

D(G) =















0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0















and µ4 − 6µ2 − µ− 3 = (µ− 3) (µ+ 1)
3
.
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The distance matrix and the characteristic polynomial of W5 are given by

D(G) =





















0 1 1 1 1

1 0 1 2 1

1 1 0 1 2

1 2 1 0 1

1 1 2 1 0





















and µ5 − 16µ3 − 32µ2 − 16µ = µ (µ+ 2)
2 (
µ2 − 4µ− 4

)

.

The distance matrix and the characteristic polynomial of W6 are given by

D(G) =



























0 1 1 1 1 1

1 0 1 2 2 1

1 1 0 1 2 2

1 2 1 0 1 2

1 2 2 1 0 1

1 1 2 2 1 0



























and µ6 − 30µ4 − 90µ3 − 90µ2 − 36µ− 5 =
(

µ2 − 6µ− 5
) (

µ2 + 3µ+ 1
)2
.

The distance matrix and the characteristic polynomial of W7 are given by

D(G) =

































0 1 1 1 1 1 1

1 0 1 2 2 2 1

1 1 0 1 2 2 2

1 2 1 0 1 2 2

1 2 2 1 0 1 2

1 2 2 2 1 0 1

1 1 2 2 2 1 0

































and µ7 − 48µ5 − 200µ4 − 315µ3 − 216µ2 − 54µ = µ (µ+ 1)
2
(µ+ 3)

2 (
µ2 − 8µ− 6

)

. Hence, we

get the proof. 2
Theorem 4.12 Let G = Wn, n > 3. Then the exact EDγ(Wn) cannot be calculated as

characteristic polynomial cannot be generalized.

Proof Calculation does not enable one to find the characteristic polynomial of Wn for

n > 3 directly. Label the vertices of Wn as v1, v2, v3, · · · , vn.

The characteristic polynomial of Wn using distance domination matrix Dγ(G) is given by

σn + q1σ
n−1 + q2σ

n−2 + · · ·+ qn−1σ + qn = 0.



Different Domination Energies in Graphs 143

The distance domination matrix and the characteristic polynomial of W4 are given by

Dγ(G) =















1 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0















and σ4 − σ3 − 6σ2 − 5σ − 1 = (σ + 1)2
(

σ2 − 3σ − 1
)

.

The distance domination matrix and the characteristic polynomial of W5 are given by

Dγ(G) =





















1 1 1 1 1

1 0 1 2 1

1 1 0 1 2

1 2 1 0 1

1 1 2 1 0





















and σ5 − σ4 − 16σ3 − 20σ2 = σ2 (σ − 5) (σ + 2)
2
.

The distance domination matrix and the characteristic polynomial of W6 are given by

Dγ(G) =



























1 1 1 1 1 1

1 0 1 2 2 1

1 1 0 1 2 2

1 2 1 0 1 2

1 2 2 1 0 1

1 1 2 2 1 0



























and σ6 − σ5 − 30σ4 − 65σ3 − 30σ2 − σ + 1 =
(

σ2 − 7σ + 1
) (

σ2 + 3σ + 1
)2
.

The distance matrix and the characteristic polynomial of W7 are given by

Dγ(G) =

































1 1 1 1 1 1 1

1 0 1 2 2 2 1

1 1 0 1 2 2 2

1 2 1 0 1 2 2

1 2 2 1 0 1 2

1 2 2 2 1 0 1

1 1 2 2 2 1 0

































and σ7 − σ6 − 48σ5 − 158σ4 − 163σ3 − 33σ2 + 18σ = σ (σ + 1)2 (σ + 3)2
(

µ2 − 9µ+ 2
)

. Hence,

we get the proof. 2
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§5. Open Problems

Problem 5.1 Finding the characteristic polynomial for an arbitrary graph.

Problem 5.2 Find upper and lower bound for various kinds of energies with respect to different

parameters of graph.
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