Software Open Access

Amp: The Atomistic Machine-learning Package v0.5

Khorshidi, Alireza; Ulissi, Zachary; El Khatib, Muammar; Peterson*, Andrew


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Khorshidi, Alireza</dc:creator>
  <dc:creator>Ulissi, Zachary</dc:creator>
  <dc:creator>El Khatib, Muammar</dc:creator>
  <dc:creator>Peterson*, Andrew</dc:creator>
  <dc:date>2017-02-24</dc:date>
  <dc:description>Amp is an open-source package designed to easily bring machine-learning to atomistic calculations. This project is being developed at Brown University in the School of Engineering, primarily by Andrew Peterson and Alireza Khorshidi, and is released under the GNU General Public License. Amp allows for the modular representation of the potential energy surface, allowing the user to specify or create descriptor and regression methods.

This project lives at: https://bitbucket.org/andrewpeterson/amp

Documentation lives at: http://amp.readthedocs.org

If you would like to compile a local version of the documentation, see the README file in the docs directory.

*Corresponding author: andrew_peterson@brown.edu</dc:description>
  <dc:identifier>https://zenodo.org/record/322427</dc:identifier>
  <dc:identifier>10.5281/zenodo.322427</dc:identifier>
  <dc:identifier>oai:zenodo.org:322427</dc:identifier>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>http://www.opensource.org/licenses/GPL-3.0</dc:rights>
  <dc:title>Amp: The Atomistic Machine-learning Package v0.5</dc:title>
  <dc:type>info:eu-repo/semantics/other</dc:type>
  <dc:type>software</dc:type>
</oai_dc:dc>
359
25
views
downloads
All versions This version
Views 359359
Downloads 2525
Data volume 94.4 MB94.4 MB
Unique views 348348
Unique downloads 2121

Share

Cite as