Software Open Access

Amp: The Atomistic Machine-learning Package v0.5

Khorshidi, Alireza; Ulissi, Zachary; El Khatib, Muammar; Peterson*, Andrew


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.322427</identifier>
  <creators>
    <creator>
      <creatorName>Khorshidi, Alireza</creatorName>
      <givenName>Alireza</givenName>
      <familyName>Khorshidi</familyName>
      <affiliation>Brown University</affiliation>
    </creator>
    <creator>
      <creatorName>Ulissi, Zachary</creatorName>
      <givenName>Zachary</givenName>
      <familyName>Ulissi</familyName>
      <affiliation>Stanford University</affiliation>
    </creator>
    <creator>
      <creatorName>El Khatib, Muammar</creatorName>
      <givenName>Muammar</givenName>
      <familyName>El Khatib</familyName>
      <affiliation>Brown University</affiliation>
    </creator>
    <creator>
      <creatorName>Peterson*, Andrew</creatorName>
      <givenName>Andrew</givenName>
      <familyName>Peterson*</familyName>
      <affiliation>Brown University</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Amp: The Atomistic Machine-learning Package v0.5</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2017</publicationYear>
  <dates>
    <date dateType="Issued">2017-02-24</date>
  </dates>
  <resourceType resourceTypeGeneral="Software"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/322427</alternateIdentifier>
  </alternateIdentifiers>
  <rightsList>
    <rights rightsURI="http://www.opensource.org/licenses/GPL-3.0">GNU General Public License v3.0 only</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;&lt;em&gt;Amp&lt;/em&gt; is an open-source package designed to easily bring machine-learning to atomistic calculations. This project is being developed at Brown University in the School of Engineering, primarily by Andrew Peterson and Alireza Khorshidi, and is released under the GNU General Public License. &lt;em&gt;Amp&lt;/em&gt; allows for the modular representation of the potential energy surface, allowing the user to specify or create descriptor and regression methods.&lt;/p&gt;

&lt;p&gt;This project lives at: https://bitbucket.org/andrewpeterson/amp&lt;/p&gt;

&lt;p&gt;Documentation lives at: http://amp.readthedocs.org&lt;/p&gt;

&lt;p&gt;If you would like to compile a local version of the documentation, see the README file in the docs directory.&lt;/p&gt;

&lt;p&gt;*Corresponding author: andrew_peterson@brown.edu&lt;/p&gt;</description>
  </descriptions>
</resource>
241
20
views
downloads
All versions This version
Views 241241
Downloads 2020
Data volume 75.5 MB75.5 MB
Unique views 235235
Unique downloads 1818

Share

Cite as