Journal article Open Access

Automatic synchronization of multi-user photo galleries

Sansone, Emanuele; Apostolidis, Konstantinos; Conci, Nicola; Boato, Giulia; Mezaris, Vasileios; De Natale, Francesco G.B.


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Markov Networks</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Weighted Graph</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Multimodal</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Multimedia Synchronization</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Events</subfield>
  </datafield>
  <controlfield tag="005">20190410040705.0</controlfield>
  <controlfield tag="001">322380</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Information Technologies Institute (ITI), Centre for Research and Technology Hellas (CERTH)</subfield>
    <subfield code="a">Apostolidis, Konstantinos</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Information Engineering and Computer Science - DISI, University of Trento</subfield>
    <subfield code="a">Conci, Nicola</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Information Engineering and Computer Science - DISI, University of Trento</subfield>
    <subfield code="a">Boato, Giulia</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Information Technologies Institute (ITI), Centre for Research and Technology Hellas (CERTH)</subfield>
    <subfield code="a">Mezaris, Vasileios</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Information Engineering and Computer Science - DISI, University of Trento</subfield>
    <subfield code="a">De Natale, Francesco G.B.</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">7703933</subfield>
    <subfield code="z">md5:e199663374b767997c49bbe572f73ced</subfield>
    <subfield code="u">https://zenodo.org/record/322380/files/tmm17_preprint.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2017-01-18</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-invid-h2020</subfield>
    <subfield code="o">oai:zenodo.org:322380</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Department of Information Engineering and Computer Science - DISI, University of Trento</subfield>
    <subfield code="a">Sansone, Emanuele</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Automatic synchronization of multi-user photo galleries</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-invid-h2020</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">687786</subfield>
    <subfield code="a">In Video Veritas – Verification of Social Media Video Content for the News Industry</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;In this paper we address the issue of photo galleries synchronization, where pictures related to the same event are collected by different users. Existing solutions to address the problem are usually based on unrealistic assumptions, like time consistency across photo galleries, and often heavily rely on heuristics, limiting therefore the applicability to real-world scenarios. We propose a solution that achieves better generalization performance for the synchronization task compared to the available literature. The method is characterized by three stages: at first, deep convolutional neural network features are used to assess the visual similarity among the photos; then, pairs of similar photos are detected across different galleries and used to construct a graph; eventually, a probabilistic graphical model is used to estimate the temporal offset of each pair of galleries, by traversing the minimum spanning tree extracted&lt;br&gt;
from this graph. The experimental evaluation is conducted on four publicly available datasets covering different types of events, demonstrating the strength of our proposed method. A thorough discussion of the obtained results is provided for a critical assessment of the quality in synchronization.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1109/TMM.2017.2655446</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
58
17
views
downloads
Views 58
Downloads 17
Data volume 131.0 MB
Unique views 56
Unique downloads 17

Share

Cite as