
Enhancements to
multiprocessing in ROOT

August 2015

Author:

Enrico Guiraud

Supervisor:

Gerardo Ganis

CERN openlab Summer Student Report 2015

CERN openlab Summer Student Report 2015

Project Specification
ROOT is a C++ library developed by CERN for data analysis and plotting.

PROOF is a multi-process framework to run ROOT data analytics in parallel on
distributed resources. It implements a 3-tier client-master-workers architecture, with the
master in charge of dynamic work distribution and collection of the results.

PROOF-Lite is a version of PROOF optimized for multi-core machines. It has found
much success in the HEP community because of its direct and simple way of exploit
multi-cores. However, it suffers from some difficulties coming from the fact that it inherits
the setup technology from PROOF. In particular, setting up the environment of the
workers requires the manual replication of the client configuration, a fragile process open
to inconsistencies and failures.

In this project the student will prototype the possibility to create the workers from the
client using process forking just before the execution of the query, so eliminating the
need of any additional configuration of the workers and taking advantage of copy-on-
write system feature.

CERN openlab Summer Student Report 2015

3 | E n r i c o G u i r a u d – h t t p s : / / g i t h u b / b l u e h o o d

Abstract
In this report we outline the results and the products of our investigation of ROOT
multi-processing capabilities: not only we showed that it is possible to fork a ROOT
session running in Linux environment, but we also built a framework that allows to
easily exploit this capability to build parallel applications based on a client-worker
architecture.

Moreover, using this framework as a foundation, we built a new ROOT feature, the Map
function, inspired by python’s pool.map: this function allows to execute the same task
many times in parallel on different arguments, giving users an easy and lightweight
access to multi-processing.

Section 1 is dedicated to a brief explanation of the current approach to multi-processing
in ROOT, namely the PROOF and PROOF-Lite facilities.
Section 2 describes our new approach, its advantages and issues and some
implementation details.
Section 3 describes the Map application, a few usage examples, some implementation
details and the analysis of its performance.
Section 4 outlines some of the possible future developments of the work done so far.

Kudos
I would like to thank my supervisor Gerardo Ganis for the constant support he provided
during all phases of my work: it’s been great and refreshing to receive constant feedback
and constructive criticism, and I feel like I have learnt a preposterous amount of things.

Danilo Piparo and Pere Mato’s ideas and suggestions were also invaluable for the
development of the project; I am thankful he took the time to help me among his other
numerous commitments.

More broadly, I feel grateful towards the whole PH-SFT group for the friendly and
productive environment it provides: this has been the single most peaceful work
experience I had, and I appreciate it immensely. Many thanks to the CERN openlab
summer students program to make this possible.

Last but not least, I truly owe a debt to the Linux community for the tools and the
support it provides me and every other Linux developer, regardless of differences in
programming languages or operating system flavour. I am constantly amazed by the
greatness that came from putting together many little snippets of code.

CERN openlab Summer Student Report 2015

4 | E n r i c o G u i r a u d – h t t p s : / / g i t h u b / b l u e h o o d

Table of Contents
Project Specification .. 2

Abstract ... 3

Table of Contents .. 4

1 Parallel tasks in ROOT: PROOF and PROOF-Lite ... 4

1.1 PROOF ... 4

1.2 PROOF-Lite .. 4

1.3 PROOF-Lite’s problematics ... 5

2 A new framework for multiprocessing in ROOT .. 5

2.1 The ‘multiproc’ module .. 5

2.2 Pros and cons of the new approach .. 7

3 Building on top of the framework: parallelization utilities for the end-user 9

3.1 Tpool::Map .. 9

3.2 Tpool::MapReduce .. 10

3.3 Benchmarking ... 11

4 Possible further developments ... 12

1 Parallel tasks in ROOT: PROOF and PROOF-Lite

1.1 PROOF
When it comes to executing ROOT tasks in parallel, be it data-mining or toy Monte Carlo
simulations, there is currently basically one possible method: PROOF, the Parallel
ROOT Facility. The original version of the framework was oriented to multi-node
parallelism (i.e. exploitation of multiple machines, as opposed to multiple cores on one
machine), and introduced a client-master-worker architecture in which a certain machine
(the master) would distribute tasks to several others (the workers), collect results from
them and possibly do some finalizing before quitting.

Obviously a workflow like this requires some setup of the nodes involved, in particular it
requires that the worker nodes run a specific service that waits for connections and that
can understand and execute orders, and obviously there is a requirement that the client
be aware of this worker nodes and can connect to them.

1.2 PROOF-Lite
PROOF-Lite is a re-adaptation of PROOF that works on a single machine, using
different processes as workers instead of different nodes. The operating system
automatically assigns the worker processes to different cores to optimize resource
consumption, allowing PROOF-Lite to use the same structure (and most of the times,

CERN openlab Summer Student Report 2015

5 | E n r i c o G u i r a u d – h t t p s : / / g i t h u b / b l u e h o o d

code) as PROOF: the main difference is that workers are processes running on
several cores instead of several computers. Here is a representation of this framework:

1.3 PROOF-Lite’s problematics
PROOF-Lite suffers from being heavily based on PROOF. In particular, the way the
worker processes are spawned is not optimal: a system call is made that starts an ad-
hoc binary: this binary basically runs a special ROOT session configured to wait for
tasks, execute them and return the results. This means that for PROOF-Lite to work we
need a different binary than the usual root.exe, and moreover and more importantly,
since the workers are spawned as totally new processes, we need to set their
environment “by hand”, sending them information on which scripts and libraries were
loaded in the client session and so on.

In short, we cannot take advantage of the fact that we are doing everything on the same
machine: all the information about the client session environment is available in memory,
but we cannot access it.

Finally, both PROOF and PROOF-Lite are designed with a specific application in mind:
data-analysis by means of the TSelector ROOT class. This means that executing an
arbitrary task in parallel is not a trivial task for the user.

2 A new framework for multiprocessing in ROOT

2.1 The ‘multiproc’ module
The first part of my project consisted in investigating new possibilities for the creation
of the workers in the client/worker architecture of PROOF-Lite. We wanted to exploit
the fact that both client and workers would be spawned on the same machine and make
it possible for the workers to access the client's memory.

CERN openlab Summer Student Report 2015

6 | E n r i c o G u i r a u d – h t t p s : / / g i t h u b / b l u e h o o d

Threads come to mind: workers could be spawned as different threads of the client
process (the main ROOT session) and they could execute tasks reading from a shared
memory. The problem with a multi-threaded ROOT application is that the huge
complexity of the ROOT framework and the heavy usage of global variables and
singletons make shared memory a perilous path, prone to race conditions and crashes.

There's another option though: we might fork the original process multiple times to
obtain several worker subprocesses whose memory is a copy of the original process',
but is not the same memory. We wouldn't have to worry about workers writing to the
same variable at the same time or other race conditions, because each forked process
would have its own copry of the memory. The Linux system call fork can be used for
this purpose. The Linux kernel optimizes the operation using copy-on-write techniques
for the subprocesses' memory, which means that the memory of the original process is
not duplicated upon forking but remains shared until a write is made on it – only then the
relevant part of the memory is copied. In short, we obtain workers as seperate
processes, each with its own memory, but this memory is a copy of the client's and it is
not concretely duplicated in RAM until it's really needed thanks to copy-on-write.

The first week of my project was therefore spent on prototyping and investigating the
forking of a ROOT (interactive) session. I soon discovered it was indeed possible to
duplicate a session and connect it to its clone using ROOT's TSockets; for the
subprocess to function as a worker, though, a few tweaks are needed:

• the forked session inherits the same file descriptors as the original, which on one
hand means we can print errors happening in the workers on the clients console
(handy!) on the other hand we have to explicitly close the workers' standard input
otherwise what is typed in the keyboard will be randomly sent to the client or one
of the workers, creating weird behaviour

• workers must not respond to graphical events and should not make use of
graphical output. For this reason we make the forked process similar to a ROOT
batch session

• interrupt signals like the one sent by pressing ctrl+C (SIGINT) propagate from the
client to the worker processes, but the reaction to this kind of signal must be
different. For the subprocesses, we set a custom signal handler that shuts down
the worker in case a SIGINT is received. The behaviour can easily be extended
to other types of signals

• workers’ standard output and error are hidden by default, and only shown when
needed. Many routine messages that the user gets while using a ROOT
interactive session (e.g. the prompt, “root[0]”) must not appear on console if sent
by the workers

Finally, much time was spent on devising an optimal way to handle the initial
connection between parent/client process and subprocesses/workers: the non-trivial
part is that we would like the workers to be able to connect to the parent as soon as they
are spawned, but the parent takes some time forking and subsequently accepting
connections one by one. One of the last iterations of this process has the workers
create a unix socket and listen on it, whereas the client process can “take its time”
forking and connecting to each of the workers one by one. We might change this

CERN openlab Summer Student Report 2015

7 | E n r i c o G u i r a u d – h t t p s : / / g i t h u b / b l u e h o o d

behaviour in the near future if a more robust (and possibly faster) one becomes
available.

2.2 Pros and cons of the new approach
Let's recap what are the advantages and the issues arising from this new way of
spawing workers using fork:

• workers can now access the client's memory

• memory footprint is small: workers' memory is copy-on-write

• the first two points mean that creating workers is now cheaper and faster

• workers can write directly to the client's console (to be used with moderation)

With all this, a new type of workflow becomes possible, in which we switch between
single-process and multi-process operations with ease. We don't necessarily need
PROOF-Lite anymore, but instead we can build a more general framework for multi-
process applications. The user can use an interactive ROOT session or write his/her
code, and when parallel computation must be performed we can simply spawn a few
workers, distribute tasks to them, collect the results and finally go back to the original
flow. This type of workflow is depicted here:

The main disadvantage of this approach is portability: fork, which is at the hear of the
framework, is a Linux system call and as such is inherently unportable. A porting to
windows might be possible by switching the call with a function call that reproduces a
similar behaviour. Porting to OSX has turned out to be very hard due to ROOT relying
heavily on the CoreFoundation library on this platform: CoreFoundation does not allow
for non-thread-safe operations to be performed and automatically aborts execution when
this happens. Needless to say, there can be non-thread-safe operations performed in

CERN openlab Summer Student Report 2015

8 | E n r i c o G u i r a u d – h t t p s : / / g i t h u b / b l u e h o o d

the parent process before forking and in the workers after forking, making it impossible
to operate without CoreFoundation halting the program. More information on this
behaviour can be found here.

2.3 Implementation details
The base framework for multi-process applications in ROOT looks like this:

TMPClient offers a simple interface for developers to access functionalities as forking
of a ROOT session and exchanging messages with the workers. The HandleInput
method of TMPClient and TMPServer can be overridden by inheriting classes to specify
what actions are to be performed upon reception of a certain message. TMPClient and
TMPServer will always handle messages with codes contained in the EgenericCode
enumeration, which form the base communication protocol between client and workers.
The object that is actually sent back and forth between processes is a TMPNote, a
templated structure containing a code (which should tell what kind of message we are
sending) and possibly an object (the actual content of the message). Due to limitations in
ROOT's streaming capabilities, the object can only have a type for which we built a
TMPNote dictionary entry (for more information about ROOT dictionaries, see here). We
are currently working on relaxing this limitation and allow all types of objects to be sent
back and forth between client and workers.

Multi-process applications that make use of this framework only need to define a client-
like class that inherits (privately, to hide TMPClient's interface from the user) from
TMPClient and defines its own HandleInput method, a server-like class that inherits from
TMPServer and defines its own HandleInput method, and an enumeration similar to
EGenericCode that establishes which kind of messages can be exchanged. Codes in
EGenericCode have numeric values starting at 1000, which means that multi-process
applications can specify their own codes using numbers lower than 1000 without
incurring in clashes. The framework is intelligent enough to check the code of the

http://objectivistc.tumblr.com/post/16187948939/you-must-exec-a-core-foundation-fork-safety-tale
https://root.cern.ch/drupal/content/dictionaries-cint-and-cling

CERN openlab Summer Student Report 2015

9 | E n r i c o G u i r a u d – h t t p s : / / g i t h u b / b l u e h o o d

message received and then call the appropriate HandleInput method: TMPClient's for
codes above 1000, inheriting class otherwise.

3 Building on top of the framework: parallelization
utilities for the end-user

We wanted to test the base framework on a real-life application. This would provide
ROOT users with a new facility for parallel execution of tasks and at the same time
would test our software’s possibilities and limitations. So we took inspiration from
python’s Map function and tried to implement a similar thing for ROOT users. A short
investigation showed that a feature like this is not present in the standard library nor in
other major or minor support libraries, such as boost or github projects. We were doing
something useful and new.

3.1 TPool::Map
So what does Map do? Imagine you want to execute the same function on many
different arguments, or you need to run the same analysis on many different datasets;
more in general, let’s say you want to execute the same task many times, maybe with
different parameters. Normally you would use a for loop or something similar, and
execute tasks sequentially. Map takes care of executing tasks in parallel and return the
end result. Here is a sample call to Map:

And here is a more convoluted one, in which we imagine to be running a ROOT
interactive session in which we load and compile a macro. The macro takes three
parameters, and we use a lambda function to fix the first two and only change the
filename we pass to the macro. Map executes the lambda with the three different
filenames in parallel, and the lambda in turns calls the macro. Both this example and the
former are valid syntax in TPool::Map.

CERN openlab Summer Student Report 2015

10 | E n r i c o G u i r a u d – h t t p s : / / g i t h u b / b l u e h o o d

The application is heavily templated to allow the usage of many different types when
calling Map: everything that is a C++ callable object can be passed as a function. STL
collections and ROOT collections are allowed as arguments, as well as initializer lists (as
shown in the second usage example above). The returned type is an STL vector if the
argument type is an STL collection or an initializer list, a TObjArray (ROOT’s native
collection type) otherwise. This way users can stick to using ROOT’s collection types if
they want, and at the same time users that rely on standard library can keep using it.

3.2 TPool::MapReduce
Another method that we made available is MapReduce: it allows the user to specify a
function through which the set of results returned by Map can be squashed into a single
object (e.g. sum of integers, merge of histograms…).

A call to the MapReduce method looks like this:

The reduce operation is currently not parallelized, but in the future we would like to
implement a “greedy worker” paradigm, in which workers do not return the result of their
calculations to the server as long as there are more arguments to be processed in the
queue. Workers reduce the results of their own calculations and only send the result
back to the client once there are no more arguments to be processed. The client then
performs one last reduce operation with the results of each worker.

CERN openlab Summer Student Report 2015

11 | E n r i c o G u i r a u d – h t t p s : / / g i t h u b / b l u e h o o d

3.3 Implementation details
TPool takes advantage of the base framework, hiding the interface of TMPClient through
private inheritance and only exposing the Map and MapReduce methods to the users. A
new set of message codes is put in place and new HandleInput methods are defined
that override the ones of the base classes.

3.4 Benchmarking

The graph on the left is the speed-up results of executing a trivial task (filling an
histogram with 1e9 random points) with an increasing number of workers (i.e. cores) on
a 24 core Linux machine mounting Ubuntu. The number of points has been equally
divided between workers, and no merging of histograms is performed. The ideal speed-

CERN openlab Summer Student Report 2015

12 | E n r i c o G u i r a u d – h t t p s : / / g i t h u b / b l u e h o o d

up is outlined in red: that would be the speed increase we would have if we didn’t
execute the task through TPool and we just divided the time taken by one core by the
number of cores used. We can see TPool has a good speed-up up until 23 workers, and
a sharp decrease in performance at 24: this is because if 24 workers are spawned, that
makes it 25 processes running on the machine (the client counts too!).

The graph on the right is what happens when the histograms produced by each worker
are merged. The time needed for this extra operation increases linearly with the number
of workers since the reduce operation is not parallelized (yet!), which makes for worse
performance at an higher number of workers.

4 Possible further developments
As for the future, several improvements to both the base framework and the
Map/MapReduce application can be made, which I didn't have time to add until now.
I will just give a quick overview of the main ones.

4.1 Improvements to the base framework
• integration with PROOF-Lite: as per the original goal of my project, we can

and should make use of the base framework and its new way of spawning
workers by forking the client process in PROOF-Lite. This would certainly
result in an improvement in performance, cleaner implementation and higher
flexibility

• integration with TTree::Draw: this method is used to read several variables
present in a tree structure (a TTree ROOT class) and draw them on a
histogram.

4.2 Improvements to TPool
• explicit support for TSelector: TPool::Map might implement a signature that

takes a TSelector as an argument and performs its task as it would be done
via PROOF-Lite, allowing for a much simpler syntax and much friendlier
usage

• support for TTree: many operations on TTree's can be parallelized, and
TPool::Map offers a simple interface to do so

• parallel reduce: as explained in the section about MapReduce, we have a
simple way to distribute reduce operations between servers that is yet to be
implemented

5 Conclusions
A new way of spawning workers has been developed for the client/workers
architecture of ROOT multi-process facilities. It makes use of forking to create
workers quickly and (thanks to copy-on-write optimizations performed by Linux
kernel) it has a small memory footprint. The base framework grants developers

CERN openlab Summer Student Report 2015

13 | E n r i c o G u i r a u d – h t t p s : / / g i t h u b / b l u e h o o d

access to this functionality to define their own multi-process applications and their
own protocol of communication between client and workers.
A real-life application of this framework has been developed: the TPool class
implements a Map method, similar to python's pool.map, that grants high speed-up
on parallel execution of tasks on multicore machines.
Improvements can be made on both parts of my project, and I do hope to have a part
in that too.

	Project Specification
	Abstract
	Table of Contents
	1 Parallel tasks in ROOT: PROOF and PROOF-Lite
	1.1 PROOF
	1.2 PROOF-Lite
	1.3 PROOF-Lite’s problematics

	2 A new framework for multiprocessing in ROOT
	2.1 The ‘multiproc’ module
	2.2 Pros and cons of the new approach
	2.3 Implementation details

	3 Building on top of the framework: parallelization utilities for the end-user
	3.1 TPool::Map
	3.2 TPool::MapReduce
	3.3 Implementation details
	3.4 Benchmarking

	4 Possible further developments
	4.1 Improvements to the base framework
	4.2 Improvements to TPool

	5 Conclusions

