Conference paper Open Access

Comparing CNNs and JPEG for Real-Time Multi-view Streaming in Tele-Immersive Scenarios

Konstantoudakis, Konstantinos; Christakis, Emmanouil; Drakoulis, Petros; Doumanoglou, Alexandros; Zioulis, Nikolaos; Zarpalas, Dimitrios; Daras, Petros


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2018-11-26</subfield>
  </datafield>
  <controlfield tag="005">20190522190540.0</controlfield>
  <controlfield tag="001">3137854</controlfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:3137854</subfield>
  </datafield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">26-29 November 2018</subfield>
    <subfield code="g">SITIS</subfield>
    <subfield code="a">14th International Conference on Signal-Image Technology &amp; Internet-Based Systems</subfield>
    <subfield code="c">Las Palmas de Gran Canaria, Spain</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Deep learning-based codecs for lossy image compression have recently managed to surpass traditional codecs like JPEG and JPEG 2000 in terms of rate-distortion tradeoff. However, they generally utilize architectures with large numbers of stacked layers, often making their inference execution prohibitively slow for time-sensitive applications. In this work, we assess the suitability of such compression techniques in real-time video streaming, and, more specifically, next-generation interactive tele-presence applications, which impose stringent latency requirements. To that end, we compare a recently published work on image compression based on convolutional neural networks which achieves state-of-the-art compression ratio using a relatively lightweight architecture, against a CPU and a GPU implementation of JPEG, measuring compression ratios and timings. With these results, we run a simulation of a tele-immersion pipeline for various networking conditions and examine the performance of the compared codecs, calculating framerates and latencies for different codec/network combinations.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Centre for Research and Technology Hellas (CERTH), Information Technologies Institute (ITI)</subfield>
    <subfield code="a">Christakis, Emmanouil</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Centre for Research and Technology Hellas (CERTH), Information Technologies Institute (ITI)</subfield>
    <subfield code="0">(orcid)0000-0003-3434-3290</subfield>
    <subfield code="a">Drakoulis, Petros</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Centre for Research and Technology Hellas (CERTH), Information Technologies Institute (ITI)</subfield>
    <subfield code="0">(orcid)0000-0002-4337-1720</subfield>
    <subfield code="a">Doumanoglou, Alexandros</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Centre for Research and Technology Hellas (CERTH), Information Technologies Institute (ITI)</subfield>
    <subfield code="0">(orcid)0000-0002-7898-9344</subfield>
    <subfield code="a">Zioulis, Nikolaos</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Centre for Research and Technology Hellas (CERTH), Information Technologies Institute (ITI)</subfield>
    <subfield code="a">Zarpalas, Dimitrios</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Centre for Research and Technology Hellas (CERTH), Information Technologies Institute (ITI)</subfield>
    <subfield code="a">Daras, Petros</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1272417</subfield>
    <subfield code="z">md5:edc1ea3106b12f8450093b7452f3d2ef</subfield>
    <subfield code="u">https://zenodo.org/record/3137854/files/comparing-cnns-jpeg.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Centre for Research and Technology Hellas (CERTH), Information Technologies Institute (ITI)</subfield>
    <subfield code="a">Konstantoudakis, Konstantinos</subfield>
  </datafield>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Video</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Compression</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Tele-Immersion</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">3D Media Streaming</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Performance Evaluation</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1109/SITIS.2018.00022</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Comparing CNNs and JPEG for Real-Time Multi-view Streaming in Tele-Immersive Scenarios</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">761699</subfield>
    <subfield code="a">Programmable edge-to-cloud virtualization fabric for the 5G Media industry</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
</record>
26
25
views
downloads
Views 26
Downloads 25
Data volume 31.8 MB
Unique views 25
Unique downloads 22

Share

Cite as