Conference paper Open Access

Comparing CNNs and JPEG for Real-Time Multi-view Streaming in Tele-Immersive Scenarios

Konstantoudakis, Konstantinos; Christakis, Emmanouil; Drakoulis, Petros; Doumanoglou, Alexandros; Zioulis, Nikolaos; Zarpalas, Dimitrios; Daras, Petros


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/94dbebcf-8626-4f9b-bf2c-0cadcdf924bd/comparing-cnns-jpeg.pdf"
      }, 
      "checksum": "md5:edc1ea3106b12f8450093b7452f3d2ef", 
      "bucket": "94dbebcf-8626-4f9b-bf2c-0cadcdf924bd", 
      "key": "comparing-cnns-jpeg.pdf", 
      "type": "pdf", 
      "size": 1272417
    }
  ], 
  "owners": [
    48074
  ], 
  "doi": "10.1109/SITIS.2018.00022", 
  "stats": {
    "version_unique_downloads": 28.0, 
    "unique_views": 32.0, 
    "views": 34.0, 
    "downloads": 32.0, 
    "unique_downloads": 28.0, 
    "version_unique_views": 32.0, 
    "volume": 40717344.0, 
    "version_downloads": 32.0, 
    "version_views": 34.0, 
    "version_volume": 40717344.0
  }, 
  "links": {
    "doi": "https://doi.org/10.1109/SITIS.2018.00022", 
    "latest_html": "https://zenodo.org/record/3137854", 
    "bucket": "https://zenodo.org/api/files/94dbebcf-8626-4f9b-bf2c-0cadcdf924bd", 
    "badge": "https://zenodo.org/badge/doi/10.1109/SITIS.2018.00022.svg", 
    "html": "https://zenodo.org/record/3137854", 
    "latest": "https://zenodo.org/api/records/3137854"
  }, 
  "created": "2019-05-22T09:27:31.426379+00:00", 
  "updated": "2019-05-22T19:05:40.317109+00:00", 
  "conceptrecid": "3137853", 
  "revision": 2, 
  "id": 3137854, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.1109/SITIS.2018.00022", 
    "description": "<p>Deep learning-based codecs for lossy image compression have recently managed to surpass traditional codecs like JPEG and JPEG 2000 in terms of rate-distortion tradeoff. However, they generally utilize architectures with large numbers of stacked layers, often making their inference execution prohibitively slow for time-sensitive applications. In this work, we assess the suitability of such compression techniques in real-time video streaming, and, more specifically, next-generation interactive tele-presence applications, which impose stringent latency requirements. To that end, we compare a recently published work on image compression based on convolutional neural networks which achieves state-of-the-art compression ratio using a relatively lightweight architecture, against a CPU and a GPU implementation of JPEG, measuring compression ratios and timings. With these results, we run a simulation of a tele-immersion pipeline for various networking conditions and examine the performance of the compared codecs, calculating framerates and latencies for different codec/network combinations.</p>", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "Comparing CNNs and JPEG for Real-Time Multi-view Streaming in Tele-Immersive Scenarios", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "3137853"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "3137854"
          }
        }
      ]
    }, 
    "language": "eng", 
    "grants": [
      {
        "code": "761699", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::761699"
        }, 
        "title": "Programmable edge-to-cloud virtualization fabric for the 5G Media industry", 
        "acronym": "5G-MEDIA", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [
            "EC"
          ], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }
    ], 
    "keywords": [
      "Video", 
      "Compression", 
      "Tele-Immersion", 
      "3D Media Streaming", 
      "Performance Evaluation"
    ], 
    "publication_date": "2018-11-26", 
    "creators": [
      {
        "affiliation": "Centre for Research and Technology Hellas (CERTH), Information Technologies Institute (ITI)", 
        "name": "Konstantoudakis, Konstantinos"
      }, 
      {
        "affiliation": "Centre for Research and Technology Hellas (CERTH), Information Technologies Institute (ITI)", 
        "name": "Christakis, Emmanouil"
      }, 
      {
        "orcid": "0000-0003-3434-3290", 
        "affiliation": "Centre for Research and Technology Hellas (CERTH), Information Technologies Institute (ITI)", 
        "name": "Drakoulis, Petros"
      }, 
      {
        "orcid": "0000-0002-4337-1720", 
        "affiliation": "Centre for Research and Technology Hellas (CERTH), Information Technologies Institute (ITI)", 
        "name": "Doumanoglou, Alexandros"
      }, 
      {
        "orcid": "0000-0002-7898-9344", 
        "affiliation": "Centre for Research and Technology Hellas (CERTH), Information Technologies Institute (ITI)", 
        "name": "Zioulis, Nikolaos"
      }, 
      {
        "affiliation": "Centre for Research and Technology Hellas (CERTH), Information Technologies Institute (ITI)", 
        "name": "Zarpalas, Dimitrios"
      }, 
      {
        "affiliation": "Centre for Research and Technology Hellas (CERTH), Information Technologies Institute (ITI)", 
        "name": "Daras, Petros"
      }
    ], 
    "meeting": {
      "acronym": "SITIS", 
      "dates": "26-29 November 2018", 
      "place": "Las Palmas de Gran Canaria, Spain", 
      "title": "14th International Conference on Signal-Image Technology & Internet-Based Systems"
    }, 
    "access_right": "open", 
    "resource_type": {
      "subtype": "conferencepaper", 
      "type": "publication", 
      "title": "Conference paper"
    }
  }
}
34
32
views
downloads
Views 34
Downloads 32
Data volume 40.7 MB
Unique views 32
Unique downloads 28

Share

Cite as