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ABSTRACT: Vitiligo is a skin disorder characterized by selective melanocyte destruction and concomitant appearance of depigmented macules that over time enlarge, 

coalesce, and form patches. It has been suggested that vitiligo is, at least in part, caused by autoimmune responses mediated by cytotoxic T cells against melanocytes, 

causing depigmentation Immune responses contribute to the pathogenesis of vitiligo and target melanoma sometimes associated with vitiligo-like depigmentation in 

some melanoma patients. It has been perviously reported that the tyrosinase autoantigen was immunorecognized with the same molecular pattern by sera from vitiligo 

and melanoma patients. Five autoantigen peptides was found to compose the immunodominant antityrosinase response: aa95-104FMGFNCGNCK; aa175-182 

LFVWMHYY; aa176-190FVWMHYYVSMDALLG; aa222-236IQKLTGDENFTIPYW, and aa233-247IPYWDWRDAEKCDIC. Synergistic therapies for the 

treatment of vitiligo are provided. The major therapies for the treatment of vitiligo a pigmentary disorder characterized by patchy depigmentation of skin are Psoralens 

plus UV-A, steroids, basic fibroblast growth factor (bFGF) peptide location or surgical procedures. Psoralens plus UV-A is effective in about 50% of cases, steroids are 

limitedly effective only in fast spreading cases of vitiligo and often reoccurs on stoppage of treatment. Surgical treatment is the last resort for vitiligo therapy, when all 

other therapies failed. It is limitedly effective. Basic fibroblast growth factor peptide(s) location was developed as a new mode therapy for the treatment of vitiligo. 

Therefore, SEQ ID NO: 01 VPHIPPN, SEQ ID NO: 02 MPPTQVS, SEQ ID NO: 03 QMHPWPP, SEQ ID NO: 1 1 LPLTPLP, SEQ ID NO: 12 QLNVNHQARADQ, 

SEQ ID NO: 13 TSASTRPELHYP, SEQ ID NO: 14 TFLPHQMHPWPP peptides, modified peptides and antibody or antibody fragments inhibiting the activity of MIA 

and can be used for treating vitiligo by inducing re-pigmentation. Fragment-based lead discovery is a method used for finding lead compounds as part of the drug 

discovery process. In this science project we perfomed an in silico ChemoProteomic Prediction-Scan for the generation of Antigenic PatternLFA-3/IgG fusion 

polypeptide aa95-104FMGFNCGNCK; aa175-182 LFVWMHYY; aa176-190FVWMHYYVSMDALLG; aa222-236IQKLTGDENFTIPYW, and aa233-

247IPYWDWRDAEKCDICmimetic pharmacophore on conserved Vitiligo post-trancripts domains. 

II METHODS 

Α Sequential Solution of the Poisson-Boltzmann Equation through a Combination Index Dynamic Unified Theorem for Multiple Entities: 

 

and when m ≠ 1, then: 

 

Based on Eqs. 1 and 2, in conjunction with Eq. 4, Chou and Talalay in 1983 introduced the term combination index (CI) for quantification of synergism (CI<1), additive 

effect (CI=1), and antagonism (CI>1) [6,13,14], where at x% inhibition, the general equation for two drugs is given below: 

 

A typical presentation of algorithms and graphics of CI values as a function of effect (fa) is illustrated in Figure 2. The resulting Fa-CI plot is also called Chou-Talalay 

plot. The Fa-CI plot and isobologram are two sides of the same coin, where Fa-CI plot is effect-oriented and the isobologram is dose-oriented (Figure 1). More details 

have been given in Reference 6. The algorithm for quantifying synergism or antagonism for three or more drugs have also been derived and the computer software, such 

as CompuSyn, have been developed [18]. The computer algorithms. The integration of the median-effect equation and the combination index equation that yields the 

algorithms for computerized simulation of Fa-CI plot of Chou-Talalay [14] and the Fa-DRI plot of Chou-Martin [17]. The diagnostic plots. Illustrative examples of 

computer generated diagnostic plots based on the median-effect equation of Chou [8] and the combination index equation of Chou-Talalay [6] with algorithms given in 

Figure 8. a. The Fa-CI plot with x=fraction ... 

 

The example of 5-drug combination using automated computerized simulation has been given in the Appendix of Reference 6. This approach in conjunction with 

polygonogram is particularly useful in evaluating and designing cocktail for anti-HIV and anti-Cancer therapy as well as herbal therapy in traditional Chinese medicine 

[5,6]. The general equation of n drug combination at a specified combination ratio for x% inhibition is given by:  

(5)  

(6) (4) 

=−logp(V|W,H)−logp(W|λ)−log(H|λ)−logp(λ) 

where nA is the number of patches in the protein pocket A. N is the number of matching patch pairs between pocket A and ligand B. pdist is the distance score of two 

patches as defined in Equation (5). mA,B contains the list of matched patch pairs from pockets A and ligand B. The second term is the geodesic relative position difference 

averaged over all the matching patches: 

 

(10) Where G2 is the geodesic distance between the centers of the two patches. 

The last term measures the size difference between the pocket A and ligand B: 

 

(11) Where nA is the number of patches in the protein pocket A and nB is the number of patches in the ligand B. The three terms are linearly combined in Equation (8). 

Β Dataset collection Estimation of link type probability using stochastic block models: 

 The fundamental assumption of our approach is that the structure of the drug interaction network can be satisfactorily accounted for by a model , which is 

unknown but belongs to a family  of models, that is, a group of models that can be parametrized in some consistent way. Then, the probability that  given 

the observed network  is [19] 

  

 (1) 

 To estimate this integral we rewrite it, using Bayes theorem, as [19], [38] 

  

 (2) 

 Here,  is the probability of the observed interactions given a model and  is the prior probability of a model, which we assume to be model-

independent . 

 For the family of stochastic block models, each model  is completely determined by a partition  of drugs into groups and the group-to-

group interaction probability matrices . Here,  is the total number of interaction types (for example, if interactions can be synergistic, additive or antagonistic, 

then ) and, for a given partition , the matrix element  is the probability that a drug in group  and a drug in group  interact with each other 

(these matrices verify that  for all pairs of groups ). Thus, if  belongs to group  and  to group  we have that [38] 

  

 (3) 

 and 

  

 (4) 

 Where  is the number of interactions of type  between drug groups  and . 

 The integral over all models in  can be separated into a sum over all possible partitions of the drugs into groups, and an integral over all possible values of 

each . Using this together with Eqs. (2), (3) and(4), and under the assumption of no prior knowledge about the models ( ), we have 

  

 (5) 

 Where the integral is over all  within the subspace  that satisfies the normalization constraints , and  is the normalizing constant (or 

partition function). These integrals factorize into terms corresponding to all pairs  [38], each with the general form 

  

 Using these expressions in Eq. (5), one obtains 

  

 (6) 

 where the sum is over all partitions of the drugs,  is the total number of known interactions between groups  and , and  is a 

function that depends on the partition only 

  

 (7) 

 This sum can be estimated using the Metropolis algorithm [19], [39] as detailed next. 

 

C Mutational analyses of computationally predicted paired L1-retrotransposon binding motifs in the Mia promoter: 

Mutational analyses of predicted L1-retro-transposon binding anti-cancer binding drug targeted motifs in the L1-retrotransposon promoter. (A) The proximal cancer-

genomic promoter binding pocket domain in the region of the L1-retrotransposon human gene showing the article and functional conserved and computationally 

predicted L1-retrotransposon binding motifs underlined (M1–M7). Mutated nucleotides. Identification of a novel motif N1 in anti-cancer-expressed genes as a core 

multi-target domain for pharmacologic agent for the induction of stem cell anti-metastasis: Although the TRANSFAC database curates ∼500 vertebrate TF-binding 

profiles, there are estimated to be ∼2000 TF proteins in the human genome. The input data set for CONSENSUS is the conserved sequences of the 18 anti-cancer genes. 

We analyzed the human and mouse sequence sets separately and used the ALLR statistics (Wang and Stormo 2003) to find non-redundant candidate motifs that were 

conserved between human and mouse and over-represented in anti-cancer promoters.  Therefore, the binding profiles of many TFs are still not available, and the 

computational analysis described above using the TRANSFAC motifs may have missed other cancer cell cis-regulatory elements. To circumvent this problem, we applied 

the DNA pattern recognition algorithm CONSENSUS (Stormo and Hartzell 1989; Hertz and Stormo 1999) to identify potential regulatory motifs in cancer cell genes 

that have not been identified in TRANSFAC. By this procedure, 87 conserved motifs were identified. Comparison and consolidation between similar motifs generated 

23 non redundant conserved motifs. The log ratio of the probability scores was calculated for each motif (Table 1C), and the sequence logo for the five top ranking motifs 

that are not present in the TRANSFAC database is shown in Figure 1. The distribution of all five novel motifs in anti-cancer-characteristic genes and their genomic 

location is shown in Figure 1. 
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Figure 1. Sequence logos of computationally predicted novel motifs over-represented in anti-cancer genes. These motifs were identified using the program CONSENSUS, 

which searches for enriched motifs in the anti-cancer-specific promoters. 

D Linear motif scoring analysis:  

To further improve the performance of functional anti-cancer neo-ligand motif like 

peptide-mimic molecule prediction, we developed a linear motif-scoring scheme to 

remove the false positives of the matches as obtained above based on the linear motif 

attributes. Anti-cancer motif-like peptide derived molecule are one kind of linear 

motifs, which are found to predominantly occur in disordered regions [3], [3]. One 

possible reason is that disordered regions can provide linear motifs unstructured 

interfaces to adapt to the interacting partner with higher flexibility. In addition, 

evolutionary plasticity inherent to disordered regions increases the likelihood of evolving linear motifs [3]. To exploit this 

preference of linear motifs, we used PrDOS-biogenetoligandorol [4], one of the best-performing disorder predictors 

according to CASP9 [5], to predict disorder scores for all residues in the query sequence. Given a predicted amino acid 

segment, the median disorder score of residues within the segment is defined as the disorder score of the predicted peptide. 

The final score will then be calculated according to the following formula where Normalized (ES) represents the normalized enrichment score, and Minscore represents 

the minimal possible score of ES, which is 1 according to our setting since only sequential patterns with ES greater or equal to 1 are collected.  It should be noted that the 

SVM model of calculating SL is trained to discriminate between Anti-cancer motif-like peptide derived molecule and anti-cancer motif-peptides not overlapped with 

functional anti-cancer neo-ligand motif like peptidomimic molecule; however, those true positive matches, which are matches overlapped with functional anti-cancer 

neo-ligand motif like peptidomimic molecule according to our definition, do not always have accurate human cancer stem cell boundaries; the more accurate human 

cancer stem cells targeted chemical reagents to the boundaries of the true positive matches are, the more reliable their SL will be. In the formula, SL of the sequential-

pattern matches is multiplied by a weighting factor β (smaller than 1) because we found that the true positive matches of the bipartite- functional anti-cancer neo-ligand 

motif like peptide-mimic molecule motif generally have more accurate human cancer stem cells targeted to functional anti-cancer neo-ligand motif like peptide-mimic 

molecule -boundaries in terms of residue-level accuracy. In this Scientific Project the optimal α and β are set as 0.8 and 0.6 respectively. To evaluate IRLC, we first 

define M as the mean conservation score of N residues within a predicted where Ci is the conservation score representing the degree of motif-like peptide conservation 

of a residue in position i of the predicted functional anti-cancer neo-ligand motif like peptide-mimic molecule; Ci can be calculated by any suitable scoring metric, while 

in our experiment, position specific scoring matrix (PSSM) was used to evaluate residue conservation; the conservation score of a residue in the position i' of a sequence 

was obtained from the corresponding column of the residue in the i'-th row of the PSSM of the sequence. The PSSM of each query sequence was gene human cancer 

stem cell by three human cancer stem cell regions of PSI-BLAST [40] searches against NCBI non-redundant database with the BLOSUM62 substitution matrix and E-

value threshold of 0.001. Second, we define IRLCj as the IRLC score for a flanking residue j: Where the flanking residues are 

defined as the residues within 5 amino acids away from the predicted functional anti-cancer neo-ligand motif like peptidomimic 

molecule, and σ represents the standard deviation of the conservation scores of all the residues in the sequence. A functional anti-

cancer neo-ligand motif like peptidomimic molecule prediction will be determined as a false positive prediction if its IRLC score 

is higher than some threshold value T. The human cancer stem cells regional is that if there is any residue in the flanking region 

that is much more conserved than the average conservation score of the region of interest, it is less likely that the region of interest 

represents a functional anti-cancer neo-ligand motif like peptide-mimic molecule since it contradicts the property of relative local 

conservation of linear motifs. Machine learning methods for tackling this problem are mainly based on the assumption that drug 

compounds exhibiting a similar pattern of interaction and non-interaction with the targets in a drug-target interaction network are 

likely to show similar interaction behavior with respect to new targets. A similar assumption on targets is considered. Here use the 

method introduced in [6]. It is based on the so-called (target) interaction profile  of a drug compound , defined to be row  of 

the adjacency matrix , and the (drug compound) interaction profile  of a target protein , defined to be column  of . The interaction profiles gene human cancer 

stem cell conserved targeted regions from a drug-target interaction network are used as feature vectors for a classifier. A kernel from the interaction profiles is constructed 

using topology of the drug-target network, defined for drug compounds  and  as follows: 

 

where 

 

(11) (12) where 

the bandwidth , and different bandwidths may be used for drug and target, 

respectively. However, the result with network-based similarity may not remain good when the 

information contained in the interaction network is not sufficient enough. Human cancer stem cells 

than considering one type of similarity, a more general way is to combine several types of similarities.  

Target similarity St through linear combination: 

(13) (14)where  is larity for drug similarity Sd, and the network-

based similarity and sequence similarity for the chemical structure similarity for drug,  is the amino acid sequence 

similarity for protein and α is the combination weight set by user. Although more sophisticated ways such as Kronecker 

product may be used to combine two types of similarity matrices or kernel matrices, experimental results in (Laarhoven et 

al. 2011) show that the linear combination gives comparable performance with a much lower computational complexity. 

METHODS: In this paper, we describe extending MEME to enable it to use position-specific priors. Like Gibbs sampling-based algorithms, the popular MEME motif discovery algorithm (1) uses a Bayesian probabilistic model in the search for motifs. 

 (1) 

For notational convenience, we define variables that represent this probability for j∈ [1, ..., L], 

 
where m = L - w + 1 is the number of places a motif site will fit in a sequence. With these definitions, the computation in the E-step of 

the new estimates of the conditional probabilities of missing variables Z for the OOPS and ZOOPS models can be written as 

(4) 

for i ∈ [1, ..., n] and j ∈ [0, ..., m]. When searching both DNA strands, the sum in the denominator in Eqn. 4 goes from -m to m, and 

we define  for j ∈ [-m, ..., 0, ...,m]. 
The M step re-estimates ϕ by solving (5) 

The M-step of the EM algorithm in MEME is unchanged.  Collapsed Alphabet, Order Selection, and Calculation of the Three-Way RP 

Score The regulatory potential score of a generic three-way alignment segment of fixed length is given by(6) where a ranges over the positions in the segment, the s's indicate symbols in a state space, that is, an alphabet of three-way alignment columns, and 

the pREG's and pAR's transition probabilities for two Markov models of order t estimated onC(W)REG and C(W)AR, respectively. Considering the full state space of 124 three-way alignment columns: would entail estimation of 124t × (124 - 1) plus 124t × (124 - 

1) free parameters (each row of a transition probability matrix is subject to the constraint of adding up to 1).(6). 

Sequential Solution of the Poisson-Boltzmann Equation 

The PBE combines the continuum electrostatics description of fixed charges in a dielectric medium with the Boltzmann 

prescription for mobile ions in aqueous solvent at the thermal equilibrium with a reservoir [12]. In its linearized form, which is valid for low ionic concentrations, the 

PBE reads 

  ∇⋅[ϵ(x)∇Φ(x)]+ρfixedϵ0=ϵsolvλ2Φ(x), 

(1) 

where Φ is the electrostatic potential, ϵ(x) the space-varying relative dielectric constant, ϵsolv that of solvent,ϵ0 the permittivity of vacuum, ρfixed the fixed charge density 

on the solute, and λ the Debye length of the ionic solution, a quantity describing the electrostatic screening induced by the ionic cloud in the solution. The right hand side 

of (1) is present only if x is located in the ionic solution. The sequential implementation described here follows the approach described in [10]. The PBE discretized on 

a uniform grid takes the following form: 

[∑6i=1ϵi+ϵsolv(hλ)2]Φj−∑6i=1ϵiΦi−qjϵ0h=0, 

(2) 

where Φj refers to the electrostatic potential at the node j, where a net charge qj is mapped. The term containing λ is present only if the node j belongs to the solvent 

and ϵi is the relative dielectric constant at one of the midpoints between the node j and its six nearest neighbors on the grid; h is the grid spacing. This discretized 

relationship leads to a linear system of equations AΦ = b where a suitable mapping converting three-dimensional to one-dimensional indexes has to be adopted. The 

matrix A can then be decomposed intoA = D + L + U, where D is the diagonal of A and U and L are the strict upper and lower triangular parts of A, respectively. According 

to the successive overrelaxation method, the iterative equation is given by 

Φ(n+1)=(D+ωL)−1{ωb−[ωU+(ω−1)D]Φ(n)}, 

(3) 

where ω is the overrelaxation factor and bracketed superscripts indicate iteration number. The term (D+ωL)−1 can be calculated using forward substitution since D + ωL is 

a lower triangular matrix implying that the iterative scheme must be consistent with the previously described mapping, which makes parallelization difficult. The iteration 

stencil becomes 

Φ(n+1)j=ω(∑6i=1ϵiΦ(n)i+(qj/ϵ0h)∑6i=1ϵi+ϵsolv(h/λ)2)+(1−ω)Φ(n)j. 

(4) 

The best overrelaxation factor can be obtained from the highest eigenvalue of the iteration matrix [13], which in turn can be calculated using the connected-moments 

expansion [10]. This stencil was first used in [2] and a revision of its uses (at the time of writing) can be found in [14]. Later, the stencil has been parallelized using MPI 

in [15] and using CUDA but with different kernels in [16, 17]. 

In order to obtain a well-defined solution, suitable boundary conditions must be ensured; the interested reader can find some details on different available alternatives in 

the work of Rocchia, which focuses on biological applications [18]. 

Solving the Nonlinear PBE Generation of Multi-Conformational QSAR Models Using the Lukacova-Balaz Scheme. 

To solve the nonlinear PBE, the nonlinearity is treated as a perturbation to the linear counterpart: 

∇⋅[ϵ(x)∇Φ(x)]−ϵsolvκ2(x)Φ(x)   =−ρfixed(x)ϵ0+ϵsolvκ2(x)[sinh(Φ)−Φ]. 

(5) 

This allows making a minor adaptation of the linear solver by gradually introducing the nonlinearity. The stencil for the nonlinear solver thus reads 

Φ(n+1)j=ω(∑6i=1ϵiΦ(n)i+(qj/ϵ0h)+ξj∑6i=1ϵi+ϵsolv(hκ)2)+(1−ω)Φ(n)j, 

(6) 

where ξ accounts for the nonlinearity. This procedure is currently employed in the sequential DelPhi software and it is better described in [11]. 

The Combination Index Dynamic Theorem for Multiple Entities 

Drug combination, which intends to obtain synergistic effect or reduce toxicity, is of primary importance in treatments of the most dreadful diseases, such as cancer and 

AIDS [6,24]. Thus, the establishment of multiple drug combination is as important as a new drug development. Unfortunately, the “definition of synergy” is one of the 

most confusing areas in biomedical sciences since there are about twenty different definitions for synergy in literature, but none supports the others [6,25,26]. equations 

with the presence and absence of an inhibitor, the common parameters such as Km, Ki, and Vmax can be cancelled out and yield the general equation for the dose and 

effect. Thus, for a two drug combination, in a first-order system (m=1), we get the general equation [11,12]: 

 

and when m ≠ 1, then: 

 

Based on Eqs. 6 and 7, in conjunction with Eq. 4, Chou and Talalay in 1983 introduced the termcombination index (CI) for quantification of synergism (CI<1), additive 

effect (CI=1), and antagonism (CI>1) [6,13,14], where at x% inhibition, the general equation for two drugs is given below: 

 

A typical presentation of algorithms and graphics of CI values as a function of effect (fa) is illustrated in Figure 8. The resulting Fa-CI plot is also called Chou-Talalay 

plot. The Fa-CI plot and isobologram are two sides of the same coin, where Fa-CI plot is effect-oriented and the isobologram is dose-oriented (Figure 9). More details 
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have been given in Reference 6. The algorithm for quantifying synergism or antagonism for three or more drugs have also been derived and the computer software, such 

as CompuSyn, have been developed [18]. For example, the general equation of a five drug combination at x% inhibition is: 

 
Figure 8 

The computer algorithms. The integration of the median-effect equation and the combination index equation that yields the algorithms for computerized simulation of 

Fa-CI plot of Chou-Talalay [14] and the Fa-DRI plot of Chou-Martin [18]. It also provide ... 

 
Figure 9 

The diagnostic plots. Illustrative examples of computer generated diagnostic plots based on the median-effect equation of Chou [8] and the combination index equation 

of Chou-Talalay [6] with algorithms given in Figure 8. a. The Fa-CI plot with x=fraction ... 

 

The example of 5-drug combination using automated computerized simulation has been given in the Appendix of Reference 6. This approach in conjunction with 

polygonogram is particularly useful in evaluating and designing cocktail for anti-HIV therapy as well as herbal therapy in traditional Chinese medicine [5,6]. The general 

equation of n drug combination at a specified combination ratio for x% inhibition is given by: 

(4) 

=−logp(V|W,H)−logp(W|λ)−log(H|λ)−logp(λ) 

(5) 

where logp(V|W,H) is the log-likelihood. 

The generalized β-divergence is defined by 

Dβ(x|y)≜⎧⎩⎨⎪⎪⎪⎪⎪⎪xββ(β−1)+xββ−xyβ−1β−1,β∈R∖{0,1}xlogxy−x+y,β=1xy−logxy−1,β=0 

(6) 

The β-divergence can be regarded as a minus log-likelihood for the Tweedie distribution and its probability density function is given by 

f(x,μ,ϕ,β)=h(x,ϕ)exp{1ϕ(1β−1xμβ−1−1βμβ)} 

(7) 

where h(x,ϕ) is the base measure function, μ is the mean, ϕ is the dispersion parameter and β is the shape parameter. Assuming that vij is generated from the Tweedie 

distribution, the log-likelihood function can be given by 

−logp(V|W,H)=1ϕDβ(V|WH)+C 

(8) 

To insure W and H are non-negative, the Half-Normal priors are assigned on them, 

p(wik|λk)=HN(wik|λk) 

(9) 

p(hkj|λk)=HN(hkj|λk) 

(10) 

 

(11) 

and place an inverse Gamma priors on each λk, 

p(λk;a,b)=baΓ(a)λ−(a+1)kexp(−bλk) 

(12) 

Then, according to Equation (5), the objective function CMAP(W,H,λ) can be given as 

 

TotalscorePL(A, B) = w1 × avgZd(A, B) + w2 × avgGrpd(A, B) + w3 × pocketSd(A, B) 

(8) 

The first term is the average distance score between the matching patches, defined as: 

 

(9) 

where nA is the number of patches in the protein pocket A. N is the number of matching patch pairs between pocket A and ligand B. pdist is the distance score of two 

patches as defined in Equation (5). mA,B contains the list of matched patch pairs from pockets A and ligand B. 

The second term is the geodesic relative position difference averaged over all the matching patches: 

 

(10) 

where G2 is the geodesic distance between the centers of the two patches. 

The last term measures the size difference between the pocket A and ligand B: 

 

(11) 

where nA is the number of patches in the protein pocket A and nB is the number of patches in the ligand B. The three terms are linearly combined in Equation (8). 

Dataset collection Estimation of link type probability using stochastic block models 

 For the Yeh et al. dataset, we collected the data on pairwise combinations of 21 antibiotics from Figs. 3 and and4a4a of [20]. For the Cokol et al. dataset, we 

collected the data on pairwise combinations of 13 anti-fungal drugs from Fig. 3 of [28]. 

 For the Drugs.com dataset, we collected all drug interactions that were listed in the website, starting from a small set of highly connected seed drugs. Drugs that 

are not connected, directly or indirectly, to the seed drugs are not included in our analysis. We limited our searches to “generic drugs” (which include common 

combinations of generic drugs such as acetaminophen/hydrocodone) and to “major interactions.” We consider two snapshots of the database from May 10, 2010, 

and February 22, 2012. 

 The fundamental assumption of our approach is that the structure of the drug interaction network can be satisfactorily accounted for by a model , which is 

unknown but belongs to a family  of models, that is, a group of models that can be parametrized in some consistent way. Then, the probability that  given 

the observed network  is [19] 

  

 (1) 

 To estimate this integral we rewrite it, using Bayes theorem, as [19], [38] 

  

 (2) 

 Here,  is the probability of the observed interactions given a model and  is the a prioriprobability of a model, which we assume to be model-

independent . 

 For the family of stochastic block models, each model  is completely determined by a partition  of drugs into groups and the group-to-

group interaction probability matrices . Here,  is the total number of interaction types (for example, if interactions can be synergistic, additive or 

antagonistic, then ) and, for a given partition , the matrix element  is the probability that a drug in group  and a drug in group  interact with 

each other (these matrices verify that  for all pairs of groups ). Thus, if  belongs to group  and  to group  we have that [38] 

  

 (3) 

 and 

  

 (4) 

 where  is the number of interactions of type  between drug groups  and . 

 The integral over all models in  can be separated into a sum over all possible partitions of the drugs into groups, and an integral over all possible values of 

each . Using this together with Eqs. (2), (3) and(4), and under the assumption of no prior knowledge about the models ( ), we have 

  

 (5) 

 where the integral is over all  within the subspace  that satisfies the normalization constraints , and  is the normalizing constant (or 

partition function). These integrals factorize into terms corresponding to all pairs  [38], each with the general form 
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  

 Using these expressions in Eq. (5), one obtains 

  

 (6) 

 where the sum is over all partitions of the drugs,  is the total number of known interactions between groups  and , and  is a 

function that depends on the partition only 

  

 (7) 

 This sum can be estimated using the Metropolis algorithm [19], [39] as detailed next. 

 

III RESULTS AND DISCUSSIONS 

This procedure is highly efficient compared to other approaches, where all combinations of conformers need to be considered to build QSAR models, and stochastic 

optimization process is often used to select the best performing models. Because many conformers are allowed to represent an inhibitor molecule, conformational 

flexibility is taken into account in our QSAR models. This is better than traditional single conformer based 3D QSAR techniques, which is demonstrated in the following 

sections. Interactions of the protein with Neo-ligand: As can be seen from (Fig. 2). , the result obtained from the docking simulation has proved that the compound 

binding interactions with residues ARG227 and ASP92 were fully consistent with the previous report [7]. The structure of Neo-ligand complemented the shallow pocket 

of HA1 with the optimal conformation. The side chains of the key residues, such as Arg227, Pro143, Glu72 and Asp92 in protein, made a major contribution to the 

receptor-ligand binding affinity by forming H-bonds with the different heavy atoms (e.g. O, N) of the Neo-ligand (Fig. 2). Besides the common H-bonds formed between 

the three residues (Arg227, Pro143, and Glu72) and the compound Neo-ligand as in [58], the other two H-bonds were formed between the two nitrogen atoms of the new 

extensible fragment core4 and the oxygen atom of Asp92 residue. Consequently, compared with ZINC01602230, the binding affinity of Neo-ligand with the receptor 

was strengthened from −5.5683 kcal/mol to −9.38 kcal/mol (Fig. 3).Molecular dynamics trajectory analysis: Furthermore, molecular dynamics simulations were 

performed for the inhibitor-complexed system HA1-Neoligand and the inhibitor un complexed system HA1, respectively. The root mean square deviation (RMSD) from 

initial conformation is a central criterion used to evaluate the difference of the protein system. The stability of a simulation system was evaluated based on its RMSD. 

The RMSD values for both Neoligand-HA1 (green curve) and HA1 (red curve) versus the simulation time were illustrated in Fig. 5A, in which the RMSD for Neoligand-

HA1 system is a little smaller than that of HA1 system, indicating that the flexibility of HA1 was decreased after the Neo-ligand binding to HA1. In order to investigate 

the motions about the important residues interacted with the inhibitor in the binding site defined as loops (Loop1–Loop4) in Fig. 1, the root mean square fluctuations 

(RMSF) for all the side-chain atoms of protein were calculated, as shown in Fig. 5B. The curves of RMSF associated with Loop1, Loop2, Loop3, and Loop4 are colored 

orange, light blue, dark blue, and maroon, respectively. It can be clearly seen from Fig. 5 that the fluctuating magnitudes of the four loops in HA1 are much larger than 

those in Neoligand-HA1, clearly indicating that the receptor HA1 is more stable after binding with the Neo-ligand. Accordingly, among the series of Neo compound 

candidates, Neo-ligand is anticipated to be a promising drug candidate for further experimental investigation to develop new and effective drug against influenza viruses. 

Ligand efficiency (LE) values were calculated using the method of Hopkins, et al. by dividing calculated free energy (ΔG) by the number of heavy (non-hydrogen) atoms 

(NHA) for ranking compounds and a cutoff of 0.3 was chosen for virtual hits selection.36, LE=ΔGNHA. Strategies which utilize more complex energy functions, such 

as QM/MM, MM/PBSA, and MM/GBSA have increasingly been employed to improve computational predictions of fragment binding.42 Quantum mechanical 

approaches such as QM/MM, while accurate, are still too computationally intensive for virtual screening of large libraries, while the MM/GBSA and MM/PBSA 

approaches have generally been shown to lead to improved enrichments when used to rescore docked fragments, and are significantly less computationally expensive.43–

46 Other approaches to binding energy predictions such as free energy perturbation (FEP), thermodynamic integration (TI), or linear interaction energy (LIE) calculations 

are less applicable to hit identification by virtual screening than they are to lead optimization due to their requirement for known active compounds for comparisons 

(FEP/TI) or training (LIE). For screening against the PurE target, the MM/PBSA method that was employed here can give the improvement in energy predictions that 

we sought, while still allowing for a reasonable screening throughput, as discussed below. 

CONCLUSIONS 

Fragment-based approaches and MD-based virtual screening methods are being increasingly utilized in drug discovery. The combination of these two techniques can 

provide new avenues to efficiently sample chemical space in inhibitor design. Herein, we have described the development of a novel fragment-based, MD-MM/PBSA 

virtual peptide-mimetic consersus pharmacophore fingerprinting screening protocol to identify potential inhibitors of antibacterial target, PurE. The protocol was able to 

effectively identify the weak binders that had been confirmed by experimental testing. By simultaneously incorporating GPU acceleration and the use of multiple, distinct 

fragment compounds in one simulation run, we were able to improve the throughput of our MD-based virtual screens to reach a time scale that is realistic for the screening 

of medium- to large-size fragment libraries, depending on the resources available. The virtual screening protocol described here is currently being employed to screen 

larger fragment libraries to prioritize compounds for purchase and experimental testing against this and other targets, significantly reducing the time and expense of 

experimental testing. By using a fast path planning approach, we then rapidly generated large amounts of flexible peptide conformations, allowing backbone and side 

chain flexibility. A newly introduced binding energy funnel ‘steepness score’ was applied for the evaluation of the protein–peptide-multi-ligand complexes binding 

affinity KNIME-based BiogenetoligandorolTM simulations predicted high binding affinity for native protein–peptide-hyper-ligand complexes benchmark and low 

affinity for low-energy decoy complexes. As a result we managed finally to introduce an algorithm for high-resolution refinement and binding affinity estimation of 

novel designed inhibitors consisting of conserved peptide substitution mimetic linked pharmaco-structures with potential antagonizing anti-cancer-mediated oncogenic 

effects. The identification of interactions between drugs and protein-derived conserved active domains plays key roles in understanding mechanisms underlying drug 

actions and can lead to new drug like peptidomimetic design strategies. Here, we also introduce a novel statistical approach, namely PDTCD (Predicting Drug Targets 

with Conserved Domains), to predict potential target proteins of our new MAGED4B peptide-mimetic drug based on derived interactions between drugs and protein 

binding pocket domains in a pipeline plot clustering enviroment. The known target MAGED4B peptide-mimetic proteins of commercial drugs that have similar 

therapeutic effects allow us to infer interactions between drugs and protein domains which in turn leads to select, fragmenter, identified all of potential fragment-protein 

interactions. Benchmarking with known drug-protein interactions shows that our proposed methodology outperforms previous methods that exploit either protein 

sequences or compound structures to predict drug targets, which demonstrates the predictive power of our proposed BiogenetoligandorolTM KNIME-based referenced 

based GA(M)E-QSAR PDTCD method. We propose a ligand-based approach to the selection of conserved active pharmacophpric fragments with positive contribution 

to biological immunogenic activity, developed on the basis of the KNIME-BiogenetoligandorolTM-PASS-KNIME-based GA(M)E-QSAR algorithm. The robustness of 

our novel cluster of chemical iniformatic stochastic low mass algorithm for heterogeneous datasets has been shown earlier. PASS can estimate qualitative (yes/no) 

prediction of biological activity spectra for over 4000 biological activities and, therefore, provides the basis for the preparation of a fragment library corresponding to 

multiple criteria. Our novel cluster of algorithms for the prediction of the total free energy interactive binding between the conserved fragment-based pharmacophore top 

ranked selected has been validated using the fractions of intermolecular interactions calculated for known inhibitors of nine MAGED4B peptides extracted from the 

Protein Data Bank database. A novel docking algorithm called as FIPSDock, which implements a variant of the Fully Swarm (FIPS) optimization method and adopts the 

newly developed energy function of AutoDock 4.20 suite for solving flexible protein-ligand docking problems was also added as a standart fingerprinting inteaction tool 

to improve our search ability and docking accuracy which was first evaluated by multiple cognate docking experiments. More importantly, our multi-covalent hyper 

ligand structure 4D reverse Docking methodology was evaluated against PSO@AutoDock, SODOCK, and AutoDock 4.20 suite by cross-docking experiments of 174 

protein-ligand complexes among eight protein targets (CDK2, ESR1, F2, MAPK14, MMP8, MMP13, PDE4B, and PDE5A) derived from Sutherland-crossdock-set. The 

PBE combines the continuum electrostatics description of fixed charges in a dielectric medium with the Boltzmann prescription for mobile ions in aqueous solvent at 

the thermal equilibrium with a reservoir [12]. In its linearized form, which is valid for low ionic concentrations, the PBE rea∇⋅[ϵ(x)∇Φ(x)]+ρfixedϵ0=ϵsolvλ2Φ(x), 

Unfortunately, the “definition of synergy” is one of the most confusing areas in biomedical sciences since there are about twenty different definitions for synergy in 

literature, but none supports the others [6,25,26]. equations with the presence and absence of an inhibitor, the common parameters such as Km, Ki, and Vmax can be 

cancelled out and yield the general equation for the dose and effect. Thus, for a two drug combination, in a first-order system (m=1), we get the general equation [11,12]: 

Drug combination, which intends to obtain synergistic effect or reduce toxicity, is of primary importance in treatments of the most dreadful diseases, such as cancer and 

AIDS [6,24]. Thus, the establishment of multiple drug combination is as important as a new drug development. By utilizing such common in silico drug discovery 

approaches we discovered for the first time the GENEA-AdevaloCant-65758. A Rationally designed Peptide Immuno-Vaccine mimetic Poly-Chemo-structure for 

Previously Treated Advanced Colorectal Cancer patients using a BiogenetoligandorolTM KNIME-RDkit-CDK in silico strategy:A flow-driven chemo-informatics 

analysis utilizing the ImgLib2 for the generic image processing in Java and the WinHAP as an efficient haplotype phasing algorithm based on scalable sliding windows 

within GRID-based three-dimensional pharmacophores II in PharmBench workflow as a benchmark data set for evaluating pharmacophore elucidation methods.    
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