Presentation Open Access

Building Big Flares: Constraining Generating Processes of Solar Flare Distributions

Wyse Jackson, Thomas

Thesis supervisor(s)

Kashyap, Vinay; McKillop, Sean

We address mechanisms which seek to explain the observed solar flare distribution, dN/dE ~ E1.8. We have compiled a comprehensive database, from GOES, NOAA, XRT, and AIA data, of solar flares and their characteristics, covering the year 2013. These datasets allow us to probe how stored magnetic energy is released over the course of an active region’s evolution. We fit power-­‐‑laws to flare distributions over various attribute groupings. For instance, we compare flares that occur before and after an active region reaches its maximum area, and show that the corresponding flare distributions are indistinguishable; thus, the processes that lead to magnetic reconnection are similar in both cases. A turnover in the distribution is not detectable at the energies accessible to our study, suggesting that a self-organized critical (SOC) process is a valid mechanism. However, we find changes in the distributions that suggest that the simple picture of an SOC where flares draw energy from an inexhaustible reservoir of stored magnetic energy is incomplete. Following the evolution of the flare distribution over the lifetimes of active regions, we find that the distribution flattens with time, and for larger active regions, and that a single power-­law model is insufficient. This implies that flares that occur later in the lifetime of the active region tend towards higher energies. We conclude that the SOC process must have an upper bound. Increasing the scope of the study to include data from other years and more instruments will increase the robustness of these results.

This work was supported by the NSF-REU Solar Physics Program at SAO, grant number AGS 1263241, NASA Contract NAS8-03060 to the Chandra X-ray Center and by NASA Hinode/XRT contract NNM07AB07C to SAO
Files (89.2 MB)
Name Size
6.1 MB Download
65.0 MB Download
18.2 MB Download
All versions This version
Views 1010
Downloads 77
Data volume 395.9 MB395.9 MB
Unique views 1010
Unique downloads 77


Cite as