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20 ABSTRACT

21 Despite the substantial contributions of controllable electric loads such as electric vehicles (EV) and heat 

22 pumps (HP) in providing demand-side flexibility, uncoordinated operation of these loads can lead to 

23 congestions in distribution networks. This paper aims to propose a market-based mechanism to alleviate 

24 distribution network congestions through a centralized coordinated home energy management system (HEMS). 

25 In this model, the distribution system operator (DSO) implements dynamic tariffs (DT) and daily power-based 

26 network tariffs (DPT) to manage congestions induced by EVs and HPs and the retail electricity provider (REP) 

27 controls the loads. As these price signals target the aggregated nodal demand, the individual uncoordinated 

28 HEMS models are unable to effectively alleviate congestion. A large number of flexible residential customers 

29 with EV and HP loads are modeled and the REP schedules the consumption based on the comfort preferences 

30 of the customers through HEMS. The effectiveness of the market-based concept in managing the congestion is 

31 demonstrated by using the IEEE 33-bus distribution system with 706 residential customers. The case study 

32 results show that considering both pricing systems simultaneously can considerably mitigate the overloading 

33 occurrences in distribution lines, while applying DTs without considering DPTs may lead to severe overloading 

34 occurrences at some periods.
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2

36 Nomenclature

Indices

t Time intervals.

i REPs

c Consumers/houses

b Buses.

v EVs.
m Operating modes of the HPs.

Variables

Payoffi Payoff of REP i during the scheduling horizon [€].
in
c Indoor temperature of house c [ºC].

HP
cQ Heat flow of the HP of house c [W].
Loss
cQ Heat loss of house c [W].

cp Daily consumption schedule of house c [kWh].
Peak
bp Daily peak demand at bus b [kW]
Flexible
cp Flexible demand schedule of house c [kWh].

bp Aggregated demand at bus b [kWh]
Congestion
b DTs for congestion at bus b [€/kWh]
LMP
b Local marginal price (LMP) at bus b [€/kWh]
Ch/Dch

vP Charging/discharging power of EV v [kW].
Ch
vx Charging status of EV v (1 if the EV is charging and 0 otherwise). 
Dch
vx Discharging status of EV v (1 if the EV is discharging and 0 otherwise).

vSoC State of charge (SoC) of EV v in the end of time interval t [kWh].
HP

cf Total air mass of the HP [kg/h]

,
HP

c mf Air mass flow at mode m [kg/h]

 Lagrangian function of DSO’s problem.

Parameters
 Retail rates for the end-users [€/kWh].

P Predicted day-ahead market price [€/kWh].
DPT
b Daily power-based network tariff (DPT) at bus b [€/kWh]. 

out Outdoor forecasted temperature [ºC].

c Total indoor air mass of house c [kg].
air Air heat capacity at standard conditions [J/kgºC]. 
HP
c Air mass flow of the HP at house c [kg/h]
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,
HP
c m Maximum air mass flow at mode m [kg/h]
HP
c Power per air mass flow of the HP [Wh/kg]

c Heat loss factor of house c [W/ºC].

 Time interval duration [h].
Firm
cp Predicted firm load of house c [kWh].

Ch/Dch
v Charging/discharging efficiency of EV v.

d
vSoC Expected SoC of EV v at the departure time [kWh]. 

v Arrival time of EV v.

v Departure time of the EV v.
Min/Max
vSoC Minimum/Maximum SoC level of EV v [kWh]. 
/Low Up

c Lower/upper bound of the indoor temperature of house c [ºC].
ref
c Reference indoor temperature of house c [ºC].
Forecasted

bP Forecasted demand at bus b [kWh].

k bGSF  Generation shift factor to line k from bus b.

limitk Active power transmission limit of line k [kW].
/Min Max

bG Minimum/maximum generation output at bus b [kWh].

Sets

T Time periods in the scheduling horizon.

K Branches in the distribution network.

B Buses in the distribution network.

Tv

is the set of periods in which EV v is connected to the grid; v  

. :v v vt t     

Th  is the set of periods that are within hour h.h  

iC Consumers controlled by REP i.

bC Consumers located at bus b.

EV EVs operating under HEMS.
c
EV EVs owned by consumer c.
c
HPM Modes of the HP owned by consumer c.

37 1. Introduction

38 Modern power systems are moving toward smart grids with a high penetration level of distributed 

39 generation (DG) units [1]. The number of controllable loads, such as electric vehicles (EV) and heat pumps 

40 (HP), is also constantly increasing in the grid [2]. Increased use of these potentially flexible loads is changing 
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41 the daily electricity demand profile of consumers. Besides these technological changes in power grids, there 

42 has been a trend toward electricity market liberalization at wholesale and retail level. The liberalization reform, 

43 particularly at the retail level, encourages retail electricity providers (REP) to offer time variable rates to their 

44 clients.

45 This gradual transition in power systems is creating serious operational challenges for distribution systems 

46 [3]. Although the DG units help bypassing congestions in existing transmission grids [4], excessive power 

47 generation from DGs can cause congestion in distribution systems [5]. High demand due to EVs and HPs can 

48 also potentially cause overloading of the electricity lines. The distribution system operator (DSO) is confronted 

49 with congestion issues when a large number of these loads draws electricity from the grid simultaneously [6]. 

50 Uncoordinated operation of these flexible loads can cause unexpected congestions in the distribution system 

51 [5]. Real-time pricing (RTP) schemes offered by REPs in liberalized markets can also increase congestions in 

52 distribution systems by creating new peak demands in response to the time variable tariffs. The new peaks may 

53 cause overloading of lines and transformers [1].

54 Resolving the distribution grid congestion is considered as one of the main duties of DSOs [7]. In long-

55 term planning, the DSO can reinforce the distribution grid according to the identified needs in order to avoid 

56 possible congestions in future [8]. It can increase the grid capacity through boosting the investments in the grid 

57 infrastructure [6]. The congestion management strategies in short-term are usually divided into three categories, 

58 which are distribution system reconfiguration (i.e., switch operation), direct load control and market-based 

59 mechanisms [1]. Market-based mechanisms compared to other two methods are more effective in the 

60 restructured electricity market environment. They can maximize the social welfare while causing least 

61 discomfort to customers and they can also enable the customers and the DGs to participate in the distribution 

62 network energy planning procedure [7]. Through market-based mechanisms, the DSO can harness the benefits 

63 of demand-side flexibility to face the challenges of the evolving electricity networks [9].

64 There are several technical and regulatory limitations for the DSO to directly control numerous flexible 

65 loads or to offer other types of demand response (DR) programs to electricity end-users [5,10]. REP is an ideal 

66 entity to offer DR programs to retail customers. They are the economic entities in the distribution network that 

67 purchase electricity in the wholesale market at volatile prices and sell to end-users at fixed rates [1]. They shield 

68 their clients against price variations in the wholesale market. 

69 One of the risk management strategies of REPs is employing the demand-side resources. They can control 

70 the consumption of their clients’ appliances to avoid more purchases from the market when the prices are high 

71 and in exchange offer more profitable contracts to their customers for their economic compensations [1]. REPs 

72 as commercial entities have a greater incentive for maximizing the payoff, compared to individual end-users. 

73 Therefore, implementing DR by them will lead to a higher elasticity of demand and more effective response to 

74 price signals [10]. In short-term consumption scheduling of the household appliances, the objective of the REP 

75 is to maximize its payoff [1]. This paper aims to develop a market-based mechanism for DSOs to alleviate 
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76 congestions in distribution network through a coordinated home energy management system (HEMS) which is 

77 centrally controlled by REPs.

78 The concept of nodal pricing has been extended from transmission systems to distribution systems to reduce 

79 line losses and improve the voltage profile by rewarding the DGs [11] or to optimally allocate the DG units in 

80 the distribution network [12–14]. Nodal pricing was first used in distribution networks to handle the congestion 

81 problems in grids with high penetration of DG units [7].

82 This pricing mechanism was later used in some existing literature to address the congestion due to flexible 

83 demands in distribution networks [1,5,7,8,10,15,16]. A step-wise dynamic tariff (DT) scheme is developed by 

84 O’Connell et al. [10] to manage the congestion in distribution networks due to the EV demand. The DTs were 

85 calculated from the distribution locational marginal prices (LMP). In this decentralized control manner, the 

86 aggregators determine the energy plan of the EVs without taking the network constraints into consideration and 

87 the network constraint information is incorporated in the DTs. This method does not consider the inter-temporal 

88 characteristics of the EVs. Li et al. [15] also used distribution LMPs determined by the DSO as price signals 

89 for EV aggregators. The DSO determines the distribution LMPs by solving the social welfare optimization 

90 problem. A nonlinear optimization model was used to compute the prices. These models are only practically 

91 applicable when the DSO has access to the details of individual EVs [15,16]. To overcome this drawback in 

92 this paper, REPs are considered as an intermediary entity between the DSO and the consumers which access to 

93 the consumption data of the end-users and the details of individual EVs. 

94 In the market-based mechanism developed by Liu et al. [1] to manage the distribution system congestions, 

95 household appliances with flexible demand such as EV and HP were selected as DR sources and the aggregators 

96 control their consumption based on distribution congestion prices. The distribution congestion prices are 

97 published by the DSO in advance. The objective of the aggregators was to maximize their total payoff.

98 Huang et al. [7] presented a quadratic programming model to alleviate the congestions in distribution 

99 networks with high penetration of flexible demand through introducing distribution LMPs. This paper proved 

100 that the distribution LMP concept is valid with the cost functions having quadratic terms reflecting the price 

101 sensitivity of the DGs. Moreover, the capability of this concept in addressing the congestion issue in distribution 

102 networks caused by diverse flexible load characteristics was proved. 

103 Liu et al. [8] implemented the distribution LMP method via a chance constrained mixed-integer quadratic 

104 programming to manage congestions in distribution networks with high penetration of EVs. In this model, both 

105 DSO and the aggregators were involved in stochastic features of the EVs’ driving pattern. Dealing with the 

106 stochastic features of EVs for DSO gets difficult in networks with high penetration of EVs and several 

107 aggregator players. A bi-level optimization model for day-ahead congestion management was developed by Ni 

108 et al. [5]. Uncertainties of the DG units and market prices were considered in a robust optimization model.

109 REPs can deploy the demand-side flexibility through coordinating the HEMSs of the end-users and 

110 applying the DTs in scheduling the consumption. HEMS can be implemented either centralized or decentralized 

111 [17]. In the decentralized HEMS models, consumption scheduling and control is done locally at the end-users’ 
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112 points. Fotouhi Ghazvini et al. [18] proposed a decentralized HEMS model which schedules the household 

113 consumption based on the price signals received from the REP. The customers in decentralized HEMS models 

114 minimize their own energy costs considering the time variable price signals and the model is based on 

115 transactions between REPs and consumers [17]. Decentralized HEMS models can lead to additional peak loads 

116 [17], and without a coordinating control system which can link the individual HEMSs together they cannot be 

117 used effectively for congestion management. Chang et al. [19] developed a decentralized coordinated HEMS 

118 in which distributed HEMSs can collaborate with each other. The purpose of the collaboration is to keep demand 

119 supply balanced in their neighborhood. REPs send the price signals to the HEMSs. The model is proposed to 

120 avoid the rebound effect of the uncoordinated operation of individual HEMSs in a neighborhood on the 

121 aggregate demand profile. Although consumption scheduling is done locally in this model, consumers are 

122 modeled in a way not behave selfishly. Andersen et al. [20] presented the model of a virtual power plant to 

123 implement a centralized control of a large number of houses with HPs. The main focus was put on the virtual 

124 power plant setup. However, the model is also usable under different pricing schemes.

125 In this paper, the DSO implements a market-based mechanism to manage the congestion in distribution 

126 network. The concept of economic signaling performed by the DSO involves the REPs in congestion 

127 management. The DSO offers DPT and DT to influence the consumption. DTs are elements of LMPs in the 

128 distribution network. The LMPs are calculated with optimal power flow models, considering the expected nodal 

129 consumptions. Load control is performed by REPs through a centralized coordinated HEMS. They aggregate 

130 the flexible demand of their clients. This coordination procedure addresses the limitations of both the DSO and 

131 the REPs for executing DR programs. DSOs usually lack the direct interaction and financial relationship with 

132 end-users, and REPs lack the access to grid information.

133 In this paper, load scheduling is performed by the REP based on the requirements of their clients without 

134 sacrificing their comfort and convenience. It is assumed that the payoff maximization is the main objective of 

135 the REPs. In the existing works on demand-side management for alleviating the congestion induced from 

136 controllable loads, such as EVs and HPs, there is no comparison among DTs and DPTs. In order to fill this gap 

137 in the literature, a centralized coordinated HEMS operated by REPs is developed. This consumption scheduling 

138 module has the potential to reschedule the consumption based on DTs and DPTs. 

139 The rest of this paper is organized as follows. In Section 2, the concept of centralized coordinated HEMS 

140 and the detailed characterization of each controllable load are described. The impact of DTs is not incorporated 

141 in this section. In Section 3, the market-based mechanism is proposed. The DSO computes the DTs and 

142 distributes it among the REPs. The HEMS model introduced in Section 2 is then extended to incorporate the 

143 impact of DTs. Simulations are performed in Section 4 and the performance of the proposed mechanism for 

144 congestion alleviation is evaluated. Conclusions are given in Section 5.

145 2. Coordinated HEMS model

146 Electricity loads can be classified as flexible and inflexible loads. Inflexible loads or critical loads should 

147 be served by the REP [21] without the possibility to change their consumption pattern, whereas the flexible 
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148 loads have the ability to reduce, increase or defer their consumption in response to the economic signals that 

149 the REP sends [22].

150 The main assumption in this model is that the aggregation of the flexible loads and the scheduling of their 

151 consumption is carried out by the REP through a centralized coordinated HEMS. This duty can also be met by 

152 an intermediary entity between customers and the REPs, such as DR aggregators. However, changing this 

153 assumption does not influence the main purpose of this model, which is alleviating the congestion through DR 

154 implementation in distribution networks.

155 It is worth noting that the active customers should be properly compensated for providing this flexibility 

156 for REPs. In this model, scheduling the consumption provides financial benefits for the REPs and the customers’ 

157 benefit of DR is delivered to them via the discounts in their monthly electricity bills. The customers with whom 

158 the REP has contracted for providing flexibility should be remunerated by the relevant REP through a number 

159 of mechanisms which may include discounts on the retail rates or on the total electricity bills. The payment 

160 method is agreed in the bilateral contract between the customer and REP. Determining the optimal payment 

161 method, as well as determining the optimal retail rates are medium-term scheduling problems of the REPs and 

162 they are not in the scope of this paper. 

163 The electrification of the transportation system and space heating is a consequence of the policies to 

164 eliminate fossil fuels [23]. Although the energy efficient technologies such as EVs for the transportation system 

165 and HPs for the space heating reduce the total energy demand, they will increase the electricity demand [24]. 

166 Some studies anticipate that full penetration of EVs and HPs will result in a 50% increase in total electricity 

167 consumption and a 100% increase in peak demand [23,25]. High penetration of such loads can potentially create 

168 overloading in electricity lines [6], as well as increasing the generation requirements [10]. These challenges are 

169 even amplified when the consumption of these flexible loads react to price signals, which will lead to a loss of 

170 diversity in the on/off cycles and consequently increase the overloading of the electricity lines [6]. The impact 

171 of this situation can be compared with the so-called “cold load pick-up” effect after a blackout, which will lead 

172 to a spike in demand due to loss of load diversity [6]. When the time variable retail rates are high for several 

173 hours, the consumers may postpone the flexible demand and when it reduces the demand may exceed the prior 

174 demand [6].

175 On the other hand, high penetration of these loads in power systems increase the DR potential [23]. 

176 Although they present a challenge to distribution networks [26], they can offer means to stabilize the distribution 

177 network by providing DR potential [27]. Therefore, a suitably conceived market-based mechanism can get 

178 advantage from the flexibility provided by HPs and EVs to alleviate congestions in the distribution system.

179 The energy requirements of loads can be procured through day-ahead markets. REPs are commercial 

180 entities in electricity markets which integrate the demand side resources and submit the bids to the day-ahead 

181 market on behalf of the end-use private consumers [5,7,10]. It is not practical for the numerous dispersed small 

182 scale resources to directly participate in the wholesale market [5]. The REPs can gain profit by optimally 
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183 scheduling the consumption of the flexible loads [5]. At the same time, they can also contribute in enabling 

184 secure and economic operation of the distribution network [5].

185 The objective function (1) of REP i computes the total payoff of the company over the scheduling horizon 

186 ( ) and is determined by subtracting the cost of energy purchase at the wholesale market from the sales Payoff𝑖

187 to end-users. It is assumed that the REP in this model is price taker.

 Maximize     Payoff ( ) ( ) ( )
i

P
i c c

t c C
t t p t  

 

     (1) 

188 It is assumed that each consumer in this model is a house. Therefore, the index c is used to represent both 

189 consumers and houses. The predicted day-ahead market price is shown with  and the retail rate for each 𝜆𝑃

190 consumer is shown with . Retail rates can be time variable same as the wholesale market prices and they also 𝛾𝑐

191 may change among the household consumers served by REP i ( ), depending on the type of the contract that 𝐶𝑖

192 has been made with the REP. Even in a same node the REP might offer different tariffs to consumers. The 

193 consumption schedule profile of consumer c ( ) is composed of the firm load ( ) and the flexible demand 𝑝𝑐 𝑃𝐹𝑖𝑟𝑚
𝑐

194 ( ):𝑝𝐹𝑙𝑒𝑥𝑖𝑏𝑙𝑒
𝑐

( ) ( ) ( ),                     , .Firm Flexible
c c c ip t P t p t t T c C      (2) 

195 The flexible demand is a variable and the components of this profile are shown as:

 ( ) ( ) ( ) ( ) ;                     , ,
c
EV

Flexible HP Ch DCh
c c v v i

v

p t p t p t p t t T c C
 

       (3) 

196 where is the consumption of the HP located in house c, and /  is the charging/discharging power of 𝑝𝐻𝑃
𝑐 𝑝𝐶ℎ

𝑣 𝑝𝐷𝐶ℎ
𝑣

197 the EV v.

198 2.1. Constraints of EV scheduling

199 REPs schedule the charging and discharging of the EVs that are registered for load control based on the 

200 permanent characteristics of the EVs and the preferences of the owners for arrival and departure time. Despite 

201 the uncontrolled charging of EVs which charges the battery after being connected to the grid [28], the main 

202 control variables in controlled charging scheme are the charging and discharging power during each time period. 

203 It is essential to keep them always within the admissible rates. This limitation is formulated as follows:

,0 ( ) ( );            , ,Ch Ch Max Ch
v v v EV vp t P x t v t         (4) 

,0 ( ) ( );            , ,Dch Dch Max Dch
v v v EV vp t P x t v t         (5) 

204 where  and  are respectively the maximum charging and discharging rates. These rates are 𝑝𝐶ℎ,𝑀𝑎𝑥
𝑣 𝑝𝐷𝐶ℎ,𝑀𝑎𝑥

𝑣

205 restricted by the maximum acceptable charging power of EV battery, maximum power set by the EV user and 

206 maximum power EV charger can output. Usually, both the maximum power EV charger can output and the 

207 maximum power set by the EV user are greater than the maximum acceptable charging power of the EV battery 

208 [29]. The discharged power of the EVs can be used to serve part of the household loads (i.e., vehicle-to-home) 
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209 or to be injected back to the grid (i.e., vehicle-to-grid) [18,30]. Simultaneous charging and discharging of EVs 

210 is avoided with the following constraint on the binary variables  and :𝑥𝐶ℎ
𝑣 𝑥𝐷𝑐ℎ

𝑣

( ) ( ) 1,            , .Ch Dch
v v EV vx t x t v t        (6) 

211 The EV’s State of charge (SoC) update function is represented as follows:

( ) ( ) ( ) ;            , .Initial Ch Dch
v v Ch v v EV vSoC t SoC p t p t v t             (7) 

( ) ( -1) ( ) ( ) ;            , , ,Ch Dch v
v v Ch v v EV vSoC t SoC t p t p t v t t                (8) 

212 where equation (7) calculates the SoC of the EV at the end of the first time period after the arrival and equation 

213 (8) calculates the SoC of the EV v at the end of the remaining time periods. The SoC of the EVs’ battery should 

214 always be within a certain range, which is imposed through the following inequality constraint:

( ) ,            , .Min Max
v v v EV vSoC SoC t SoC v t        (9) 

215 Constraint (9) guarantees high battery efficiency during its’ lifetime [31]. Although an EV is very similar 

216 to a storage system, in terms of operational scheduling, a few extra constraints should be enforced for the 

217 charging/discharging status of EVs [31]. For instance, they are only available between the arrival and departure 

218 time of the EV ( ) or the SoC of the EV should be at a specific amount by the departure time. These two T𝑣

219 characteristics are mathematically described as:

( ) ( ) 0;            , ,Ch Dch
v v EV vx t x t v t        (10) 

( ) ;           , ,d
v v EV vSoC t SoC v t      (11) 

220 where  is the required energy level of the battery at the departure time. Constraint (10) shows that during 𝑆𝑜𝐶𝑑
𝑣

221 the periods that the EV is not connected to the grid, charging and discharging tasks cannot be performed. 

222 Constraint (11) enforces that the EV should be charged to a specific amount when the user is taking the car for 

223 daily trips.

224 2.2. Constraints of HP scheduling

225 The house temperature change among two consecutive time periods is proportional to the difference 

226 between the heat flow provided by the HP ( ) and the heat losses ( ). The evolution in time of the indoor 𝑄𝐻𝑃
𝑐 𝑄𝐿𝑜𝑠𝑠

𝑐

227 temperature due to the heat flow/loss is shown by [32][33]:

 ( ) ( 1) ( ) ( ) ;             , ,in in HP Loss
c c c c iair

c

t t Q t Q t c C t T 
 

        


(12) 

228 where the indoor temperature of the house c is shown with . The total indoor air mass of the house ( ) 𝜃𝑖𝑛
𝑐 𝜇𝑐

229 depends on the characteristics of the house, while  denotes the air heat capacity at standard conditions. 𝜒𝑎𝑖𝑟

230 Constraint (13) represents the range of indoor temperature allowed by the customer.  and  are the lower 𝜃𝐿𝑜𝑤
𝑐 𝜃𝑈𝑃

𝑐

231 and upper bound of the indoor temperature which are set by the end-user and can be time variable, depending 

232 on the preferences of the user.
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( ) ( ) ( )Low in Up
c c ct t t    (13) 

233 The heat losses at each period are proportional to the difference between indoor and outdoor temperature:

 ( ) ( 1) ( 1) ;             , ,Loss in out
c c c iQ t t t c C t T           (14) 

234 where is the heat loss factor of the house and is the outdoor temperature [32]. The heat flow of the HP at 𝜅𝑐 𝜃𝑜𝑢𝑡

235 each period is instead given by:

 ( ) ( ) ( 1) ;                  , ,HP air HP HP in
c c c c iQ t f t t c C t T           (15) 

236 where  is the air mass flow of the HP delivered to the house at the constant output temperature  of the 𝑓𝐻𝑃
𝑐 𝜃𝐻𝑃

𝑐

237 HP. In (15), Instead of using , the reference temperature  of the house (defined as the average between 𝜃𝑖𝑛
𝑐 𝜃𝑟𝑒𝑓

𝑐

238 lower and upper boundary temperature) can be used to maintain the linearity of the problem. Since the indoor 

239 temperature should always remain in the comfort zone, this approximation is acceptable.

240 The air mass flow of the HP can be divided into different operating modes, based on the required power of 

241 the heat pump to generate that flow.  is considered as the summation of air mass flows in different modes:𝑓𝐻𝑃
𝑐

,( ) ( );                       , ,
c
HP

HP HP
c c m i

m M

f t f t c C t T


     (16) 

242 where is the incremental air mass flow associated to each operating mode. In each mode, the air mass flow 𝑓𝐻𝑃
𝑐,𝑚

243 should be within the defined range:

, ,0 ( ) ( ) ;                       , , , 1,HP HP HP c
c m c c m i HPf t x t c C t T m M m          (17) 

244 where  is a binary decision variable which is 1 when the HP is turned on and is the maximum air mass 𝑥𝐻𝑃
𝑐 Φ𝐻𝑃

𝑐,𝑚

245 flow at each mode. The air mass flow in the first mode denotes the minimal air mass flow of the HP when it is 

246 turned on. Therefore, for the first mode is computed as the following equality constraint:𝑓𝐻𝑃
𝑐,𝑚

, ,( ) ( ) ;                       , , 1,HP HP HP
c m c c m if t x t c C t T m       (18)

247 The required power of the HP ( ) is the summation of the required power in each operation mode of the 𝑝𝐻𝑃
𝑐

248 HP:

, ,( ) ( ) ;                     , ,
c
HP

HP HP HP
c c m c m i

m M

p t f t t T c C


      (19) 

249 where  is the power per air mass flow of each operating mode.  is monotonic increasing with the 𝜌𝐻𝑃
𝑐,𝑚 𝜌𝐻𝑃

𝑐,𝑚

250 delivered air flow ( ).𝜌𝐻𝑃
𝑐,1 ≤ 𝜌𝐻𝑃

𝑐,2 ≤ …

251 Figure 1 shows a schematic layout of the HEMS model. The inputs that require a daily update are shown 

252 on the left, the built-in or permanent characteristics of EV loads, HP loads and the houses are represented in the 

253 middle and the outputs are in the right.
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254

255 Figure 1. Schematic of the coordinated HEMS.

256 3. Market-based mechanism for congestion management

257 Market-based mechanisms are usually preferred by the consumers over the direct load control (DLC) 

258 approaches. Consumers are more willing to react to economic signals sent by the DSO rather than being ordered 

259 to alter their consumption [1]. Implementing market-based mechanisms by DSOs requires participation of other 

260 market entities located between consumers and the DSO. REPs in this scheme are usually selected to procure 

261 the flexibility from the residential end-users [34]. However, when market-based approaches are not sufficient 

262 to provide the required flexibility, more direct approaches can be implemented [1].

263 3.1. Dynamic tariffs

264 In this model, the DSO alleviates the congestion in distribution network through a decentralized approach 

265 [8]. The DSO calculates the DTs which reflect the distribution congestion prices and provides the REPs that are 

266 serving customers in the distribution network with this information [8]. The REPs individually perform their 

267 own energy planning. They optimally schedule the flexible consumption of their clients through the coordinated 

268 HEMS, considering the distribution congestion prices. Their bids in the day-ahead market will be obtained 

269 based on this schedule. The congestion prices are finally passed to the end-users [6]. The proposed market-

270 based mechanism for congestion management should be completed before market clearing of the day-ahead 

271 markets [1]. The DSO uses the historical data to forecast the spot prices as well as the flexible and firm demand 
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272 [1]. It computes the DTs considering these predicted values and the generation offers of the DGs producing 

273 electricity inside the distribution network.

274 DTs that the DSO offers to REPs for congestion management should reflect distribution congestion prices. 

275 Distribution congestion price can be considered as an element of LMPs [1]. Using LMPs in transmission 

276 systems is very common. They reflect the marginal cost at each node of the grid, which also incorporates the 

277 extra cost due to congestion and energy losses [1].  In this model, the DSO uses DC optimal power flow 

278 (DCOPF) to formulate distribution LMPs and obtain the nodal prices of active power [1,5]. With this 

279 information, the DSO can attain the DTs. DCOPF is an efficient technique to determine the active power flow 

280 in electricity lines [5,10]. The power flow results obtained from DCOPF are close to those obtained with 

281 ACOPF with much less computation time [5]. Therefore, it can be considered sufficient in many cases and 

282 several well-known software tools have employed this technique for chronological LMP simulation and 

283 forecasting [5]. Figure 2 shows the relationship between the DSO and the REPs. The DSO runs the OPF and 

284 calculates the DTs based on predictions from the market and the retail customers.

285

286 Figure 2. Schematic of the proposed market mechanism.

287 The proposed mechanism is a step-wise tariff scheme [10]. In this scheme, system balance and distribution 

288 network congestion are tackled independently. Congestion prices are determined by the DSO. The DSO has to 

289 predict the total demand and also the day-ahead market prices in order to determine the congestion prices. This 

290 approach can be implemented directly in many European electricity markets unlike the integrated tariffs 

291 approach where both system balance and grid congestion needs to be settled in a single step [10].

292 As the marginal cost of losses does not influence the value of DTs [10], a linearized lossless DC model of 

293 the network is considered [35]. It is assumed that the loads can be fully served through the wholesale market 

294 and, in the case of congestions, the dispatchable DG units in the distribution network can be used. The costs 
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295 arise due to the congestion will be later compensated by the consumers [10]. The objective function of the DSO 

296 for each time period is to minimize the electricity supply cost in the distribution network [1]:

B
Minimize     Cost ( ) ( );                   ,g

b b
b

C t p t t T


    (20) 

297 where  is the cost of procuring electricity at each bus for the next trading day. It is equal to day-ahead 𝐶𝑏

298 wholesale market price at the bus connected to the transmission network and for other buses, where a DG unit 

299 is connected, it is equal to the price that they offer. The DCOPF problem meets the load in power system, while 

300 minimizing the total operation cost in the network. It is subject to the following energy balance and transmission 

301 constraints [35,36]:

B B
( ) ( );                   ,g Forecasted

b b
b b

p t P t t T
 

    (21) 

302

 ( ) ( ) ;                   ,g Forecasted
k b b b k

b B
GSF p t P t Limit t T k K



       (22) 

303

Min Max( ) ;                   ,g
b b bG p t G b B t T      (23) 

304 In (21),  is considered as an input. DSO can use predicted values for this parameter or the results 𝑃𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑
𝑏

305 of the REPs’ initial load scheduling. 

306 The line flow limitation is represented with GSF in the DCOPF problem.  is the generation shift 𝐺𝑆𝐹𝑘 ‒ 𝑏

307 factor to line k from bus b, which depends on the selection of the reference bus [37]. GSF is the ratio of the 

308 change in power flow at line k to the variation in power injection at bus b [38]. The reference bus in this set of 

309 formulations is the bus connected to the transmission grid. However, it is worth noting that the electricity flow 

310 limits in (22) are independent from the reference bus choice [37].  is the line power flow limit at line k. 𝐿𝑖𝑚𝑖𝑡𝑘

311 LMP is composed of three elements: energy price, congestion price and loss price [38]. In the DC lossless 

312 power flow, the loss price is zero and therefore the LMP at each bus is composed of the marginal price of 

313 generation at the reference bus and the marginal congestion price at that node [39].

( ) ( ) ( ) ( );            ,  .LMP Energy Congestion Loss
b b bt t t t b B t T          (24) 

314 LMP at each bus of the distribution system can be attained by solving the above DCOPF model. LMP at 

315 each bus is mathematically defined as the dual variable of the power balance constraint at that node [38].  The 

316 Lagrangian function of the DCOPF problem is calculated as follows:

 

( ) ( ) ( ) ( ) ( ) ( )

   ( ) ( ) ( ) ;                    

g g Forecasted
b b b b

b B b B b B

g Forecasted
k k b b b k

k K b B

t C t p t t p t P t

t GSF p t P t Limit t T





  


 

   
        

   
 

       
 

  

 
(25) 
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317 where ω and  are respectively the Lagrangian multipliers of constraints (21) and (22) [10]. The LMP is 𝜇𝑘

318 calculated as [10]:

( )( ) = ( ) ( ) ;                ,  .
( )

LMP
b k k bForecasted

k Kb

tt t t GSF b B t T
P t

   



      

  (26) 

319  is the locational marginal energy price and  is the locational marginal congestion 𝜔(𝑡) ∑
𝑘 ∈ 𝐾𝜇𝑘(𝑡) ∙ 𝐺𝑆𝐹𝑘 ‒ 𝑏

320 cost [10], which is used by the DSO as the congestion prices. Thus, the congestion price at each bus and each 

321 time period is calculated as:

( ) ( ) ;                ,  .Congestion
b k k b

k K
t t GSF b B t T  



      (27) 

322 Charges appear when the electricity lines are constrained by physical limits [38]. The congestion cost is 

323 associated with the line flow constraints [39]. The DSO publishes these congestion costs as DTs for the REPs 

324 to consider in the consumption scheduling procedure to alleviate the possibility of congestion occurrences.

325 The REP incorporates the impact of DTs in its objective function (1) and the consumption of household 

326 appliances is optimally scheduled in response to price signals. The price signals are composed of the DTs 

327 published by the DSO and the predicted day-ahead market prices [10]. It is worth noting that despite the day-

328 ahead market price, which does not vary among nodes, the DT is defined on the single nodes to alleviate the 

329 expected congestion. The new objective function of the REP is as follows: 

 Maximize     Payoff ( ) ( ) ( ) ( ) .
b

P Congestion
i c b c

t b B C C
t t t p t   

  

      (28) 

330 This DR scheme can be used as an alternative to RTP tariffs and time-of-use (TOU) pricing schemes. This 

331 centralized coordinated HEMS allows REPs to control flexible loads that are being served under fixed retail 

332 tariffs.

333 The DTs increase the energy price for consumers during specific hours, which can impact the consumption 

334 pattern of the users. The end-users may prefer to shift their loads more to the periods with lower prices, which 

335 may cause a rebound effect and create new peak demands at periods not expected. Therefore, the DSO should 

336 use price schemes that charge the end-users according to their peak demand. Tariffs such as DPTs avoid peak 

337 demand spikes at other periods. 

338 3.2. Daily power-based network tariffs

339 Another pricing system to avoid congestion occurrences in distribution networks is to use DPTs [40], where 

340 the consumers are charged for the maximal power consumption [41]. This network pricing scheme gives REPs 

341 an incentive to reduce the maximal power consumption at each node [41]. Employing this pricing system for 

342 consumers with an uncoordinated distributed HEMS is not as efficient as using this scheme with a coordinated 

343 centralized HEMS, because the maximal power use of customers may not coincide with the aggregated peak-

344 demand in the nodes of the distribution network. This price system is being considered by DSOs in many 

345 electricity markets [41]. The objective function of the REP is in this case as follows:
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 Maximize     Payoff ( ) ( ) ( )
b

P Peak DPT
i c c b b

t b B C C b B
t t p t p   

   

        (29) 

346 where is the daily peak demand and  is the DPT at bus b. As the DSO runs the DCOPF with hourly 𝑝𝑃𝑒𝑎𝑘
𝑏 𝜆𝐷𝑃𝑇

𝑏

347 time intervals, the  is defined as:𝑝𝑃𝑒𝑎𝑘
𝑏

( ) ;                     , .
h

Peak
b b

t T
p t p h b



    (30) 

348 The DSO can apply both DTs and DPTs simultaneously. In this case, the objective function of the REP is 

349 represented as:

 Maximize     Payoff ( ) ( ) ( ) ( ) .
b

P Congestion Peak DPT
i c b c b b

t b B C C b B
t t t p t p    

   

         (28) 

350 4. Case study and discussion

351 The modified IEEE 33-bus distribution is used in this section to validate the effectiveness of the proposed 

352 method. The topology of the 12.66 kV system is shown in Figure 3. This test system contains 30 load buses. In 

353 this case study, it is assumed that one REP is serving all the residential customers. The distribution of the 

354 residential customers among the buses of the distribution network is shown in Figure 4. In this test system 706 

355 residential consumers are being served by the REP. The scheduling horizon, which is 24 hours, can begin at 

356 any time of the day. In this paper, the starting time of the scheduling is not necessarily at the beginning of the 

357 day. Time intervals for the REP’s consumption scheduling is 15 minutes, and it is 1 hour for the DSO. Therefore, 

358 there are 96 time periods in the consumption scheduling. The aggregated inflexible demand profile of the 

359 consumers and the hourly day-ahead market prices are shown in Figure 5. The inflexible demand is extracted 

360 considering a standard aggregated pattern for residential customers related to a typical working day in January, 

361 which is derived from a German database [42]. The day-ahead market prices are taken from the Iberian 

362 Electricity Market (Mibel) [43]. It is assumed that all customers are being served at the fixed retail rate of 0.17 

363 €/kWh.
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364

365 Figure 3. IEEE 33-bus distribution system [44]

366

367

368 Figure 4. Number of residential consumers at the buses.
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369

370 Figure 5. Forecasted firm loads of all customers and the day-ahead market price.

371 All residential customers in this test system have EV and HP loads. Several house models and EV types 

372 are listed in tables 1 and 2. It is assumed that the residential consumers live in one of the house models listed in 

373 Table 1 and own one of EV models shown in Table 2. The house type and the EV model of each customers is 

374 selected randomly. The heat loss factor of the house and the total indoor air mass of the house depends on the 

375 geometric dimensions of the house, including the characteristics of the walls and windows [32].

376 Table 1. House models.

House 
models

Heat loss factor of the 
house [W/°C]

Total indoor air mass of 
the house [kg]

1 191,200 367.50
2 250,300 551.25
3 312,400 1,960.00

377
378
379 Table 2. EV models.

EV 
models

Battery 
capacity 
[kWh]

Minimum battery 
energy level [kWh]

Charging 
rate [kW]

Discharging 
rate [kW]

Charging 
efficiency

Discharging 
efficiency

1 16.0 2.0 3.30 3.30 0.90 0.91
2 24.0 2.9 2.00 1.70 0.91 0.85
3 60.0 9.2 6.60 5.10 0.88 0.87
4 19.0 1.9 3.00 2.40 0.86 0.90
5 23.0 3.2 3.30 3.00 0.83 0.86
6 10.3 1.4 2.00 1.70 0.89 0.91
7 30.0 3.3 3.30 2.70 0.85 0.87
8 28.0 3.5 2.60 2.50 0.82 0.90

380

381 It is assumed that the expected battery energy level of the EVs at the departure time can be achieved at the 

382 interval that the EV is connected to the grid. The average connection time of the EVs into the grid is 45.61% of 

383 the scheduling horizon. The EV availability during the scheduling horizon is shown in Figure 6. The maximum 

384 availability is at time period 60, when 81.02% of the EVs (e.g. 572 EVs) is connected to the grid. The mean 

385 arrival time of EVs is at time period 31±17 and mean departure time is at 74±17. Charging and discharging 
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386 power can be scheduled from zero to a maximum which is the charging/discharging rate of the EV. It is assumed 

387 that the EV is charged constantly during each 15-minutes time interval.

388

389 Figure 6. EV fleet availability.

390 The operation modes of the HPs are shown in Table 3. It is assumed that all HPs are from the same models, 

391 but can function at different operating points. The lower and upper indoor temperature bound determined by 

392 the users are shown in Figure 7. In this figure, the hourly outdoor temperature for the 24 hours scheduling 

393 horizon is also shown.

394 Table 3. HP operation modes.

HP 
modes

Maximum air mass 
flow [kg/h]

Power per air mass 
flow [Wh/kg] 

1 426 0.94
2 264 1.86
3 178 3.70

395

396

397 Figure 7. Forecasted outdoor temperature and the indoor expected temperature range.

398 The following four cases of consumption scheduling are studied in this paper to provide a comparison 

399 between DTs and DPTs in alleviating the congestion.

400  Case 1: no pricing signals for congestion management;
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401  Case 2: DTs as the pricing signals;

402  Case 3: DPTs as the pricing signals;

403  Case 4: both DTs and DPTs as the pricing signals.

404 For cases 2 and 4, in which DT is incorporated in the decision-making model of the REP, it is essential to 

405 firstly run the DSO’s optimization problem with the forecasted nodal demand as input. In this problem, it is 

406 essential to include the line loading limits. In the case of overloading, the internal dispatchable DG units can be 

407 used to serve the consumers. They produce electricity at higher prices compared to the wholesale market. After 

408 determining the DTs and publishing them, the REP schedules the consumption based on these tariffs. In order 

409 to compute the overloading at distribution lines, the DSO problem is solved without considering the line loading 

410 limits. All cases in this section, which include the problem of REPs and the DSO’s problem, are solved by 

411 CPLEX [45] with GAMS 24.4.6 [46] on a 2.1 GHz Intel Xeon processor executed on 16GB RAM and 64-bit 

412 Windows 8.1 Pro system. The DTs and DPTs are respectively shown in Figures 8 and 9. The results of the case 

413 studies are shown in Table 4.

414

415 Figure 8. DTs published by the DSO.

416

417 Figure 9. DPTs published by the DSO.
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418 Table 4. Comparison of case study outputs.

 
Number of 
overloading 
occurrences

Average overloading 
magnitude 

(Mean ± SD)

Maximum 
overloading 
magnitude

REP's 
payoff [€]

V2H energy 
transaction 

[kWh]

HP energy 
consumption 

[kWh]

Case 1 22 123.04% ± 13.39% 145.27% 3505.63 2445.10 201.58

Case 2 16 116.75% ± 13.46% 153.02% 3453.02 2368.80 201.70

Case 3 11 103.25% ± 1.20% 104.31% 3427.17 2537.30 202.80

Case 4 0  -  - 3382.38 2425.50 201.45

419

420 Although applying DTs have reduced the number of overloading occurrences and the average of the 

421 overloading magnitude, the DSO can still expect severe congestions at the periods in which these tariffs are not 

422 considered. On the other hand, the case study results reveal that considering DPTs (i.e., case 3) are very effective 

423 in alleviating the congestion, without having considerable impact on the REPs’ payoff compared to case 2, in 

424 which the DTs are used to manage the congestion. In case 3, the REP uses more the energy stored in the EVs’ 

425 batteries to serve the demand in order to reduce the peak demand. It uses the V2H 7.11% more compared to 

426 case 2. In case 4, which uses both DT and DPT pricing systems to manage the congestion, no overloading is 

427 occurred.

428 In order to better analyze the performance of the proposed market-based approach, overloading at line L19 

429 is demonstrated in Figure 10. Line L19 loading is due to the loads at buses 20, 21 and 22. The aggregated load 

430 profile of the firm demand for the 54 residential customers located at buses 20, 21 and 22 is shown in Figure 

431 11. As shown in Figure 10, the line loading has decreased significantly during the periods that the DTs are 

432 applied. However, when the DTs are considered without DPTs, a significant overloading can occur at other 

433 periods. For instance, the overloading at L19 has increased to 153.02% at hour 12, which is even higher than 

434 the maximum overloading in the case that no tariffs are considered for congestion management (i.e., case 1). 

435 The DTs are defined for hours 13-17 and the line loading in case 2 during this interval reduces to 23.72% of the 

436 maximum line loading limit, which is far below the 130.37% of the maximum line loading in case 1.

437

438 Figure 10. Loading percentage in line L19.
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439

440 Figure 11. Aggregated load profile of the firm demand at buses 20, 21 and 22.

441 In Figure 12, the level of energy stored in the EVs batteries connected to bus 20 is shown for the 4 cases. 

442 As expected when the DTs and DPTs are not applied, the EVs are charged during the low price periods. As 

443 seen in Figure 10, the maximum overloading occurs at hour 15 (i.e., time periods 57-60). The batteries’ energy 

444 level shows a significant increase in the energy level of the EV fleet during this interval. In cases 2 and 4, during 

445 the periods before hour 13 (i.e., time period 49), the energy level of the batteries is increasing significantly, 

446 which shows charging of the EVs. From time period 49, which is the first time period with DTs, the energy 

447 level remains almost constant and begins to reduce due to the discharging power.

448

449 Figure 12. Aggregated batteries’ energy level at bus 20.

450 The approach proposed in this paper is a step-wise approach. The main concern in such models is the 

451 difficulty in obtaining a socio-economically optimal solution [10]. This approach can be used in electricity 

452 markets without imposing alteration to the structure of the current day-ahead markets.
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453 5. Conclusions and future work

454 A market-based mechanism for congestion management in active distribution networks is proposed in this 

455 paper. Uncontrolled operation of flexible loads, such as EVs and HPs can add demand at peak hours and cause 

456 congestion in distribution networks. All pricing systems proposed to alleviate congestion at the distribution 

457 network requires an effective load scheduling module which provides centralized control for the loads. In this 

458 paper, the REP manages the controllable loads of its clients through a centralized coordinated HEMS. The 

459 proposed smart consumption scheduling manages the load efficiently and avoids peak demand. It schedules the 

460 loads based on day-ahead market prices, DTs and DPTs. DTs and DPTs are the pricing signals published by the 

461 DSO to mitigate possible congestions. The optimization problems of the DSO and the REPs are both formulated 

462 and solved as MILP problems. The case study results revealed that the DTs cannot individually avoid the 

463 congestion occurrences, although they reduce the frequency of this phenomenon. The simultaneous application 

464 of both DTs and DPTs was effective in mitigating the risk of line overloading occurrences. 
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