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Abstract— Currently, wind farms typically rely on greedy
control, in which the individual turbine’s structural loading and
power are optimized. However, this often appears suboptimal
for the collective wind farm. A promising solution is closed-loop
wind farm control using state feedback algorithms employing a
dynamic model of the flow. This control method is a novelty in
wind farms, and has potential to provide a temporally optimal
control policy accounting for time-varying inflow conditions and
unmodeled dynamics, both often neglected in current methods.
An essential building block for state feedback control is a
state estimator (observer) that reconstructs the system states
of the dynamic model using a small number of measurements.
As computational efficiency is critical in real-time control,
lower-fidelity models are proposed to be used. In this work,
WindFarmObserver (WFObs) is introduced, which is a state
estimator relying on the WindFarmSimulator (WFSim) model
and an Ensemble Kalman Filter (EnKF). The states of WFSim
form the two dimensional flow field in a wind farm. In WFObs,
WFSim models large scale wake dynamics, while smaller scale
and stochastic effects (often neglected by current models) can
be picked up by sensors and incorporated using the EnKF.
WFObs is tested in a two-turbine setup using a high fidelity
simulation model. With a realistic sensor setup where only 1.1%
of the to-be-estimated states are measured, WFObs reduces the
rms error by 21% compared to open-loop simulation, at a low
computational cost of 0.76 s. As WFObs is sampled at 1 Hz,
this readily allows real-time closed-loop wind farm control.

I. INTRODUCTION

Currently, wind turbines in a wind farm are often operated
following a greedy control approach. In other words, the con-
trol settings of wind turbines are optimized on an individual
level for power capture and structural loads, while neglecting
coupling with other turbines in the farm [1]. However,
dynamic coupling between turbines is very much present due
to the development of turbulent wind flow wakes. Namely, as
energy is extracted from a flow by a turbine, the downstream
flow has a decreased flow speed and increased turbulence
intensity. In result, wind turbines experience decreased power
capture and increased structural loading when operating in
the wake of an upstream turbine [2]. Due to this coupling,
greedy control is expected to be suboptimal to methods in
which the collective power plant is considered.

Finding the collectively optimal turbine operation settings
has been done in various ways. An overview of the current
state of the art is given in [3]. Most often, wind farm control
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is done employing a simplified engineering model of the
waked flow in an open-loop (feedforward) scheme (e.g.,
[4]–[6]). The main advantage of these models is their very
low computational cost. Alternatively, control policies can be
based on measurement data without employing any form of
model in a closed-loop (feedback) scheme (e.g., [7]–[12]).
The main advantage of this approach is that, given enough
time and under constant atmospheric conditions, a (near)
global optimum can be found without the need for a model.

However, most of these methods are only tested in highly
idealized simulation or wind tunnel tests, and thus their appli-
cability remains questionable. Current model-based methods
typically neglect temporal and finer spatial flow dynamics by
relying on a simple steady-state flow model [3]. Furthermore,
model-free methods operate through online trial-and-error,
but due to large-scale temporal coupling between turbines by
wakes this optimization scheme is too slow for time-varying
atmospheric conditions [3].

A solution to these issues is model-based closed-loop
control, where both real-time measurements and an internal
flow model are used in determining a control policy. While
these measurements can be used to tune steady-state models,
dynamic models are strongly preferred to allow the crucial
inclusion of temporal wake dynamics. In this framework,
measurements are used to reconstruct the system states of
the dynamic model through the use of a state estimator, and
this state information can then be used to find a temporally
optimal control policy. This policy has potential to address
changing atmospheric conditions and unmodeled (spatial and
temporal) wake dynamics, both typically neglected in current
methods. The main challenge in this framework is the trade-
off between model accuracy and computational efficiency. As
real-time control is the objective, the summed computation
time of the state estimator and control law should be less
than the internal sampling time of the model, which is often
in the order of seconds.

The power of dynamic-model-based closed-loop control
was demonstrated in [13], in which a high-fidelity model
was used for predictive control under the assumption of
perfect state reconstruction, showing an increase in power
production of up to 16% compared to greedy control. How-
ever, iterations took 2 · 103 core-hours per control window,
which is about seven orders of magnitude too large for real
life application. This paper is therefore rather considered a
benchmark tool for more time-efficient algorithms.

In the bigger picture, the authors of this paper pursue
model-based closed-loop control in real time using time-
efficient state estimation and control algorithms employing a
medium-fidelity flow model – a novelty in wind farm control.
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In this paper, a time-efficient state estimator is designed
and tested that reconstructs the states of the flow model
WindFarmSimulator (WFSim) [14], in which the states are
the two-dimensional velocity terms and pressure terms in a
farm. This state estimator, henceforth referred to as Wind-
FarmObserver (WFObs), uses an Ensemble Kalman filter to
incorporate measurements into state estimates. These state
estimates can then be used in advanced control algorithms
such as predictive control to calculate an optimal policy.
Research on predictive control using WFSim is ongoing [15].

With respect to previous work [16], WFObs has been
improved by implementing localization and inflation for
accuracy (discussed in Section III-B), and parallelization
for computational efficiency. Furthermore, WFObs is tested
in simulation under realistic turbulence intensity, realistic
measurements, and turbine yaw-misalignment.

The outline of the paper is as follows. WFSim is briefly
explained in Section II. The Ensemble Kalman filter is
outlined in Section III. The simulation scenario and results
are discussed in Sections IV and V, respectively. We end
this paper with our conclusions.

II. FLOW MODEL
In this paper, WFObs relies on a flow model on one

hand, and (noisy) measurements on the other hand. WFSim
developed at the Delft University of Technology is employed
as the internal flow model [14]. WFSim is a medium-fidelity,
dynamic flow model based on the temporally and spatially
discretized two-dimensional Navier-Stokes equations. It pre-
dicts the 2D velocity vectors and pressure terms over a pre-
defined grid in a wind farm at discrete time instants. It relies
on momentum theory to model interactions between turbines
and their surrounding flow. In a recent paper [14], WFSim
was extended with a mixing length turbulence submodel
and yaw actuation. The model boils down to solving the
following set of dynamic equations

A(xk−1)xk = b(xk−1,qk−1) , (1)

for xk at each time instant k, with xk =
[
uT

k vT
k pT

k

]T ∈RN

the state vector containing the longitudinal velocity terms
uk, lateral velocity terms vk, and pressure terms pk in the
grid at time k, and qk ∈ RM the system input containing
the axial induction factor and yaw angle of each turbine
in the wind farm.1 Zero stress boundary conditions are
incorporated. WFSim is computationally fast by exploiting
sparsity in matrices A ∈RN×N and b ∈RN . Model validation
was performed previously for a two-turbine case in a low
turbulence flow with high-fidelity simulation data in [17].

Since real-time control is the objective, computational
efficiency is important. As WFSim is a nonlinear model
with typically N ≥ 103 states, the issue of computational
cost is nontrivial. This is one of the main motivations for
the Ensemble Kalman filter, described next.

1The axial induction factor is a theoretical measure of energy extraction
for a wind turbine derived from momentum theory.

III. ENSEMBLE KALMAN FILTERING

An Ensemble Kalman filter (EnKF) is employed in
WFObs. The EnKF is a variant of the Kalman filter (KF)
where the covariance matrices are represented by a finite
sample covariance. In the literature, it has typically been ap-
plied to high-order systems derived from partial differential
equations for system state reconstruction using relatively few
measurements. In comparison to the regular KF, the EnKF
can be applied to nonlinear systems without the need for lin-
earization, and furthermore can be orders of magnitude faster
in computation time for large systems by approximating its
covariance matrices through a small number of samples [18].

A. Traditional Implementation

In this section, the key steps of the EnKF are described.
Let us first define ψ i

k|ℓ ∈ RN as an ensemble member with
i ∈ {1,2, . . . ,Ne} ⊂ N, and Ne the total number of ensemble
members. Each ensemble member is a hypothesis to the true
system state vector xk with information up until time ℓ. In this
paper, the measurement vector yℓ ∈RO, with O the number of
measurements, is a subset of the state vector xℓ: we measure
the longitudinal and lateral velocity at a small number of
points in the wind field. Consequently, the mapping from xℓ
to yℓ is linear and described by yℓ = Hxℓ, where H ∈ RO×N

is a time-invariant matrix consisting of zeros and ones.2

To start the algorithm, the EnKF is initialized by distribut-
ing all Ne ensemble members around an initial state estimate
x̃0 ∈ RN , with x̃T

0 =
[
ũT

0 ṽT
0 p̃T

0

]
. Thus, each ensemble

member ψ i
0|0 is initialized at x̃0 and summed with artificial

noise ξ i
0 ∈ RN , where ξ i

0 has a uniform probability distribu-
tion U (−W,W ). Entries of W can be different depending on
whether they correspond to u, v or p.[

ψ1
0|0 · · · ψNe

0|0

]
︸ ︷︷ ︸

Ψ0|0 ∈ RN×Ne

=
[
x̃0 · · · x̃0

]
+
[
ξ 1

0 · · · ξ Ne
0

]
. (2)

W can be compared to the initial state error covariance matrix
P0 in the regular KF. The matrix Ψk|ℓ ∈RN×Ne is defined as
the full ensemble, with column i corresponding to ψ i

k|ℓ.
Now, in the first step of each iteration, each ensemble

member ψ i
k−1|k−1 is propagated forward in time according

to (1) and summed with artificial process noise ε i
k ∈ RN , as

ψ i
k|k−1 = A(ψ i

k−1|k−1)
−1b(ψ i

k−1|k−1,qk−1)+ ε i
k. (3)

In this paper, process noise ε i
k ∈ RN is assumed to be white

noise with Gaussian distribution N (0,Q). Further, similar
to W , Q can have different values for u, v and p.

In the second step, a measurement ensemble Dk ∈ RO×Ne

is calculated based on the newly acquired measurements yk
summed with artificial measurement noise µ i

k ∈ RO.

Dk =
[
yk +µ1

k · · · yk +µNe
k

]
, (4)

where µ i
k ∈ RO is white noise with distribution N (0,R).

2While the EnKF equations presented here are for a linear state-output
relationship, they can be generalized for nonlinear state-output relationships.
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In the third step, the ensemble members are updated
using this measurement ensemble Dk. In this step, first, the
deviation of each individual ensemble member to the average
of all members Ψ⋆

k|k−1 ∈ RN×Ne is found by

Ψ⋆
k|k−1 =

[
ψ1

k|k−1 · · · ψNe
k|k−1

]INe −
1

Ne

1 · · · 1
...

. . .
...

1 · · · 1


 ,

(5)
with INe ∈ RNe×Ne the identity matrix. Then, the analysis
update of the EnKF is described by

Ψk|k = Ψk|k−1 +(Ne −1)P∗
k|k−1HT

((
HΨ⋆

k|k−1

)(
HΨ⋆

k|k−1

)T

+
[
µ1

k · · · µNe
k

] (µ1
k )

T

...
(µNe

k )T




−1 (
Dk −HΨk|k−1

)
, (6)

where P∗
k|k−1 ∈ RN×N is the predicted sample-based state

error covariance matrix, calculated from Ψ∗
k|k−1 as

P∗
k|k−1 =

1
Ne −1

(
Ψ⋆

k|k−1

)(
Ψ⋆

k|k−1

)T
. (7)

Since the covariance matrix is based on a finite number of
ensemble members, it is a sample-based approximation of
the true covariance matrix Pk|k−1 of the regular KF.

Finally, the optimal estimate x̃k ∈ RN of the true state
vector xk is calculated from the ensemble by taking the
column-wise average of Ψk|k.

B. Localization and Inflation

While the EnKF has shown great potential in the litera-
ture, key issues such as inbreeding and long-range spurious
correlations often spoil performance, caused by employing
too small of an ensemble [19].

Inbreeding is typically defined as the situation where the
error covariance matrices P∗

k|k−1 are systematically underes-
timated, leading to state estimates that incorrectly rely more
on the internal flow model. A common method to address
inbreeding is inflation, in which P∗

k|k−1 is multiplied by a
constant inflation factor r at each iteration, with r typically
between 1.01 and 1.20.

Long-range spurious correlations are incorrect links be-
tween measurements and states caused by sample covari-
ances that insufficiently represent the true covariances. This
leads to certain states being updated based on completely
unrelated measurements. To deal with this, localization can
be applied. Note that entries of P∗

k|k−1 define the correlation
between two states, which in our case correspond to flow
velocities or pressures at physical locations in the wind farm.
This information can be used to improve the sample based
estimates of the covariance matrix. The correlations with
physically nearby states are increased and with far away
states are decreased, thereby mitigating incorrect coupling
between measurements and states. Typically, Gaspari-Cohn’s

fifth-order polynomial function [20] is used for localization,
given by

κ(c) =



−1
4

c5 +
1
2

c4 +
5
8

c3 − 5
3

c2 +1, if 0 ≤ c ≤ 1

− 1
12

c5 − 1
2

c4 +
5
8

c3 +
5
3

c2

−5c+4− 2
3

1
c
,

if 1 < c ≤ 2

0, otherwise
(8)

in which c = ∆L
z , with z the cut-off length after which

correlation between states should be 0, and ∆L ≥ 0 the
physical distance between two grid points. For each combi-
nation of states (8) is calculated and collected in κ ∈RN×N .
Localization is enforced at each iteration by taking the
Hadamard product of κ and P∗

k|k−1.
Implementing inflation and localization in the EnKF algo-

rithm, (7) is replaced by

P∗
k|k−1 = r ·κ ◦

(
1

Ne −1

(
Ψ⋆

k|k−1

)(
Ψ⋆

k|k−1

)T
)
, (9)

where ◦ represents the Hadamard product.

IV. SIMULATION SETUP

In Section V, the performance of WFObs will be assessed
using high-fidelity simulation data. Firstly, this high-fidelity
model is discussed in Section IV-A. Secondly, the wind farm
topology, its spatial discretization, and the sensor (measure-
ment) locations are described in Section IV-B. Thirdly, tuning
of WFObs is described in Section IV-C.

A. Simulator for Onshore/Offshore Wind Farm Applications

To analyze the performance of WFObs, the Simulator
for Onshore/Offshore Wind Farm Applications (SOWFA)
[21] is employed as the “real” wind farm, from which
measurements are obtained, and of which the flow fields are
to be estimated. SOWFA is a software package developed
by the National Renewable Energy Laboratory (NREL) that
simulates flow and turbine dynamics in a wind farm at high
accuracy. It relies on the three-dimensional Navier-Stokes
equations, accounting for bouyancy and Coriolis effects [22].
More specifically, it employs a large-eddy simulation (LES)
in which large scale dynamics are resolved directly and
smaller scale dynamics are resolved using subgrid models
to reduce computational cost. SOWFA is coupled with the
FAST code for turbine modeling, in which rotating actuator
line models are used to calculate the interactions between
the turbine rotor and the flow [23]. FAST also calculates
the turbine’s generated power, component dynamics, and
mechanical loading at multiple locations in the structure.

B. Topology, Meshing and Sensor Placement

A simulation with two NREL 5-MW turbines [24] in
a turbulent atmosphere is performed in SOWFA, in which

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2017 American Control Conference.
Received September 19, 2016.



the flow is excited by yawing the upstream turbine. Three-
dimensional flow fields at an increasing mesh resolution near
the turbines are obtained at a sampling rate of 50 Hz. The
size of grid cells varies from 3.00 m×3.00 m×3.02 m near
the turbines, to 6.00 m × 6.00 m × 6.03 m, to 12.00 m ×
12.00 m×12.05 m on the outer parts of the domain.

At each discrete time instant of WFObs (sampled at 1 Hz),
a horizontal slice at hub height is extracted from the raw
SOWFA data. The data is remeshed onto the grid used in
WFObs. This grid contains cells of constant size 50.65 m×
58.33 m, in a domain of 2482 m×1400 m. The turbines are
located at (400 m,700 m) and (1281.97 m,700 m), respec-
tively. The grid, and WFSim boundary condition, turbine,
and sensor locations for the longitudinal velocities u are
displayed in Fig. 1. Those for v look very much alike, and
are therefore not displayed. Pressures are not measured.
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Fig. 1. Grid, and BC, turbine, and sensor locations for u

Zero stress boundary conditions (BCs) are present in the
north, south, and east of the grid. This meshing results in
a total of N = 3239 states. There are a total of O = 36
measurements (1.1% of the states), of which 20 in u and
16 in v. The same states are measured at each time instant,
additionally disturbed with artificial noise with distribution
N (0,0.10) m/s. The number and location of measurements
and the noise level are achievable with current lidar stan-
dards, a state-of-the-art technology for remote sensing [25],
[26].

C. Model and Observer Tuning

Firstly, the WFSim model parameters were tuned in ab-
sence of the EnKF, as displayed in Table I. These are the
free-stream flow speed u0 and v0, the dynamic viscosity µd ,
and air density ρ , respectively. The latter two are optimized
individually according to a grid search (GS) algorithm. While
a turbulence model is included in WFSim, it was not used as
similar effects can be produced by manipulating µd . While
µd is unrealistically high in Table I, similar trends can be
noticed in the literature (e.g., [27]), and are a result of our
choice to use µd as a tuning parameter for wake recovery,
instead of using a turbulence model for this purpose.

Secondly, a sequential grid search (SGS) was performed
on the EnKF in which sets of 2-4 parameters were optimized
in sequence. The resulting set of optimal parameters are
displayed in Table II. The order of optimization and pairs in

TABLE I
ATMOSPHERIC SETTINGS USED IN WFSIM

Variable SOWFA WFSim Method
u0 +8.00±0.42 m/s 8.00 m/s Prior knowledge
v0 −0.02±0.31 m/s 0.00 m/s Prior knowledge
µd Unknown 1.0 ·102 Pa·s Individual GS
ρ Unknown 1.2 kg·m3 Individual GS

the SGS can be seen in the third column of Table II. The SGS
optimization was broken down in iterations of 3 individual
optimizations of 2−4 parameters each. Optimality is defined
as the minimum averaged root-mean-square (rms) error be-
tween the true (SOWFA) and estimated (WFSim/WFObs)
flow fields over a 1000 s simulation. Further, Ne ≤ 60 was
enforced to maintain low computational cost.

TABLE II
OPTIMAL PARAMETERS FOR WFOBS

Variable WFObs Optimized in...
Qu 0.08 m/s SGS step 1
Qv 0.02 m/s SGS step 1
R 0.10 m/s SGS step 1
Ne 50 SGS step 2
Wu 0.90 m/s SGS step 2
Wv 0.30 m/s SGS step 2
r 1.025 SGS step 3
z 131 m SGS step 3

During the SGS, it was found that Qp and Wp can be
chosen arbitrarily without affecting the quantities of interest
u and v, and they are therefore omitted from Table II.
This is a direct consequence of the WFSim model, which
calculates p as a function of u and v, but not vice-versa.

V. SIMULATION RESULTS
Both WFSim (individually) and WFObs (WFSim+EnKF)

are simulated for 1000 seconds with the topology and
meshing according to Fig. 1, and atmospheric parameters
as depicted in Table I. The flow is excited by switching the
upstream turbine’s yaw angle between 0◦ and 20◦ (coun-
terclockwise in Fig. 1) following a pseudo-random binary
signal. Furthermore, the parameters for the EnKF in WFObs
are given in Table II. Perturbed measurements at the sensor
locations from SOWFA are fed into WFObs in pursuit of
improving the flow field estimations compared to using
solely WFSim. The true flow fields given by SOWFA and
the estimated flow fields given by WFSim and WFObs for
time instants t = 370 s and t = 830 s are displayed in Fig. 2.

From the fourth and fifth column of subplots in Fig. 2,
notice the significant reduction in estimation error when
comparing WFSim to WFObs. The largest error arises in the
wake of turbine 2, which contains complex dynamics. Fur-
ther, the wake dynamics downstream of turbine 2 are strongly
dependent on the operation settings of both turbines. The
EnKF corrects for flow dynamics found in SOWFA which
are not modeled in WFSim. Namely, WFSim overestimates
the wake depth and underestimates wake recovery, which are
both significantly improved in WFObs. Furthermore, the
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Fig. 2. Estimations of the flow field for t = 370 s and t = 830 s by WFSim and WFObs in m/s. SOWFA is assumed to be the true wind farm of
which the flow properties are estimated. WFSim provides estimations solely by iterating from a set of initial conditions, while WFObs additionally takes
measurements of the true flow field into account. A significant improvement is shown in WFObs, even while only 1.1% of the system outputs are available
as measurements. The average root-mean-square error with SOWFA decreased from 0.638 m/s for WFSim to 0.504 m/s for WFObs. Note that a large part
of the flow is uniform, which suppresses the value of quantitative improvement.

wake behind a turbine is typically not a cone-shaped structure
as predicted by momentum theory, since the wake is often
much weaker behind the turbine hub. This can be seen from
the SOWFA data in Fig. 2, shortly downstream of turbine 1
(and somewhat behind turbine 2). The measurements allow
WFObs to correct for these unmodeled flow dynamics.

Furthermore, the impact of localization and inflation as a
function of the ensemble size Ne is demonstrated in Fig. 3.
For these simulations, the tuning parameters did not change
from Tables I and II. In Fig. 3 it is seen that incorrect
coupling between measurements and states becomes increas-
ingly present for smaller ensemble sizes, leading to poor
performance. This problem is mitigated with localization.
Furthermore, the performance of WFObs with localization
and inflation is much more robust. For example, for Ne = 20
the algorithm without localization and inflation diverges,
while good performance is achieved consistently if localiza-
tion and inflation are applied. Actually, the EnKF requires
Ne ≥ 2 · 102 to achieve satisfactory performance in absence
of localization and inflation. Another benefit of localization
is the reduction in computation time, which originates both
from a reduction in the required ensemble size Ne, and a
reduction in the number of floating point operations for

a fixed Ne, as localization enforces a sparsification of the
covariance matrices.

Finally, with computational cost being an invaluable factor
in WFObs, the time per iteration comparing WFSim and
WFObs is displayed in Table III.

TABLE III
COMPUTATIONAL COST PER ITERATION IN SECONDS

N O Ne time (s)
WFSim 3239 N.A. N.A. 0.06
WFObs 3239 36 50 0.76

Note that WFObs has to evaluate (1) Ne times per iteration,
yet the computational cost does not scale with Ne. This is due
to parallelization in the EnKF algorithm where multiple cores
are used simultaneously, as the simulation was performed
on a quad-core Intel i5-4460 desktop CPU. Furthermore,
the EnKF was compared to the regular KF in previous
work [16], showing a reduction of computational cost by
a factor of 102 − 103, while yielding higher reconstruction
accuracy. Finally, since WFObs is sampled at 1 Hz and the
computational time is less than 1 s, this algorithm readily
allows real-time closed-loop control.
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Fig. 3. Effects of localization and inflation on state estimation accuracy
and computational cost. It can be seen that localization and inflation do not
only significantly improve state estimation for a low number of ensemble
members, they also reduce computational cost. Noticeably, for Ne = 20,
the estimator even diverges in the absence of localization, while constant
performance is achieved with localization and inflation.

VI. CONCLUSIONS
In this work, the EnKF in WFObs was extended with

localization, inflation, and parallelization. furthermore,
WFObs was tested at a higher level of realism using high-
fidelity simulation data by incorporating turbulent flows
and turbine yaw. Simulation results showed a reduction
in root-mean-square error of 21% compared to open-loop
simulation while requiring a low computational cost of
0.76 s. Noticeably, WFObs is able to correct for unmodeled
flow dynamics such as turbine hub effects and increased
wake recovery. WFObs is an essential building block
and a first major step towards real-time closed-loop wind
farm control using a dynamic model, which appears to
be a very promising and novel concept in wind farm control.
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