
Equations 1.2 Reference Manual

Matthieu Sozeau

March 21, 2019

Introduction

Equations is a toolbox built as a plugin on top of the Coq proof assistant to
program and reason on programs defined by full dependent pattern-matching
and well-founded recursion. While the primitive core calculus of Coq allows
definitions by simple pattern-matching on inductive families and structural re-
cursion, Equations extends the set of easily definable constants by allowing a
richer form of pattern-matching and arbitrarily complex recursion schemes. It
can be thought of as a twin of the Function package for Isabelle that imple-
ments a definitional translation from partial, well-founded recursive functions
to the HOL core logic. See ? for an overview of tools for defining recursive
definitions in interactive proof assistants like (Coq, Agda or Isabelle).

The first version of the tool was described in ?, the most recent one is de-
scribed in ?. This manual provides a documentation of the plugin commands
(chapter 1) followed by a tutorial using basic examples (chapter 2). More elabo-
rate examples are available at http://mattam82.github.io/Coq-Equations/
examples.

This manual describes version 1.2 of the package.

Installation
Equations is available through the opam1 package manager as package coq-equations.
To install it on an already existing opam installation with the Coq repository,
simply input the command:

opam install coq-equations

The development version and detailed installation instructions are available
at http://mattam82.github.io/Coq-Equations.

1http://opam.ocaml.org

1

http://mattam82.github.io/Coq-Equations/examples
http://mattam82.github.io/Coq-Equations/examples
http://mattam82.github.io/Coq-Equations
http://opam.ocaml.org

Contents

1 Manual 3
1.1 The Equations Vernacular . 3

1.1.1 Syntax of programs . 3
1.1.2 Generated definitions . 4
1.1.3 Logic parameterization . 5
1.1.4 Local Options . 5
1.1.5 Global Options . 6

1.2 Derive . 7
1.3 dependent elimination . 8
1.4 simp . 8
1.5 Functional elimination . 8

2 A gentle introduction to Equations 10
2.1 Inductive types . 10
2.2 Reasoning principles . 11
2.3 Building up . 11

2.3.1 Polymorphism . 11
2.3.2 Recursive inductive types 12
2.3.3 Moving to the left . 12

2.4 Dependent types . 13
2.4.1 Inductive families . 14
2.4.2 Derived notions, No-Confusion 16
2.4.3 Unification and indexed datatypes 16
2.4.4 Recursion . 17

Bibliography 19

2

Chapter 1

Manual

1.1 The Equations Vernacular

1.1.1 Syntax of programs

In the grammar, −→t denotes a possibly empty list of t, −→t
+

a non-empty list.
Concrete syntax is in typewriter font. The syntax allows the definition of

term, type t, τ ::= x | λx : τ, t, R | ∀x : τ, τ ′ | λ{
−−−−→−→up := t

+

} · · ·
binding d ::= (x : τ) | (x := t : τ)
context Γ,∆ ::=

−→
d

programs progs ::= prog
−−−−−→
mutual.

mutual programs mutual ::= with p | where
where clause where ::= where p | where not
notation not ::= ”string” := t (: scope)?
program p, prog ::= f Γ : τ (by annot)? := clauses
annotation annot ::= struct x? | wf t R?

user clauses clauses ::=
−→
cl

+
| {
−→
cl }

user clause cl ::= f −→up n? ; |
−−→
| up

+
n? ;

user pattern up ::= x | | C −→up | ?(t) | !
user node n ::= := t

−−−−→
where | with t −→, t := clauses

Figure 1.1: Definitions and user clauses

toplevel mutual (with) and nested (where) structurally recursive definitions.
Notations can be used globally to attach a syntax to a recursive definition, or
locally inside a user node. A single program is given as a tuple of a (globally
fresh) identifier, a signature and a list of user clauses (order matters), along with
an optional recursion annotation (see next section). The signature is simply a
list of bindings and a result type. The expected type of the function f is then

3

∀ Γ, τ . An empty set of clauses denotes that one of the variables has an empty
type.

Each user clause comprises a list of patterns that will match the bindings Γ
and an optional right hand side. Patterns can be named or anonymous variables,
constructors applied to patterns, the inaccessible pattern ?(t) (a.k.a. "dot"
pattern in Agda) or the empty pattern ! indicating a variable has empty type
(in this case only, the right hand side must be absent). Patterns are parsed using
Coq’s regular term parser, so any term with implicit arguments and notations
which desugars to this syntax is also allowed.

A right hand side can either be a program node returning a term t potentially
relying on auxiliary definitions through local where clauses, or a with node.
Local where clauses can be used to define nested programs, as in Haskell or
Agda, or local notations. They depend on the lexical scope of the enclosing
program. As programs, they can be recursive definitions themselves and depend
on previous where clauses as well: they will be elaborated to dependent let
bindings. The syntax permits the use of curly braces around a list of clauses to
allow disambiguation of the scope of where and with clauses. The λ{ syntax
(using a unicode lambda attached to a curly brace) extends Coq’s term syntax
with pattern-matching lambdas, which are elaborated to local where clauses.
A local with t node essentialy desugars to a program node with a local where
clause taking all the enclosing context as arguments plus a new argument for
the term t, and whose clauses are the clauses of the with. The with construct
can be nested also by giving multiple terms, in which case the clauses should
refine a new problem with as many new patterns.

1.1.2 Generated definitions
Upon the completion of an Equations definition, a few supporting lemmas are
generated.

Equations

Each compiled clause of the program or one of its subprograms defined im-
plicitely by with or explicitely by where nodes gives rise to an equation. Note
that the clauses correspond to the program’s splitting tree, i.e. to the expansion
of pattern-matchings, so a single source clause catching multiple cases can cor-
respond to multiple equations. All of these equations are registered as hints in a
rewrite hint database named f, which can be used by the simp or autorewrite
tactic afterwards. The simp f tactic is just an alias to autorewrite with f .
The equation lemmas are named after the position they appear in in the pro-
gram, and are of the form f clause n equation k.

In case the program is well-founded, Equations first generates an unfolded
definition named f unfold corresponding to the 1-unfolding of the recursive def-
inition and shows that it is extensionally equal to f. This unfolding equation
is used to generate the equations associated to f, which might also refer to the
unfolded versions of subprograms. Well-founded recursive definitions can hence

4

generate a set of equations that is not terminating as an unconditional rewrite
system.

Elimination principle

Equations also automatically generates a mutually-inductive relation corre-
sponding to the graph of the programs, whose first inductive is named f ind. It
automatically shows that the functions respects their graphs (lemma f ind fun)
and derives from this proof an elimination principle named f elim. This elim-
inator can be used directly using the apply tactic to prove goals involving a
call to the function(s). One has to provide predicates for each of the toplevel
programs and the where subprograms (with subprograms’s predicates follow
from their enclosing programs).

In case the program has a single predicate, one can use the funelim call
tactic to launch the elimination by specifying which call of the goal should be
used as the elimination target. A most general predicate is inferred in this case.

1.1.3 Logic parameterization
Equations comes with two possible instances of its library, one where equality is
Coq’s standard equality eq in Prop and another where equality is proof-relevant
and defined in Type. The first can be used simply by requiring Equations.Equations,
while the later can be used by requiring Equations.Type.All instead. The
two libraries are qualified by the Equations.Prop and Equations.Type pre-
fixes. When refering to classes in the following, one can find their defini-
tion in the respective prefix. In other words, Classes.EqDec might refer to
Equations.Prop.Classes.EqDEc or Equations.Type.Classes.EqDEc depending on the
logic used.

1.1.4 Local Options
The Equations command takes a few options using the syntax

Equations(opts) f . . .

• noind: Do not generate the inductive graph of the function and the derived
eliminator.

• noeqns: Do not generate the equations correponding to the (expanded)
clauses of the program. This implies noind.

One can use the Equations? syntax to use the interactive proof mode
instead of obligations to resolve holes in the term or obligations comming from
well-founded recursive definitions. BEWARE that the use of the abstract
tactical is not well-supported in this mode.

5

1.1.5 Global Options
The Equations command obeys a few global options:

• Equations Transparent: governs the opacity of definitions generated by
Equations. By default this is off and means that definitions are declared
opaque for reduction, avoiding spurious unfoldings when using the simpl
tactic for example. The simp c tactic is favored in this case to do simpli-
fications using the equations generated for c.

• Equations With Funext (since v1.2): governs the use of the functional
extensionality axiom to prove the unfolding lemma of well-founded def-
initions, which requires extensionality of the functional. By default on.
When this flag is off, the unfolding lemmas of well-founded definitions
might fail to be proven automatically and be left to the user as an obliga-
tion. To prove this obligation, the user is encouraged to use the Equations.Init.unfold recursor
tactic to help solve goals of the form

FixWf x f = f unfold x

.

• Equations With UIP (since v1.2): governs the use of instances of Classes.UIP
derived by the user, or automatically from instances of the decidable equal-
ity class Classes.EqDec. By default off. When switched on, equations
will look for an instance of UIP when solving equalities of the form

∀(e : x = x :> A), P e

, i.e. to apply the deletion rule to such equations, or to unify indices of
constructors for inductive families without a NoConfusionHom instance.
It will report an error if it cannot find any. Note that when this option is
on, the computational behavior of Equations definitions on open terms
does not follow the clauses: it might block on the uip proof (for example
if it is a decidable equality test). The rewriting equations and functional
elimination principle can still be derived though and are the prefered way
to reason on the definition.

• Equations WithK DEPRECATED. Use With UIP and declare your own
version of the UIP axiom as a typeclass instance. Governs the use of the
K axiom. By default off. The computational behavior of definitions using
axioms changes entirely: their reduction will get stuck even on closed
terms. It is advised to keep such definitions opaque and use the derived
rewriting equations and functional elimination principle to reason on them.

• Equations Derive Equations (since v1.2) This sets the default for the
generation of equations, governed by the local eqns/noeqns flags.

• Equations Derive Eliminator (since v1.2) This sets the default for the
generation of the graph and functional elimination principle associated to
a definition, governed locally by the ind/noind flags.

6

1.2 Derive
Equations comes with a suite of deriving commands that take inductive fam-
ilies and generate definitions based on them. The common syntax for these
is:

Derive C1 . . .Cn for ind1 . . . indn.

Which will try to generate an instance of type class C on inductive type Ind.
We assume indi : Π∆.s. The derivations provided by Equations are:

• DependentEliminationPackage: generates the dependent elimination prin-
ciple for the given inductive type, which can differ from the standard one
generated by Coq. It derives an instance of the class

DepElim.DependentEliminationPackage.

• Signature: generate the signature of the inductive, as a sigma type packing
the indices ∆ (again as a sigma type) and an object of the inductive type.
This is used to produce homogeneous constructions on inductive families,
by working on their packed version (total space in HoTT lingo). It derives
an instances of the class Equations.Signature.Signature.

• NoConfusion: generate the no-confusion principle for the given family, as
an heterogeneous relation. It embodies the discrimination and injectivity
principles for the total space of the given inductive family: i.e. Σ∆, I Γ ∆
for a family I : ∀Γ,∆ → Type where Γ are (uniform) parameters of the
inductive and ∆ its indices.

It derives an instance of the class Classew.NoConfusionPackage.

• NoConfusionHom: generate the homogeneous no-confusion principle for
the given family, which embodies the discrimination and injectivity princi-
ples for (non-propositional) inductive types. This principle can be derived
if and only if the no-confusion property on the inductive family instance re-
duces to equality of the non-forced arguments of the constructors. In case
of success it generates an instance of the class Classes.NoConfusionPackage
for the type I ∆ Γ applicable to equalities of two objects in the same in-
stance of the family I.

• EqDec This derives a decidable equality on C, assuming decidable equality
instances for the parameters and supposing any primitive inductive type
used in the definition also has decidable equality. If successful it generates
an instance of the class (in Classes.EqDec):

Class EqDec (A : Type) :=
eq_dec : forall x y : A, { x = y } + { x <> y }.

7

• Subterm: this generates the direct subterm relation for the inductive
(asuming it is in Set or Type) as an inductive family. It then derives
the well-foundedness of this relation and wraps it as an homogeneous re-
lation on the signature of the datatype (in case it is indexed). These
relations can be used with the by wf clause of equations. It derives an
instance of the class Classes.WellFounded.

1.3 dependent elimination

The dependent elimination tactic can be used to do dependent pattern-
matching during a proof, using the same engine as Equations.

Its syntax is:

dependent elimination ident as [up | .. | up].

It takes a list of patterns (see figure 1.1) that should cover the type of ident
and generates the corresponding subgoals.

1.4 simp

The simp f1 . . . fn tactic is an alias to

autorewrite with f1 . . . fn;
try typeclasses eauto with Below subterm relation f1 . . . fn

It can be used to simplify goals involving equations definitions f1 . . . fn, by
rewriting with the equations declared for the constants in the associated rewrite
hint database and trying to solve the goal using the hints declared in the asso-
ciated “auto” hint database, both named f.

1.5 Functional elimination
The funelim t tactic can be used to launch a functional elimination proof on
a call t of an Equations-defined function t = f args (the eliminator is named
f elim). By default, it will generalize the goal by an equality betwee f args
and a fresh call to the function f args’, keeping information about initial
arguments of the function before doing elimination. This ensures that subgoals
do not become unprovable due to generalization. This might produce complex
induction hypotheses that are guarded by dependent equalities between the
initial arguments and the recursive call arguments. These can be simplified
by instantiating the induction hypotheses sufficiently and providing reflexive
equality proofs to instantiate the equalities.

A variant apply funelim t simply applies the eliminator without general-
ization, avoiding the generation of (dependent) equalities. Note that in this case
(as when using Coq’s built-in induction tactic) one may have to explicitely

8

generalize the goal by equalities (e.g. using the remember tactic) if the function
call being eliminated is not made of distinct variables, otherwise it can produce
unprovable subgoals.

Finally, for mutual or nested programs, no automation is provided yet. The
user has to invoke the functional elimination directly, e.g. using

eapply (f elim P1 . . . Pn)

providing predicates for each of the nested or mutual function definitions in f
(use About f elim to figure out the predicates to be provided).

9

Chapter 2

A gentle introduction to
Equations

The source of this chapter that can be run in Coq with Equations installed is
available at:

https://raw.githubusercontent.com/mattam82/Coq-Equations/master/
doc/equations_intro.v

Equations is a plugin for ? that comes with a few support modules defining
classes and tactics for running it. We will introduce its main features through
a handful of examples. We start our Coq primer session by importing the
Equations module.

Require Import Arith Omega Program.
From Equations Require Import Equations.

2.1 Inductive types
In its simplest form, Equations allows to define functions on inductive datatypes.
Take for example the booleans defined as an inductive type with two construc-
tors true and false:

Inductive bool : Set := true : bool | false : bool

We can define the boolean negation as follows:

Equations neg (b : bool) : bool :=
neg true := false ;
neg false := true.

Equations declarations are formed by a signature definition and a set of
clauses that must form a covering of this signature. The compiler is then ex-
pected to automatically find a corresponding case-splitting tree that implements
the function. In this case, it simply needs to split on the single variable b to
produce two new programming problems neg true and neg false that are directly

10

https://raw.githubusercontent.com/mattam82/Coq-Equations/master/doc/equations_intro.v
https://raw.githubusercontent.com/mattam82/Coq-Equations/master/doc/equations_intro.v
.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Arith.Arith
.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.omega.Omega
.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Program.Program
true.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
false.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
bool.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
true.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
bool.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
false.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
bool.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
bool.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
bool.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
true.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
false.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
false.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
true.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
true.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
false.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes

handled by the user clauses. We will see in more complex examples that this
search for a splitting tree may be non-trivial.

2.2 Reasoning principles
In the setting of a proof assistant like Coq, we need not only the ability to define
complex functions but also get good reasoning support for them. Practically,
this translates to the ability to simplify applications of functions appearing in
the goal and to give strong enough proof principles for (recursive) definitions.

Equations provides this through an automatic generation of proofs related
to the function. Namely, each defining equation gives rise to a lemma stating
the equality between the left and right hand sides. These equations can be used
as rewrite rules for simplification during proofs, without having to rely on the
fragile simplifications implemented by raw reduction. We can also generate the
inductive graph of any Equations definition, giving the strongest elimination
principle on the function.

I.e., for neg the inductive graph is defined as:

Inductive neg ind : bool → bool → Prop :=
| neg ind equation 1 : neg ind true false
| neg ind equation 2 : neg ind false true

Along with a proof of Π b, neg ind b (neg b), we can eliminate any call to
neg specializing its argument and result in a single command. Suppose we want
to show that neg is involutive for example, our goal will look like:

b : bool
============================
neg (neg b) = b

An application of the tactic funelim (neg b) will produce two goals corre-
sponding to the splitting done in neg: neg false = true and neg true = false.
These correspond exactly to the rewriting lemmas generated for neg.

In the following sections we will show how these ideas generalize to more
complex types and definitions involving dependencies, overlapping clauses and
recursion.

2.3 Building up

2.3.1 Polymorphism
Coq’s inductive types can be parameterized by types, giving polymorphic datatypes.
For example the list datatype is defined as:

Inductive list {A} : Type := nil : list | cons : A → list → list.

Arguments list : clear implicits.
Notation "x :: l" := (cons x l).

11

bool.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
bool.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
true.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
false.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
false.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
true.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
bool.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
false.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
true.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
true.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
false.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
::type scope:x '->' x.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Logic
::type scope:x '->' x.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Logic

No special support for polymorphism is needed, as type arguments are
treated like regular arguments in dependent type theories. Note however that
one cannot match on type arguments, there is no intensional type analysis. We
can write the polymorphic tail function as follows:

Equations tail {A} (l : list A) : list A :=
tail nil := nil ;
tail (cons a v) := v .

Note that the argument {A} is declared implicit and must hence be omitted
in the defining clauses. In each of the branches it is named A. To specify it
explicitely one can use the syntax (A:=B), renaming that implicit argument to
B in this particular case

2.3.2 Recursive inductive types
Of course with inductive types comes recursion. Coq accepts a subset of the
structurally recursive definitions by default (it is incomplete due to its syntactic
nature). We will use this as a first step towards a more robust treatment of
recursion via well-founded relations. A classical example is list concatenation:

Equations app {A} (l l’ : list A) : list A :=
app nil l’ := l’ ;
app (cons a l) l’ := cons a (app l l’).

Recursive definitions like app can be unfolded easily so proving the equations
as rewrite rules is direct. The induction principle associated to this definition
is more interesting however. We can derive from it the following elimination
principle for calls to app:

app elim :
∀ P : ∀ (A : Type) (l l’ : list A), list A → Prop,
(∀ (A : Type) (l’ : list A), P A nil l’ l’) →
(∀ (A : Type) (a : A) (l l’ : list A),
P A l l’ (app l l’) → P A (a :: l) l’ (a :: app l l’)) →
∀ (A : Type) (l l’ : list A), P A l l’ (app l l’)

Using this eliminator, we can write proofs exactly following the structure
of the function definition, instead of redoing the splitting by hand. This idea
is already present in the Function package ? that derives induction principles
from function definitions.

2.3.3 Moving to the left
The structure of real programs is richer than a simple case tree on the origi-
nal arguments in general. In the course of a computation, we might want to
scrutinize intermediate results (e.g. coming from function calls) to produce an
answer. This literally means adding a new pattern to the left of our equations
made available for further refinement. This concept is know as with clauses in

12

the Agda ? community and was first presented and implemented in the Epigram
language ?.

The compilation of with clauses and its treatment for generating equations
and the induction principle are quite involved in the presence of dependencies,
but the basic idea is to add a new case analysis to the program. To compute the
type of the new subprogram, we actually abstract the discriminee term from the
expected type of the clause, so that the type can get refined in the subprogram.
In the non-dependent case this does not change anything though.

Each with node generates an auxiliary definition from the clauses in the curly
brackets, taking the additional object as argument. The equation for the with
node will simply be an indirection to the auxiliary definition and simplification
will continue as usual with the auxiliary definition’s rewrite rules.

Equations filter {A} (l : list A) (p : A → bool) : list A :=
filter nil p := nil ;
filter (cons a l) p with p a ⇒ {
filter (cons a l) p true := a :: filter l p ;
filter (cons a l) p false := filter l p }.

By default, equations makes definitions opaque after definition, to avoid
spurious unfoldings, but this can be reverted on a case by case basis, or using
the global Set Equations Transparent option. Global Transparent filter.

A common use of with clauses is to scrutinize recursive results like the fol-
lowing:

Equations unzip {A B} (l : list (A × B)) : list A × list B :=
unzip nil := (nil, nil) ;
unzip (cons p l) with unzip l ⇒ {

unzip (cons (pair a b) l) (pair la lb) := (a :: la, b :: lb) }.

The real power of with however comes when it is used with dependent types.

2.4 Dependent types
Coq supports writing dependent functions, in other words, it gives the ability
to make the results type depend on actual values, like the arguments of the
function. A simple example is given below of a function which decides the
equality of two natural numbers, returning a sum type carrying proofs of the
equality or disequality of the arguments. The sum type { A } + { B } is a
constructive variant of disjunction that can be used in programs to give at the
same time a boolean algorithmic information (are we in branch A or B) and
a logical information (a proof witness of A or B). Hence its constructors left
and right take proofs as arguments. The eq refl proof term is the single proof
of x = x (the x is generaly infered automatically).

Equations equal (n m : nat) : { n = m } + { n 6= m } :=
equal O O := left eq refl ;
equal (S n) (S m) with equal n m := {

13

::type scope:x '->' x.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Logic
bool.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
true.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
false.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
::type scope:x '*' x.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
::type scope:x '*' x.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
::core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
::core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
::core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
pair.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
pair.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
::core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
::core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
::core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
eq refl.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Logic
nat.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
::type scope:'x7B' x 'x7D' '+' 'x7B' x 'x7D'.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Specif
::type scope:x '=' x.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Logic
::type scope:'x7B' x 'x7D' '+' 'x7B' x 'x7D'.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Specif
::type scope:'x7B' x 'x7D' '+' 'x7B' x 'x7D'.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Specif
::type scope:'x7B' x 'x7D' '+' 'x7B' x 'x7D'.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Specif
::type scope:x '<>' x.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Logic
::type scope:'x7B' x 'x7D' '+' 'x7B' x 'x7D'.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Specif
O.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
O.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
left.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Specif
eq refl.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Logic
S.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
S.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes

equal (S n) (S ?(n)) (left eq refl) := left eq refl ;
equal (S n) (S m) (right p) := right } ;

equal x y := right .

Of particular interest here is the inner program refining the recursive result.
As equal n m is of type { n = m } + { n 6= m } we have two cases to consider:

• Either we are in the left p case, and we know that p is a proof of n =
m, in which case we can do a nested match on p. The result of matching
this equality proof is to unify n and m, hence the left hand side patterns
become S n and S ?(n) and the return type of this branch is refined to {
n = n } + { n 6= n }. We can easily provide a proof for the left case.

• In the right case, we mark the proof unfilled with an underscore. This will
generate an obligation for the hole, that can be filled automatically by a
predefined tactic or interactively by the user in proof mode (this uses the
same obligation mechanism as the Program extension ?). In this case the
automatic tactic is able to derive by itself that n 6= m → S n 6= S m.

Dependent types are also useful to turn partial functions into total functions
by restricting their domain. Typically, we can force the list passed to head to
be non-empty using the specification:

Equations head {A} (l : list A) (pf : l 6= nil) : A :=
head nil pf with pf eq refl := { | x :=! x };
head (cons a v) := a.

We decompose the list and are faced with two cases:

• In the first case, the list is empty, hence the proof pf of type nil 6= nil
allows us to derive a contradiction by applying it to reflexivity. We make
use of another category of right-hand sides, which we call empty nodes
to inform the compiler that a contradiction is derivable in this case. In
general we cannot expect the compiler to find by himself that the context
contains a contradiction, as it is undecidable (??).

However, in this case, one could also write an empty set of clauses for the
with subprogram, as Equations applies a heuristic in case of an empty set
of clause: it tries to split each of the variables in the context to find an
empty type.

• In the second case, we simply return the head of the list, disregarding the
proof.

2.4.1 Inductive families
The next step is to make constraints such as non-emptiness part of the datatype
itself. This capability is provided through inductive families in Coq ?, which
are a similar concept to the generalization of algebraic datatypes to GADTs
in functional languages like Haskell ?. Families provide a way to associate to

14

S.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
S.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
left.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Specif
eq refl.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Logic
left.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Specif
eq refl.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Logic
S.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
S.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
right.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Specif
right.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Specif
right.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Specif
S.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
S.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
S.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
S.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
::type scope:x '<>' x.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Logic
eq refl.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Logic

each constructor a different type, making it possible to give specific information
about a value in its type.

Equality

The alma mater of inductive families is the propositional equality eq defined as:

Inductive eq (A : Type) (x : A) : A → Prop :=
eq refl : eq A x x .

Equality is a polymorphic relation on A. (The Prop sort (or kind) categorizes
propositions, while the Set sort, equivalent to ? in Haskell categorizes computa-
tional types.) Equality is parameterized by a value x of type A and indexed by
another value of type A. Its single constructor states that equality is reflexive, so
the only way to build an object of eq x y is if x ˜= y , that is if x is definitionaly
equal to y .

Now what is the elimination principle associated to this inductive family?
It is the good old Leibniz substitution principle:

∀ (A : Type) (x : A) (P : A → Type), P x → ∀ y : A, x = y → P y

Provided a proof that x = y , we can create on object of type P y from an
existing object of type P x . This substitution principle is enough to show that
equality is symmetric and transitive. For example we can use pattern-matching
on equality proofs to show:

Equations eqt {A} (x y z : A) (p : x = y) (q : y = z) : x = z :=
eqt x ?(x) ?(x) eq refl eq refl := eq refl.

Let us explain the meaning of the non-linear patterns here that we slipped
through in the equal example. By pattern-matching on the equalities, we have
unified x , y and z , hence we determined the values of the patterns for the vari-
ables to be x . The ?(x) notation is essentially denoting that the pattern is not a
candidate for refinement, as it is determined by another pattern. This particu-
lar patterns are called “inaccessible”. When they are variables the inaccessibility
annotation is optional.

Indexed datatypes

Functions on vectors provide more stricking examples of this situation. The
vector family is indexed by a natural number representing the size of the vector:
[Inductive vector (A : Type) : nat → Type := | Vnil : vector A O | Vcons : A
→ ∀ n : nat, vector A n → vector A (S n)]

The empty vector Vnil has size O while the cons operation increments the
size by one. Now let us define the usual map on vectors: Notation Vnil :=
Vector.nil.
Notation Vcons := Vector.cons.

Equations vmap {A B} (f : A → B) {n} (v : vector A n) :
vector B n :=

15

eq.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Logic
eq.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Logic
eq refl.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Logic
eq.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Logic
eq.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Logic
::type scope:x '=' x.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Logic
::type scope:x '=' x.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Logic
::type scope:x '=' x.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Logic
eq refl.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Logic
eq refl.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Logic
eq refl.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Logic
nat.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
O.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
nat.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
S.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
O.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
nil.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Vectors.Vector
cons.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Vectors.Vector
::type scope:x '->' x.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Logic

vmap f (n:=?(0)) Vnil := Vnil ;
vmap f (Vcons a v) := Vcons (f a) (vmap f v).
Here the value of the index representing the size of the vector is directly de-

termined by the constructor, hence in the case tree we have no need to eliminate
n. This means in particular that the function vmap does not do any computa-
tion with n, and the argument could be eliminated in the extracted code. In
other words, it provides only logical information about the shape of v but no
computational information.

The vmap function works on every member of the vector family, but some
functions may work only for some subfamilies, for example vtail:
Equations vtail {A n} (v : vector A (S n)) : vector A n :=
vtail (Vcons a v’) := v’ .
The type of v ensures that vtail can only be applied to non-empty vec-

tors, moreover the patterns only need to consider constructors that can produce
objects in the subfamily vector A (S n), excluding Vnil. The pattern-matching
compiler uses unification with the theory of constructors to discover which cases
need to be considered and which are impossible. In this case the failed unifi-
cation of 0 and S n shows that the Vnil case is impossible. This powerful
unification engine running under the hood permits to write concise code where
all uninteresting cases are handled automatically.

2.4.2 Derived notions, No-Confusion
For this to work smoothlty, the package requires some derived definitions on
each (indexed) family, which can be generated automatically using the generic
Derive command. Here we ask to generate the signature, heterogeneous no-
confusion and homogeneous no-confusion principles for vectors:
Derive NoConfusion for nat.
Derive Signature NoConfusion NoConfusionHom for vector.
The precise specification of these derived definitions can be found in the

manual section (§1.1). Signature is used to “pack” a value in an inductive
family with its index, e.g. the “total space” of every index and value of the
family. This can be used to derive the heterogeneous no-confusion principle for
the family, which allows to discriminate between objects in potentially different
instances/fibers of the family, or deduce injectivity of each constructor. The
NoConfusionHom variant derives the homogeneous no-confusion principle be-
tween two objects in the same instance of the family, e.g. to simplify equations
of the form Vnil = Vnil :> vector A 0. This last principle can only be defined
when pattern-matching on the inductive family does not require the K axiom
and will otherwise fail.

2.4.3 Unification and indexed datatypes
Back to our example, of course the equations and the induction principle are
simplified in a similar way. If we encounter a call to vtail in a proof, we can use

16

S.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
S.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
S.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
nat.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
t.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Vectors.Vector

the following elimination principle to simplify both the call and the argument
which will be automatically substituted by an object of the form Vcons :

∀ P : ∀ (A : Type) (n : nat), vector A (S n) → vector A n → Prop,
(∀ (A : Type) (n : nat) (a : A) (v : vector A n),
P A n (Vcons a v) v) →
∀ (A : Type) (n : nat) (v : vector A (S n)), P A n v (vtail v)

As a witness of the power of the unification, consider the following function
which computes the diagonal of a square matrix of size n × n.

Equations diag {A n} (v : vector (vector A n) n) : vector A n :=
diag (n:=O) Vnil := Vnil ;
diag (n:=S) (Vcons (Vcons a v) v’) :=
Vcons a (diag (vmap vtail v’)).

Here in the second equation, we know that the elements of the vector are
necessarily of size S n too, hence we can do a nested refinement on the first one
to find the first element of the diagonal.

2.4.4 Recursion
Notice how in the diag example above we explicitely pattern-matched on the
index n, even though the Vnil and Vcons pattern matching would have been
enough to determine these indices. This is because the following definition also
fails:

Fail Equations diag’ {A n} (v : vector (vector A n) n) : vector A n :=
diag’ Vnil := Vnil ;
diag’ (Vcons (Vcons a v) v’) :=
Vcons a (diag’ (vmap vtail v’)).

Indeed, Coq cannot guess the decreasing argument of this fixpoint using its
limited syntactic guard criterion: vmap vtail v’ cannot be seen to be a (large)
subterm of v’ using this criterion, even if it is clearly “smaller”. In general,
it can also be the case that the compilation algorithm introduces decorations
to the proof term that prevent the syntactic guard check from seeing that the
definition is structurally recursive.

To aleviate this problem, Equations provides support for well-founded re-
cursive definitions which do not rely on syntactic checks.

The simplest example of this is using the lt order on natural numbers to
define a recursive definition of identity:

Equations id (n : nat) : nat by wf n lt :=
id 0 := 0;
id (S n’) := S (id n’).

Here id is defined by well-founded recursion on lt on the (only) argument n
using the by wf annotation. At recursive calls of id, obligations are generated
to show that the arguments effectively decrease according to this relation. Here
the proof that n’ < S n’ is discharged automatically.

17

nat.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
S.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
nat.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
nat.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
S.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
O.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
S.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
S.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
cons.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Vectors.Vector
cons.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Vectors.Vector
S.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
cons.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Vectors.Vector
cons.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Vectors.Vector
lt.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Peano
nat.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
nat.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
lt.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Peano
O.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
S.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
S.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
lt.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Peano
S.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes

Wellfounded recursion on arbitrary dependent families is not as easy to use,
as in general the relations on families are heterogeneous, as they must relate
inhabitants of potentially different instances of the family. Equations provides a
Derive command to generate the subterm relation on any such inductive family
and derive the well-foundedness of its transitive closure. This provides course-
of-values or so-called “mathematical” induction on these objects, reflecting the
structural recursion criterion in the logic.

Derive Subterm for vector.

For vectors for example, the relation is defined as:

Inductive t direct subterm (A : Type) :
∀ n n0 : nat, vector A n → vector A n0 → Prop :=
t direct subterm 1 1 : ∀ (h : A) (n : nat) (H : vector A n),
t direct subterm A n (S n) H (Vcons h H)

That is, there is only one recursive subterm, for the subvector in the Vcons
constructor. We also get a proof of:

Check well founded t subterm : ∀ A, WellFounded (t subterm A).

The relation is actually called t subterm as vector is just a notation for
Vector.t . t subterm itself is the transitive closure of the relation seen as an
homogeneous one by packing the indices of the family with the object itself.
Once this is derived, we can use it to define recursive definitions on vectors that
the guard condition couldn’t handle. The signature provides a signature pack
function to pack a vector with its index. The well-founded relation is defined
on the packed vector type.

Module UnzipVect.
Context {A B : Type}.

We can use the packed relation to do well-founded recursion on the vector.
Note that we do a recursive call on a substerm of type vector A n which must
be shown smaller than a vector A (S n). They are actually compared at the
packed type { n : nat & vector A n}. The default obligation tactic defined in
Equations.Init includes a proof-search for subterm proofs which can resolve the
recursive call obligation automatically in this case.

Equations unzip {n} (v : vector (A × B) n) : vector A n × vector B n
by wf (signature pack v) (@t subterm (A × B)) :=

unzip Vnil := (Vnil, Vnil) ;
unzip (Vector.cons (pair x y) v) with unzip v := {
| pair xs ys := (Vector.cons x xs, Vector.cons y ys) }.

End UnzipVect.

For the diagonal, it is easier to give n as the decreasing argument of the
function, even if the pattern-matching itself is on vectors:

Equations diag’ {A n} (v : vector (vector A n) n) : vector A n by wf n :=
diag’ Vnil := Vnil ;
diag’ (Vcons (Vcons a v) v’) :=

18

t.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Vectors.Vector
nat.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
nat.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
S.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
S.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
nat.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
::type scope:x '*' x.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
::type scope:x '*' x.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
::type scope:x '*' x.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
::core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
::core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
::core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
cons.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Vectors.Vector
cons.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Vectors.Vector
pair.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
cons.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Vectors.Vector
pair.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
::core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
cons.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Vectors.Vector
::core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
cons.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Vectors.Vector
::core scope:'(' x ',' x ',' '..' ',' x ')'.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
cons.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Vectors.Vector
cons.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Vectors.Vector

Vcons a (diag’ (vmap vtail v’)).

One can check using Extraction diag’ that the computational behavior of
diag’ is indeed not dependent on the index n.

Pattern-matching and axiom K

To use the K axiom or UIP with Equations, onemust first set an option allowing
its use during dependenet pattern-matching compilation.

Module KAxiom.

By default we disallow the user of UIP, but it can be set.

Set Equations With UIP .

Module WithAx.

The user must declare this axiom itself, as an instance of the UIP class.

Axiom uipa : ∀ A, UIP A.
Local Existing Instance uipa.

In this case the following definition uses the UIP axiom just declared.

Equations K {A} (x : A) (P : x = x → Type) (p : P eq refl)
(H : x = x) : P H :=

K x P p eq refl := p.

End WithAx.

Note that the definition loses its computational content: it will get stuck on
an axiom. We hence do not recommend its use.

Equations allows however to use constructive proofs of UIP for types enjoying
decidable equality. The following example relies on an instance of the EqDec
typeclass for natural numbers, from which we can automatically derive a UIP
nat instance. Note that the computational behavior of this definition on open
terms is not to reduce to p but pattern-matches on the decidable equality proof.
However the defining equation still holds as a propositional equality, and the
definition of K’ is axiom-free.

Equations K’ (x : nat) (P : x = x → Type) (p : P eq refl)
(H : x = x) : P H :=

K’ x P p eq refl := p.

Print Assumptions K’.
(* Closed under the global context *)

End KAxiom.

Going further More examples are available at http://mattam82.github.
io/Coq-Equations/examples

19

::type scope:x '=' x.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Logic
::type scope:x '->' x.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Logic
eq refl.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Logic
::type scope:x '=' x.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Logic
eq refl.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Logic
nat.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
nat.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Datatypes
::type scope:x '=' x.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Logic
::type scope:x '->' x.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Logic
eq refl.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Logic
::type scope:x '=' x.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Logic
eq refl.html#http://coq.inria.fr/distrib/V8.10+alpha/stdlib//Coq.Init.Logic
http://mattam82.github.io/Coq-Equations/examples
http://mattam82.github.io/Coq-Equations/examples

	Manual
	The Equations Vernacular
	Syntax of programs
	Generated definitions
	Logic parameterization
	Local Options
	Global Options

	Derive
	dependent elimination
	simp
	Functional elimination

	A gentle introduction to Equations
	Inductive types
	Reasoning principles
	Building up
	Polymorphism
	Recursive inductive types
	Moving to the left

	Dependent types
	Inductive families
	Derived notions, No-Confusion
	Unification and indexed datatypes
	Recursion

	Bibliography

