
Distributed Runtime Verification of Cyber-Physical
Systems Based on Graph Pattern Matching

Gábor Szilágyi1, András Vörös1,2
1Budapest University of Technology and Economics,

Department of Measurement and Information Systems, Budapest, Hungary
2MTA-BME Lendület Cyber-Physical Systems Research Group, Budapest, Hungary

Email: szilagyi@db.bme.hu, vori@mit.bme.hu

Abstract—Cyber-physical systems process a huge amount of
data coming from sensors and other information sources and
they often have to provide real-time feedback and reaction.
Cyber-physical systems are often critical, which means that their
failure can lead to serious injuries or even loss of human lives.
Ensuring correctness is an important issue, however traditional
design-time verification approaches can not be applied due to
the complex interaction with the changing environment, the
distributed behavior and the intelligent/autonomous solutions.

In this paper we present a framework for distributed runtime
verification of cyber-physical systems including the solution for
executing queries on a distributed model stored on multiple
nodes.

I. INTRODUCTION

The rapid development of technology leads to the rise of
cyber-physical systems (CPS) even in the field of safety crit-
ical systems like railway, robot and self-driving car systems.
Cyber-physical systems process a huge amount of data coming
from sensors and other information sources and it often has
to provide real-time feedback and reaction.

Cyber-physical systems are often critical, which means
that their failure can lead to serious damages or injuries.
Ensuring correctness is an important issue, however traditional
design-time verification approaches can not be applied due to
the complex interaction with the environment, the distributed
behavior and the intelligent controller solutions. These charac-
teristics of CPS result many complex behavior, huge or even
infinite number of possible states, so design-time verification
is infeasible.

There are plenty of approaches for monitoring require-
ments [6]. Runtime analysis provides a solution where graph-
based specification languages and analysis algorithms are
the proper means to analyze the behavior of cyber-physical
systems at runtime.

In this paper a distributed runtime verification framework
is presented. It is capable of analyzing the correctness of
cyber-physical systems and examining the local behavior of
the components. An open-source graph query engine being
able to store a model in a single machine served as a base of
the work [4]. It was extended to support distributed storage
and querying: in case of complex specifications, the algorithm
collects the information from the various analysis components
and infers the state of the system. The introduced framework

was evaluated in a research project of the department and
proved its usefulness.

Figure 1 shows the basic approach to runtime verification.
System development is started by specifying the requirements
for the system. Then it is designed, according to the specifica-
tion. From the specification and the system design, a monitor
is created for observing the environment. The monitoring
component stores the gathered information in a live model
which is updated continuously to represent the actual state
of the system. The runtime requirements can be evaluated on
the live model and the solution can find if a requirement is
violated. Various monitoring approaches exist, some observes
data dependent behavior, others can analyze temporal behavior.
In this paper the focus is on the runtime analysis of data
dependent behavior which can be captured by a graph based
representation.

Runtime verificationEngineering

Monitor

Specification

System design

Runtime 
requirements

Live model

Implementation
Monitoring

Fig. 1. Model-based runtime verification of a cyber-physical system.

II. GRAPHS AS ABSTRACTIONS

To verify cyber-physical systems, we need to have informa-
tion about its operation context. Various kinds of information
might belong to the context such as the physical environment,
computational units, configuration settings or other domain
specific information. In modern cyber-physical systems, sen-
sors provide a huge amount of data to be processed by the
monitors, it is important to have a comprehensive image of
the operation context which can be supported by graph-based
knowledge representations.



The current snapshot of the system and its operational
context can be formally captured as a live model which
continuously gets updated to reflect relevant changes in the
underlying real system [3]. This live model serves as an
abstraction of the analyzed system. The framework uses graph
representation to model the actual state of the system. These
are directed, typed and attributed graphs. Their vertex types,
edge types, and other constraints must be specified in a meta-
model. The metamodel is also needed for the formalization of
specification, since it also specifies the possible structure of
the live model.

Runtime verification

Modeling

Allocation

Requirement
Specification 

Fig. 2. The presented approach for runtime verification.

The steps of our approach to graph based runtime verifi-
cation are illustrated on Figure 2. First we need to describe
the metamodel which captures the domain information of the
monitored system. According to the metamodel and the initial
state of the system, a live model is created. This live model
is used during the runtime analysis. Then requirements can be
defined. After modeling, the system engineer shall specify the
allocation i.e. how the elements of the live model are allocated
to the computational units of the distributed system. After
these tasks, the framework is able to generate the code for
runtime verification of the system.

We illustrate this approach with an example of a simplified
version of a train control system. First the metamodel shall
be created for the system. (Figure 3). In our case, the model
is composed of two types of elements: Segment and Train.
Segments next to each other in the physical configuration are
connected with connectedTo edges in the model. If a train is on
a segment, the model represents it with the onSegment edge.
An example live model of the system can be seen on Figure 4.

SegmentTrain

connectedTo

onSegment

Fig. 3. The metamodel for the system

Safety requirements of the system can be described using
graph patterns. A graph pattern is given by

1) a list of variables, each representing a vertex of the live
model with a given type

2) a set of constraints, which must be satisfied by the
variables, to match the pattern

S1
:Segment

connectedTo

connectedTo

T5 
:Train

S2
:Segment

S3
:Segment

S4
:Segment

T6 
:Train

onSegment onSegment

connectedTo

connectedTo

connectedTo

connectedTo

Fig. 4. An example live model for a train control system

Graph patterns in the framework are defined using the
VIATRA Query Language (VQL) [1]. It has a rich expressive
power capable of expressing constraints like:

• path expression – a specific reference, an attribute, or a
path of references must exist between two variables.

• attribute equality – an attribute of a vertex must be a
given value

• matching to a pattern – a list of given vertices must match
to a pattern

• negative pattern matching – a list of given vertices must
not match to another pattern

• check expression - an arbitrary expression containing
attributes must be evaluated true

Graph patterns expressed as VQL expressions are evaluated
on the input models. Graph pattern matching is reduced to
a search for isomorphic subgraphs in the input model. The
structure of the graph pattern yields the constraints during
the search: the parameters of the graph pattern will finally
be assigned to the corresponding graph nodes.

For example, if we want to find trains on adjacent segments,
we can use the following pattern (given in VQL):

pattern NeighboringTrain(TA, TB) // 1
{
Train(TA); // 2 TA is a train
Train(TB); // 3 TB is a train
Train.currentlyOn(TA, SA); // 4 TA is currently on SA
Segment.connectedTo(SA, SB); // 5 SA is connected to SB
Train.currentlyOn(TB, SB); // 6 TB is currently on SB

}

Fig. 5. Graphical visualization of the query.

The pattern’s header (1) specifies its name and its parame-
ters. Every statement in the body of the pattern is a constraint
(2–6) for variables (SA, SB) and parameters (TA, TB). The
visualized version of this pattern can be seen on Figure 5.

In the example model (Figure 4) there are 2 matches of this
pattern. One is {TA = T5 ,TB = T6 ,SA = S2 ,SB = S3}
and the other is {TA = T6 ,TB = T5 ,SA = S3 ,SB = S2}.



After the requirements are specified, the user has to decom-
pose the model and allocate it into computational units (see
Section III). We call this the allocation of the live model. The
computational units, the live model, and its allocation can be
given in JSON format:

{
"nodes" : [
{

"name" : "nodeA",
"ip" : "127.0.0.1",
"port" : 54321

}
,
...

],

"model" : [
{":id": 0, ":node": "nodeA", ":type": "Segment",

"connectedTo" : [1] },
{":id": 1, ":node": "nodeA", ":type": "Segment",

"connectedTo" : [0, 2] },
{":id": 2, ":node": "nodeB", ":type": "Segment",

"connectedTo" : [1, 3] },
...

]
}

The allocation of a model element can be given by the ”:node”
attribute. Model elements, like trains still must be assigned to
a specific computational unit, although its physical place can
change in time.

After the model elements are allocated to the computational
units, and the framework generated the necessary artifacts,
runtime verification can be started.

It works in a way depicted on Figure 6. The live model
is continuously updated with the runtime information coming
from sensors. Runtime requirements of the system – for-
malized as graph patterns – are verified on the live model
continuously, as it is described in the next section, to ensure
the system’s correct operation.

Fig. 6. Runtime verification of the system

III. DISTRIBUTED GRAPH QUERIES

The distributed nature of cyber-physical systems makes
runtime verification a challenging task. Various approaches
exist regarding the model and query management. The main
difference is the way they gather and process the information
and evaluate the requirements:

• Centralized model and query management. It would re-
quire the sensor information to be transmitted to a central
processing machine.

• Distributing the model to each computational unit. It
would require model synchronization between nodes.

• Dividing the live model and the query processing tasks
to the computational units.

Centralized approaches are not always viable due to various
reasons, like the central machine can be easily overloaded, it
can be a single point of failure (SPOF), which is undesirable
in safety-critical systems. In the second case, model synchro-
nization can introduce unwanted complexity, and overhead in
network communication. We solve these problems by process-
ing the sensor information on the corresponding computational
units, and updating the local part of a distributed live model.

A. Distributing the storage of the model

After the metamodel is specified, which describes the types
of vertices and edges, etc., an initial live model shall be
created, representing the initial state of the system. As parts
of the model are stored on different computational units,
each vertex of the global model must be assigned to a given
computational unit. References are stored where the source
object for that reference is stored. Basically, the reference can
only refer to a local object, i.e. a vertex assigned to the same
computational unit. If the reference’s destination vertex is not
assigned to the same computational unit, we create a proxy
object on the same computational unit. Vertices are identified
with a globally unique identifier, which is portable between
the computational units.

B. Distributed Query Evaluation Algorithm

The algorithm is based on the so-called local search algo-
rithm [2]. To find matches of a given graph pattern, we start
from a frame, i.e. a list of variables, unassigned at first. After
that, we execute a given list of search operations (called search
plan) being specific to the pattern.

To make the algorithm working in distributed systems, we
examined the search operations that cannot be executed locally.
There are basically two operations, that need to be handled
differently from the single machine solution:

• Iterating over the instances of a given vertex type cannot
be done locally, since there can be instances for that type
on any of the computational units.

• Assigning a variable through a given reference cannot be
done, if the source object is not present on the node.

At these operations we inserted a ,,virtual” search operation. It
doesn’t operate on the frame, but transmits the query execution
to the other computational units of the system. To iterate
over instances, first the query execution is distributed between
units by the virtual operation, and after that, iterating over
local instances can be done. In case of assigning variable
via a reference the virtual search operation checks, whether
the source object is present on the computational unit, then
transmits it to the other units if the source object is not
available.



Network

...

QueryService

QueryRunner QueryRunner QueryRunner

Generated 
Query

Generated 
Query

Generated 
Query

Local live model

...

QueryService

QueryRunner QueryRunner QueryRunner

Generated 
Query

Generated 
Query

Generated 
Query

Local live model

...

Fig. 7. Architecture of the distributed query evaluation.

C. Architecture
The architectural overview of the distributed query engine

is depicted on Figure 7.
On every computational unit of the distributed system, a

QueryRunner is set up for each generated query. Their role is
to execute query tasks specific to their Generated Query, on
the given local part of the model. An input for a query task
consists of 1) a frame, containing the assigned variables, i.e.
partial match, and 2) the index of the next search operation to
be executed.

If an operation needs distributed execution, the QueryRun-
ner uses the QueryService of the computational unit, which
handles network communication and reach other computa-
tional unit. To serialize the data between different nodes, we
used Protocol Buffers [5].

IV. EVALUATION

The query evaluation time of the framework was measured
in several configuration with the example railway control
system, that was presented before, but with a more complex
live model, containing 6000 elements. We split the model of
the railway system into 2, 3, and 4 parts. First we ran the
example query on each configuration, but every computational
unit was run on the same machine. So practically, network
communication had no overhead during the measurement
(Figure 8).

After that, every computational unit of the system was
run on different machines. This shows how network com-
munication affects the speed of our implementation. We can
conclude, that networking introduces overhead, but using more
computational units makes the system’s performance closer to
single machine solution. The integration of sensor information
in cyber-physical systems cause additional overhead, that can
be prevented using the distributed solution.

V. CONCLUSION

In this paper, we presented a framework for distributed
runtime verification of cyber-physical systems based on graph

Fig. 8. Average time of query execution by computational units

queries. Our approach represents the gathered information in
a distributed live model and evaluates the queries as close to
the informations sources as possible. A method for distributed
model storage and query execution is developed based on a
widely used search algorithm. In the future we plan to integrate
incremental graph query algorithms to further improve the
efficiency of the framework.

REFERENCES

[1] G. Bergmann, I. Dávid, Á. Hegedüs, Á. Horváth, I. Ráth, Z. Ujhelyi,
and D. Varró. VIATRA 3: A reactive model transformation platform.
In Theory and Practice of Model Transformations - 8th International
Conference, ICMT 2015, Proceedings, pages 101–110, 2015.

[2] M. Búr. A general purpose local search-based pattern matching frame-
work. masters thesis. 2015.

[3] I. Dávid, I. Ráth, and D. Varró. Foundations for streaming model
transformations by complex event processing. Software & Systems
Modeling, 2016.

[4] R. Dóczi. Search-based query evaluation over object hierarchies. Master’s
thesis, Budapest University of Technology and Economics, 2016.

[5] Google. Protocol buffers – data interchange format. https://github.com/
google/protobuf.

[6] M. Vierhauser, R. Rabiser, and P. Grünbacher. Requirements monitoring
frameworks: A systematic review. Information & Software Technology,
80:89–109, 2016.

https://github.com/google/protobuf
https://github.com/google/protobuf

	Introduction
	Graphs as abstractions
	Distributed graph queries
	Distributing the storage of the model
	Distributed Query Evaluation Algorithm
	Architecture

	Evaluation
	Conclusion
	References

