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Abstract—Due to their simplicity and structured nature, block-
oriented models are popular in nonlinear modeling applications.
A wide range of block-oriented identification algorithms were
developed over the years. One class of these approaches uses the
so-called best linear approximation to initialize the identification
algorithm. The best linear approximation framework allows the
user to extract important information about the system, it guides
the user in selecting good candidate model structures and orders,
and it proves to be a good starting point for nonlinear system
identification algorithms. This paper gives an overview of the
benefits and drawbacks of using identification algorithms based
on the best linear approximation.

I. INTRODUCTION

Nonlinear models are often used these days to obtain a
better insight in the behavior of the system under test, to com-
pensate for a potential nonlinear behavior using predistortion
techniques, or to improve plant control performance. Popular
nonlinear model structures are, amongst others, nonlinear
state-space models [1], NARMAX models [2], and block-
oriented models [3]. This paper focuses on the block-oriented
class of models.

Many different types of block-oriented identification algo-
rithms exist [3], where the linear-approximation based algo-
rithms are amongst the more popular. One particular method
to obtain such a linear approximation is the Best Linear
Approximation (BLA) framework. This paper discusses the
benefits and drawbacks of using BLA-based block-oriented
system identification algorithms.

II. BLOCK-ORIENTED SYSTEMS

Block-oriented models are constructed starting from two
basic building blocks: a linear time-invariant (LTI) block and
a static nonlinear block. Due to the separation of the nonlinear
dynamic behavior into linear time invariant dynamics and the
static nonlinearities, block-oriented nonlinear models are quite
simple to understand and easy to use. They can be com-
bined in many different ways. Series, parallel and feedback
connections are considered in this paper, resulting in a wide
variety of block-oriented structures as is depicted in Figure 1.
These block-oriented models are only a selection of the many
different possibilities that one could think of. For instance the
generalized Hammerstein-Wiener structure that is discussed in
[4] is not considered in this paper.

The LTI blocks and the static nonlinear blocks can be
represented in many different ways. The LTI blocks are most
often represented as a rational transfer function. The model

order selection of the order of the numerator and denominator
of the different blocks is a challenging problem. The static
nonlinear block can again be represented in a nonparamet-
ric way using, for instance, kernel-based methods, or in a
parametric way using, for instance, a linear-in-the-parameters
basis function expansion (polynomial, piecewise linear, radial
basis function network, ...), neural networks, or other dedicated
parametrizations for static nonlinear functions. Again, in the
parametric case, the nonlinear function complexity (number of
basis functions, neurons, ...) needs to be selected by the user.

Another issue of block-oriented models is the uniqueness of
the model parametrization. Gain exchanges, delay exchanges
and equivalence transformations are present in many block-
oriented structures [5]. This results in many different models
with the same input-output behavior, but with a different
parametrization.

It is assumed throughout this paper that a Gaussian additive,
colored zero-mean noise source ny(t) with a finite variance
σ2 is present at the output of the system only:

y(t) = y0(t) + ny(t). (1)

This noise ny(t) is assumed to be independent of the known
input u(t). The signal y(t) is the actual output signal and a
subscript 0 denotes the exact (unknown) value.

III. BEST LINEAR APPROXIMATION

A linear model often explains a significant part of the
behavior of a (weakly) nonlinear system. This approximative
linear model also provides the user with a better insight into
the behavior of the system under test. It motivates the use of
a framework that approximates the behavior of a nonlinear
system by a linear time invariant model. This paper considers
the Best Linear Approximation (BLA) framework [6], [7] to
estimate a linear approximation of a nonlinear system..

The BLA is best in mean square sense for a fixed class of
input signals U only, it is defined in [6], [7] as:

Gbla(q) , arg min
G(q)

E
{
|ỹ(t)−G(q)ũ(t)|2

}
, (2)

where E {.} denotes the expected value operator. The expected
value E {.} is taken w.r.t. the random input ũ(t). The zero-
mean signals ũ(t) and ỹ(t) are defined as:

ũ(t) , u(t)− E {u(t)} , (3)

ỹ(t) , y(t)− E {y(t)} . (4)
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Fig. 1. An overview of possible block-oriented structures. The different structures are obtained by using series, parallel and feedback connections of LTI
blocks (G(q) and S(q)) and static nonlinear blocks (f(·) and g(·)). There are three types of structure classes: single branch structures (Wiener, Hammerstein,
Wiener-Hammerstein and Hammerstein-Wiener), parallel branch structures (parallel Wiener, parallel Hammerstein, parallel Wiener-Hammerstein) and feedback
structures (simple feedback structure, Wiener-Hammerstein feedback and LFR).

The error in eq. (2) is minimized by [6], [7]:

Gbla(e
jωTs) =

SỸ Ũ (e
jωTs)

SŨŨ (e
jωTs)

, (5)

where SỸ Ũ and SŨŨ denote the crosspower of ỹ(t) and ũ(t)
and autopower of ũ(t) respectively.

The BLA of a system depends on the signal class U that is
used. This work considers U to be the Riemann equivalence
class of asymptotically normally distributed excitation signals.
The signal class U contains Gaussian noise sequences, but
contains also periodic signal sets known as random phase
multisines [7]. This class of signals will be referred to as
Gaussian signals in the remainder of this paper. When sta-
tionary Gaussian excitation signals are used, the BLA of many
block-oriented systems becomes a simple function of the linear
dynamics that are present in that system.

A. BLA of Single Branch Structures

The BLA of Wiener, Hammerstein and Wiener-
Hammerstein structures are a very simple expression of
the LTI-blocks present in the block-oriented system when
Gaussian excitation signals are used. Due to Bussgang’s
Theorem [8] one obtains the following expression for the
BLA of a Wiener-Hammerstein structure [9]:

Gbla(q) = λG(q)S(q), (6)

where q−1 is the backwards shift operator, and λ is a gain
depending on the system and considered class of input (input
power, offset and power spectrum). Note that the poles and
zeros of the BLA are the poles and zeros of the LTI blocks
present in the system [9].

B. BLA of Parallel Branch Structures

The output of a parallel branch structures is the summation
of multiple single branch system, hence, the BLA of a parallel
Wiener-Hammerstein system is given by:

Gbla(q) =

nbr∑
i=1

λiG
[i](q)S[i](q). (7)

Note that zeros of the BLA depend on the gains λi, while
the poles of the BLA are the poles of the LTI blocks of the
parallel Wiener-Hammerstein system [10].

C. BLA of structures containing feedback

Bussgangs Theorem cannot be used anymore in the case
of nonlinear feedback structures since the input of the static
nonlinear block is not Gaussian anymore. Therefore, only
approximate expressions of the BLA are given here. The BLA
of a simple feedback structure is approximately given by [1]:

Gbla(q) ≈
G(q)

1 + λG(q)
. (8)

The case of the LFR structure is more involved [11]:

Gbla(q) ≈ G[1](q) +
G[2](q)G[3](q)

1 + λG[4](q)
. (9)

It can be observed that the poles of the BLA of a simple
feedback structure depend on the gain lambda. In the case of
the LFR structure both the poles and the zeros depend on the
gain lambda.

IV. DETECTION OF NONLINEARITY

Although one might know beforehand that a given system is
nonlinear, it can very well turn out that, for the class of signals
that will realistically act on the system, and for the frequency
region of interest, and application on hand, no significant



nonlinear behavior is observed. In such a case, much modeling
effort can be spared by simply estimating the BLA of the
system, and using it later on for its intended task (control
design, simulation, system analysis, ...).

The BLA framework allows a user to detect and quantify
the level of the nonlinear distortions. Based on this analysis
one can see, for a chosen class of input signals, if the effects
of the nonlinearity are dominant or not, in which frequency
region the nonlinearity is active, and how much can be gained
by estimating a nonlinear model [7].

V. MODEL ORDER AND MODEL STRUCTURE SELECTION

The model structure and model order selection problem is
a though challenge in many nonlinear system identification
problems. Given an input/output dataset the user has to decide
what type of nonlinear model will be used (e.g. Hammerstein,
Wiener, nonlinear feedback, ...) and which model orders (e.g.
orders of the dynamics and degree of the static nonlinearity)
are to be selected.

A. Model Order Selection

The model order selection problem in block-oriented mod-
eling problems is much harder than the one in the LTI
framework. One needs to select the model order of each LTI
block separately and on top of this, also the complexity of
the static nonlinearity needs to be decided on. Using the BLA
framework to start the modeling of a block-oriented system
allows one to extract the model orders of the combined linear
dynamics present in the block-oriented structure. Indeed, the
BLA is in many cases a simple function of the underlying
linear blocks of the block-oriented system under test (see
Section III).

An important part of the model order selection problem, the
selection of the order of the dynamics of the system, is now
taking place in a linear framework on the BLA, separate from
the nonlinearity selection problem. This results in a problem
which is much more simple and better understood by many
researchers and practitioners.

The selected model orders of the BLA can be used di-
rectly in the nonlinear modeling step (Hammerstein, Wiener,
Simple Feedback structure), or they are translated auto-
matically in a second step into the model orders of each
LTI block separately using either pole-zero allocation algo-
rithms [9], [10] to split the dynamics over the front and
the back (Wiener-Hammerstein, parallel Wiener-Hammerstein
and Wiener-Hammerstein Feedback structure), singular value
decomposition approaches [10], [12] to split the dynamics over
the parallel branches (parallel Hammerstein, parallel Wiener
and parallel Wiener-Hammerstein), or by solving a Riccati
equation in the case of the LFR structure [11].

B. Model Structure Selection

The model structure selection problem can also be tackled
in part by taking a closer look at the expression of the BLA for
the different block-oriented model structures. It is discussed in
[13] how the BLA behaves when it is estimated at different

setpoints of the system (different input amplitudes, constant
offsets or power spectra).

Single-branch system structures such as the Wiener-
Hammerstein structure will only exhibit a varying gain over
the different BLA setpoints, while parallel branch systems
exhibit varying zeros and feedback structures exhibit varying
poles over the different BLA setpoints (see Table I). Note that
the LFR structure is both a parallel branch and a nonlinear
feedback structure. Hence, both poles and zeros of the BLA
will depend on the input power, constant offset and power
spectrum. This analysis demonstrates how one can quickly
detect some important structural features of the nonlinear
system under test using only linear approximations of that
system.

VI. DRAWBACKS OF BLA-BASED MODELING

Of course, obtaining a sufficiently high-quality estimate
of the BLA (sufficiently low variance on the BLA) comes
at a cost. The variance on the estimated BLA depends on
how nonlinear the system under test is. If the system is very
nonlinear, a significant error is introduced when the least-
squares linearization is performed. This results in a high
variance on the estimate. The classical approach to lower the
variance on the estimated BLA is to use more input-output
data. Hence, it can be the case that to model a strongly
nonlinear system using the BLA, a larger dataset is required
compared to some of the approaches that take the nonlinearity
directly into account.

Another issue can be the presence of nonlinearities which
give rise to a BLA equal to zero over all frequencies. Of course
this is input dependent: this problem can be circumvented by
doing measurements at different constant offset of the input
signal. For example, the BLA of an even nonlinearity using a
zero-mean Gaussian input is equal to zero [8]. However, when
an constant offset is added to this input signal a non-zero BLA
is obtained.

A last remark concerns the systems with nonlinear feedback
(simple feedback structure, Wiener-Hammerstein feedback and
LFR). The BLA expressions given in this paper for these
systems are not exact. Although they are a good approximation
of reality, more involved effects come into play due to the non-
Gaussianity of the signal at the input of the static nonlinearity.
However, it is observed in many practical applications that
the simplification used in this paper does lead to good model
estimates, e.g. [1].

Note that, aside the drawbacks listed above, many other
challenges exists. The selection of the nonlinearity present in
the model, the validation of the system structure over a wide
range of use, dealing with model errors in a proper manner,
using more involved noise frameworks, and many more are all
open problems in nonlinear system identification.

VII. EXAMPLE: SILVERBOX

The Silverbox system (an electronic realization of the duff-
ing oscillator) is studied (see for instance [1]) here as a simple
illustration of the theory explained in the previous sections.



TABLE I
MODEL STRUCTURE SELECTION USING THE BLA BY OBSERVING THE GAIN, POLES AND ZEROS OF THE BLA ESTIMATED AT MULTIPLE SETPOINTS OF

THE SYSTEM (W-H STANDS FOR WIENER-HAMMERSTEIN).

LTI Wiener Hammerstein W-H Parallel W-H Simple Feedback W-H Feedback LFR
Gain fixed varying varying varying varying varying varying varying
Poles fixed fixed fixed fixed fixed varying varying varying
Zeros fixed fixed fixed fixed varying fixed fixed varying

As a first step the nonparametric BLA is estimated. The
estimated FRF and the total (noise + nonlinearities) and noise
distortion variance are shown in Figure 2 for two different
amplitudes of the input excitation. Based on this figure, the
user can observe that a nonlinear model would not offer much
improvement in the low input level case. On the other hand,
the nonlinear contribution are almost as large as the linear one
for the high input level case.

A clear shift in the resonance frequency can be observed.
This is a strong indication for a shifting pole, and hence, the
presence of a nonlinear feedback in the system. The system
dynamics are also clearly visible, and can easily be determined
using the linear model order selection techniques, 2nd order
dynamics are clearly present.

To conclude, a nonlinear feedback model structure with 2nd
order linear dynamics should be a good candidate to model
the behavior of the Silverbox system when it is excited by the
high amplitude input level. This corresponds with the known
underlying structure of the Silverbox system, it is a simple
feedback structure. A linear model will be qualitative enough
in the low input case.

Fig. 2. The BLA of the Silverbox system for low (blue) and high (red) level
of excitation. The FRF (full line), total distortion levels (circles) and noise
distortion levels (dots) are shown. The size of the gap between the noise and
total distortion level indicate how nonlinear the system behaves.

VIII. CONCLUSION

The paper has presented an overview on how the complexity
of the (block-oriented) nonlinear modeling process can be
reduced significantly using the Best Linear Approximation.
The BLA framework offers answers to the questions: ”Should
I use a nonlinear model for the application at hand?”, ”What

model structure should I select?”, and ”How can I select the
model orders in a simple but efficient way?”.

The main disadvantage of using the BLA framework is that
it possibly requires more data than some of the other nonlinear
modeling approaches which are available. Furthermore, one
has to be aware that the BLA can be equal to zero in the
presence of nonlinearities which are even around the setpoint
of the input signal. This can, of course, easily be solved by
changing the constant offset of the input signal used.
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