Conference paper Open Access

Scaling single-wavelength optical interconnects to 180 Gb/s with PAM-M and pulse shaping

Stefanos Dris; Paraskevas Bakopoulos; Nikolaos Argyris; Christos Spatharakis; Hercules Avramopoulos


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Stefanos Dris</dc:creator>
  <dc:creator>Paraskevas Bakopoulos</dc:creator>
  <dc:creator>Nikolaos Argyris</dc:creator>
  <dc:creator>Christos Spatharakis</dc:creator>
  <dc:creator>Hercules Avramopoulos</dc:creator>
  <dc:date>2016-03-07</dc:date>
  <dc:description>Faced with surging datacenter traffic demand, system designers are turning to multi-level optical modulation with direct detection as the means of reaching 100 Gb/s in a single optical lane; a further upgrade to 400 Gb/s is envisaged through wavelength-multiplexing of multiple 100 Gb/s strands. In terms of modulation formats, PAM-4 and PAM-8 are considered the front-runners, striking a good balance between bandwidth-efficiency and implementation complexity. In addition, the emergence of energy-efficient, high-speed CMOS digital-to-analog converters (DACs) opens up new possibilities: Spectral shaping through digital filtering will allow squeezing even more data through low-cost, low-bandwidth electro-optic components. In this work we demonstrate an optical interconnect based on an EAM that is driven directly with sub-volt electrical swing by a 65 GSa/s arbitrary waveform generator (AWG). Low-voltage drive is particularly attractive since it allows direct interfacing with the switch/server ASIC, eliminating the need for dedicated, power-hungry and expensive electrical drivers. Single-wavelength throughputs of 180 and 120 Gb/s are experimentally demonstrated with 60 Gbaud optical PAM-8 and PAM-4 respectively. Successful transmission over 1250 m SMF is achieved with direct-detection, using linear equalization via offline digital signal processing in order to overcome the strong bandwidth limitation of the overall link (~20 GHz). The suitability of Nyquist pulse shaping for optical interconnects is also investigated experimentally with PAM-4 and PAM-8, at a lower symbol rate of 40 Gbaud (limited by the sampling rate of the AWG). To the best of our knowledge, the rates achieved are the highest ever using optical PAM-M formats.</dc:description>
  <dc:identifier>https://zenodo.org/record/290544</dc:identifier>
  <dc:identifier>10.5281/zenodo.290544</dc:identifier>
  <dc:identifier>oai:zenodo.org:290544</dc:identifier>
  <dc:relation>info:eu-repo/grantAgreement/EC/H2020/645212/</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>http://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:title>Scaling single-wavelength optical interconnects to 180 Gb/s with PAM-M and pulse shaping</dc:title>
  <dc:type>info:eu-repo/semantics/conferencePaper</dc:type>
  <dc:type>publication-conferencepaper</dc:type>
</oai_dc:dc>
22
31
views
downloads
All versions This version
Views 2222
Downloads 3131
Data volume 39.3 MB39.3 MB
Unique views 2222
Unique downloads 2929

Share

Cite as