
Data Modelling for the Evaluation of Virtualized
Network Functions Resource Allocation Algorithms

Windhya Rankothge
Universitat Pompeu Fabra

windhya.rankothge@upf.edu

Franck Le
IBM Research

fle@us.ibm.com

Alessandra Russo
Imperial College

a.russo@imperial.ac.uk

Jorge Lobo
ICREA-Universitat Pompeu Fabra

jorge.lobo@upf.edu

To conduct a more realistic evaluation, we needed data on:
(1) potential NFs chains (policies), (2) traffic flows passing
through these NFs chains, (3) how the dynamic traffic changes
affect the NFs (scale out/in) and (4) different data center
architectures for the NFC. However, there are no publicly
available real data sets on NF chains and traffic that pass
through NF chains. We have therefore used data from previous
empirical analyses [1], [2] and made some assumptions to
derive the required data. We developed four programs to model
the gathered data and generate the required data. All gathered
data and data modelling programs are publicly available at [3].

I. POLICY REQUESTS GENERATION

When generating policy requests for the NFC, the main
factor to be considered is the type (e.g., small, medium, large
size network) of the enterprise/user, that is requesting the
policies. Depending on the type of the enterprise/user, the total
number of NFs required, the number of NFs in a policy and
types of the NFs in the policy can vary. The policies (chains
of NFs) used in the experiments are generated based on a
study about middle-boxes used in enterprise networks [1]. This
data set from [1] includes figures about types of enterprise
networks, number and types of middle-boxes used in these
enterprise networks. According to [1], a chain of NFs consists
of 2 to 7 NFs, mostly 2 to 5. So the number of NFs in a policy
follows a truncated power-low distribution with exponent 2,
minimum 2 and maximum 7.

According [1], as shown in Figure 1, large scaled enter-
prises, with 10k-100k hosts can have average: IP Firewalls:
46, Application firewalls: 9, WAN optimizers: 0, Proxies: 6,
Gateways: 3, VPNs: 6, Load Balancers: 7, IDS/IPS: 23 and
Total: 100.

A. Policy requests generation program

We have considered large scaled enterprise networks where
each network has 100 NFs. A chain of NFs consists of 2
to 7 NFs and the number of NFs in a policy follows a
truncated power-low distribution with exponent 2, minimum 2
and maximum 7. The types of NFs in a policy are selected
randomly, with different probabilities based on how many
instances of each type of NFs can be there in the enterprise.
Policy requests generation program is written in c++.

• Inputs to the program: number of large scaled enter-
prise networks

• Output of the program: a set of policies for each
enterprise with 100 NFs

II. INITIAL TRAFFIC DISTRIBUTION

After generating the policy requests, for simulating the
traffic, we need traffic data where owners (enterprises/users)
of the flows can be identified, so that we can differentiate the
traffic passing through each policy. In the real-life situation, the
clients traffic passing through the set of NFs will be directed
to the different applications as web server, voip server etc
according to the clients requests/needs. So the traffic load
that each client is expecting can be different based on the
applications client is handling [4]. For the experiments, we
assume our clients are handling web based applications and
the traffic used for the experiments is taken from a study about
web traffic [2]. The data set includes HTTP traffic breakdown
of 30,000 users for a day which is measured at three different
vantage points of an Italian ISP. Traffic breakdown reports
HTTP traffic for every 2 hours.

A. Initial traffic distribution program

We use the traffic data for each enterprise given in [2] at
the starting point of the HTTP traffic breakdown, and assume
it as the initial total traffic flow that will pass through all the
policy chains of the enterprise. We assume that the initial total
traffic load is equally distributed over the set of policies of that
enterprise. The initial traffic distribution program is written in
c++.

• Inputs to the program: the set of policies, initial traffic
load

• Output of the program: distribution of the traffic load
over policies

III. SCALING REQUIREMENTS OVER THE TIME

In a data center, traffic changes happen throughout the day
and according to the amount of these changes, the NFs should
be scaled out/in to satisfy the dynamic demands. The limitation
of our data set is it lacks the information on how the traffic
changes occurred over two hours. It has information only on
traffic at each two hours.

According to [5], as shown in Figure 2, traffic changes
on usual days happen gradually over time. Even at events
where traffic will be increased in a huge amount (elephant
flows), as shown in Figure 3, the change happens gradually
over a 15 minutes time period [6]. So we have assumed that,
for the every 2 hours traffic reported in [2], increase/decrease
happened uniformly through 2 hours and generated the traffic



Fig. 1: Box plot of middlebox deployments for small (fewer than 1k hosts), medium (1k-10k hosts), large (10k-100k hosts), and very large
(more than 100k hosts) enterprise networks. Y-axis is in log scale. [1]

graph in Figure 4. It shows traffic flow for 24 hours in 10MBps
units for each enterprise.

But in special situations, there can be flash events, where
sudden traffic changes occurred within few minutes. So we
have to consider two situations: usual traffic patterns and
elephant flows where traffic changes gradually and flash events
where traffic changes suddenly. To reflect scaling requirements
of both situations, we spread the increase/decrease of number
of NFs (needed for the full 2 hours traffic change) over 2 hours
and add/remove one instance at a time.

According to [7], as shown in Figure 5, if we add more
than one instance at a time, to be ready for the requirements
in the future, we are adding more than what is needed and
wasting resources. So we define a threshold (Maximum amount
of traffic that an instance of a NF can handle) to find how
many instances we should add/remove to accommodate traffic
change and we will add/remove one instance at a time.

A. Scaling requirements over the time program

In the scaling requirements over the time program, first we
define the threshold L, The maximum amount of traffic that
an instance of a NF can handle. If the traffic change of a 2
hours period is greater than L, we assume that we have to add
an extra instance of the NF. We are making an assumption:
the traffic flowing through the NF instance is proportionate to
the capacity of the NF instance and it is same for all types
of NFs. In reality this might not be correct and different NF
types may have different connections between traffic flow and
capacity.

As the second step, we identify the enterprises whose traffic
has changed over each 2 hours from the traffic graph. For each
enterprise, we have already generated x number of policies, and
assume each policy has a unique traffic flow passing through.
When there is a change in the total traffic for that enterprise, it
is very unlikely that traffic passing through all the policies of
that enterprise contributed to the traffic change. Most probably
the traffic change was caused by the traffic passing through sub
set of policies. So for enterprises that have a traffic change,
we randomly select 5 of its policies, as the policies affected
by the traffic change.

After selecting the policies affected by each enterprise
traffic change, the third step is to identify which NF from
each policy, needs to be scaled out/in to satisfy the new
traffic demands. According to Stratos [8], there are simple

approaches we could leverage for deciding which NF(s) to
scale. The simplest solution is to scale all NFs in that policy.
This guarantees that any bottleneck will be eliminated, but this
potentially wastes significant resources and imposes unneeded
costs, when only one NF may be the bottleneck. So Stratos
performs a set of scaling trials, scaling each NF in the policy,
one (VM) instance at a time. They begin by adding a new
instance of the first NF in the chain, monitoring for changes
over a fixed time window. If performance improves beyond
some threshold, then the new instances is permanently added
to the tenants topology. No improvement means that the NF
is not a bottleneck, so they discard the new instance. Then
move to the next NF in the chain and repeat the process.
Their results show that no two NFs will be simultaneously and
equally bottlenecked and scaling one NF in the policy at a time
is acceptable. Hence assuming the conditions in Stratos, we
randomly select a NF from each policy as the bottlenecked NF
for which the resource allocation needs to be increase/decrease.

The last step is to decide, from the identified NF instance
to scale, how many instances we should add/remove to satisfy
the new traffic demand. For each enterprise whose traffic has
changed, first we identify the total traffic change over each 2
hours: C from the traffic graph. Then we calculate how many
instances had to be add/remove for each enterprise: I based
on the threshold L we defined earlier.

I = C/L

If we have to add/remove instances, we spread the I over
2 hours (120 minutes). As explained earlier, we are trying to
add/remove instance at a time. Therefore, If I = 2, and starting
time of the period is T=0, then scaling occurs when T+40
minutes and T+80 minutes. If we dont have to add/remove
instances, we have to change the paths of the policies which
use overloaded links because of traffic change.

Following the above process, the scaling requirements over
the time program is written in c++.

• Inputs to the program: the set of policies, traffic pattern

• Output of the program: a set of policies and NFs
effected by traffic changes during each interval and the
required add/remove NF instances for each interval

IV. TOPOLOGY GENERATION

We have evaluated the performance of the resource allo-
cation algorithm assuming three different data center network



Fig. 2: Traffic in the data-center changes in the magnitude (Time in seconds). [5]

Fig. 3: Traffic statistics from World Cup 2006 [6]

Fig. 4: Traffic over a full day

architectures for NFC: (1) k fat tree, (2) VL2 and (3) BCube
as shown in figure 6 . We have assumed environment where
there are there are 16, 32, 48, 64, 80, 96, 112 and 128 servers
in the NFC. Therefore, we needed data on: (1) nodes of the
network (servers and switches of the network), (2) links of the

Fig. 5: Machines Allocation [7]

networn (connecting two nodes), and (3) paths of the network
(between each and every server of the network). All these three
depends on two factors: (1) the number of servers in the NFC
and (2) network architecture of the NFC.

K- Fat Tree BCube VL2 

Fig. 6: (1) k fat tree, (2) BCube and (3) VL2

A. Topology generation program

Following the standards given for (1) k fat tree, (2) VL2 and
(3) BCube architectures [9], [10], [11], we define the network
and equally distribute the number of servers over ToR switches
of the network. The topology generation program is written in
python.

• Inputs to the program: network architecture and num-
ber of servers

• Output of the program: the topology: nodes, links and
paths



ACKNOWLEDGMENT

This research was sponsored by the U.S. Army Research
Laboratory and the U.K. Ministry of Defence and was accom-
plished under Agreement Number W911NF-06-3-0001. The
views and conclusions contained in this document are those of
the author(s) and should not be interpreted as representing the
official policies, either expressed or implied, of the U.S. Army
Research Laboratory, the U.S. Government, the U.K. Ministry
of Defence or the U.K. Government. The U.S. and U.K. Gov-
ernments are authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation
here on. Also this work is supported by the Maria de Maeztu
Units of Excellence Programme (MDM-2015-0502).

REFERENCES

[1] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, and at el., “Making
middleboxes someone else’s problem: network processing as a cloud
service,” in ACM SIGCOMM’12, 2012.

[2] G. Vinicius, F. Alessandro, M. Marco, and at el., “Uncovering the big
players of the web,” in International conference on Traffic Monitoring
and Analysis, 2012.

[3] “Test data,” https://github.com/windyswsw/DataForNFVSDNExperiments.
[4] S. Gebert, R. Pries, D. Schlosser, and K. Heck, “Internet access

traffic measurement and analysis,” in International conference on Traffic
Monitoring and Analysis, 2012.

[5] K. Srikanth, S. Sudipta, G. Albert, and at el., “The nature of data center
traffic: Measurement and analysis,” in ACM SIGCOMM conference on
Internet measurement conference, 2009.

[6] Y. Tarui, “Analyzing the impact of major social events on internet
exchange traffic,” in NANOG38, 2009.

[7] W. Wang, H. Chen, and X. Chen, “An availability aware virtual machine
placement approach for dynamic scaling of cloud,” in International
Conference on Autonomic and Trusted Computing, 2012.

[8] A. Gember, R. Grandl, A. Anand, and at el, “Stratos: Virtual middle-
boxes as first-class entities,” Technical Report TR1771, 2013.

[9] C. Leiserson, “Fat-trees: universal networks for hardware-efficient su-
percomputing,” in IEEE Transactions on Computers, 1999.

[10] A. Greenberg, J. R. Hamilton, N. Jain, and at el, “Vl2: a scalable and
flexible data center network,” in ACM SIGCOMM 2009.

[11] C. Guo, G. Lu, D. Li, and at el, “Bcube: a high performance,
server-centric network architecture for modular data centers,” in ACM
SIGCOMM 2009.


