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Abstract 

 

The Mediterranean region stands as one of the most sensitive to climate change, both in terms 

of warming and drying. On shorter timescales, internal variability has substantially affected 

the observed climate and in the next decade might enhance or compensate long-term trends. 

Here we compare the multi-model climate predictions produced within the framework of the 

CMIP5 (Coupled Model Intercomparison Project Phase 5) project with historical simulations 

to assess the level of multi-year climate prediction skill in the Mediterranean region beyond 

that originating from the model accumulated response to the external radiative forcings. We 

obtain a high and significant skill in predicting 4-year averaged annual and summer mean 

temperature over most of the study domain and in predicting precipitation for the same 

seasons over northern Europe and sub-Saharan Africa. A lower skill is found during the 

winter season but still positive for temperature. Although most of this high skill originates 

from the model response to the external radiative forcings, the initialization contributes to the 

temperature skill over the Mediterranean Sea and surrounding land areas. The high and 

significant correlations between the observed Mediterranean temperatures and the observed 

AMO in the summer and annual means are captured by the CMIP5 ensemble which suggests 

that the added skill is related to the ability of the CMIP5 ensemble to predict the AMO. Such 

a link to the AMO seems restricted to Western Africa and summer means only for the 

precipitation case. 

1. Introduction 

 

 The Mediterranean region is projected to be among the most heavily affected by the 

21st century greenhouse gas induced climate change, with significant regional warming and 
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drying by the end of the century (e.g. Mariotti et al., 2008; Mariotti et al, 2013). On the 

shorter term, a few decades into the future, decadal variability of both internal and external 

origin, will largely determine the conditions to be experienced in the region, as already seen 

over the course of the 20th century (Mariotti and Dell’Aquila, 2012). A main question and one 

of great societal relevance, is to which extent will natural variability enhance or reduce 

externally forced changes and for how long. In view of the seemingly robust climate change 

signal in the Mediterranean region, projected external forcing constitutes a source of decadal 

predictability for this region. What remains to be understood is the degree of predictability of 

regional internal decadal variability and its impact on our ability to predict future changes a 

few years ahead.  

Early potential predictability studies highlighted the Atlantic Ocean as the most 

promising region for decadal climate prediction (Griffies and Bryan, 1997; Boer, 2000; 

Pohlmann et al., 2004; Collins et al. 2006). The Atlantic Ocean exhibits strong multi-decadal 

variability which involves variations in the strength of the ocean thermohaline circulation 

associated with a large scale signature in sea surface temperatures (SST) referred to as the 

Atlantic multidecadal oscillation (AMO, Kerr, 2000; Knight et al, 2005, 2006). Much of the 

current quest to predict future decadal climate variations hinges on the potential predictability 

associated with the variations of the ocean gyres and the Atlantic meridional overturning 

circulation (AMOC). At the edge between seasonal forecasting and climate change 

projections, the decadal climate prediction exercise consists of initializing a climate model 

from an estimate of the observed climate state while also prescribing the changes in external 

radiative forcings, assuming these are known (Hawkins and Sutton 2009; Meehl et al., 2009; 

Murphy et al, 2010; Doblas-Reyes et al, 2011). Based on this approach, hindcast (i.e. 

retrospective climate prediction) studies (Smith et al, 2007, 2012; Keenlyside et al, 2008; 

Pohlmann et al., 2009) showed that the Atlantic Ocean stands out as a region of increased 
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forecast skill with initialization. The initialization allows for more accurate predictions of the 

AMO compared to coupled experiments accounting only for the model accumulated response 

to changes in external radiative forcings (García-Serrano et al, 2012), in particular in the 

multi-model ensemble climate hindcasts produced in the framework of the Climate Model 

Intercomparison Project Phase 5 – CMIP5 (Doblas-Reyes et al., 2013; García-Serrano et al., 

2014). 

A recent study using observational data and a regional climate model (Mariotti and 

Dell’Aquila, 2012) suggests a linkage between the Atlantic multidecadal 

oscillation/variability (AMO/AMV) and decadal climate variability in the Mediterranean 

region. Mediterranean SST exhibit AMO-like variability, which in turn is reflected in AMO-

like evaporation variability (Fenoglio et al., 2013). There is also a linkage between the AMO 

and Mediterranean surface air temperatures which appears to be strong in summer, also 

present to a lesser extent in the transition seasons, but negligible in winter. The modeling 

results from Mariotti and Dell’Aquila (2012) suggest that atmospheric processes are the 

primary mechanism connecting the AMO with the Mediterranean rather than a direct 

influence of the Atlantic on the Mediterranean Sea. This study therefore suggests the 

potential for a certain degree of decadal climate (namely, temperature and evaporation) 

predictability in the Mediterranean region, to the extent that the AMO is predictable. In 

contrast, decadal variability of regional precipitation was found to be largely affected by the 

seasonal manifestations of the North Atlantic Oscillation, rather than the AMO. It is currently 

unknown whether there is any predictability in NAO variability. Hence the prospects for 

predicting regional precipitation variability, outside of what may be the externally forced 

long-term drying trend, are also unclear.  

 In this article, we aim at assessing the level of decadal climate prediction skill in the 

Mediterranean region beyond that originating from the model accumulated response to the 
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external radiative forcings, and the seasonal dependence of this skill, contrasting summer 

(defined as July to August throughout our study) and winter (December to February) values. 

We also aim at assessing to what extent the added-value from the initialization is originating 

from the predictability of the AMO and its linkage to the Mediterranean region. It should be 

noted that the focus of the present study is not on the AMO drivers (Ottera et al. 2010; Booth 

et al. 2012; Terray 2012; Zhang et al. 2013) but on its prediction skill and the predictability 

gained from simulating its teleconnections, in particular over the Mediterranean region as 

suggested by Matei et al (2012). These assessments rely on the CMIP5 multi-model ensemble 

(MME) climate hindcasts (Taylor et al., 2012) which are introduced in Section 2 together 

with the observational data used for verification and the skill scores used to measure the 

performance of this MME. Section 3 then illustrates the performance of the CMIP5 MME in 

predicting Mediterranean temperatures and precipitation, and compares this skill with the one 

from historical climate simulations which do not take into account the internal variability as a 

source of predictability and which contain potential accumulated errors in the model response 

to the external radiative forcings. The added-value from the initialization is then related to the 

ability of the MME to capture the linkage between the AMO and those regional climate 

variables. Section 4 and 5 provide respectively a discussion of major results and the 

conclusions from our study.  

2. Methodology 

 

2.1 Model data 

 

The multi-model ensemble (MME) analyzed here includes the contributions to the 

CMIP5 project produced with the HadCM3, MRI-CGCM3, MIROC4h, MIROC5,  CanCM4,  

CNRM-CM5, MPI-M, GFDL-CM2, CMCC-CM, IPSL-CM5 and EC-Earth v2.3 coupled 
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climate models. These contributions consist in 10-year long hindcasts initialized from an 

estimate of the observed climate state every 5 years over the period 1960-2006 between 

November, 1st and the following January, 1st. This ensemble is referred to as Init thereafter. 

Complete calendar years from January to December are considered as forecast years here. 

Two ranges of forecast years are analyzed in the following: from forecast years 2 to 5 and 6 

to 9, which are classically used as target periods for analyses of climate predictions (Doblas-

Reyes et al., 2013). The MME hindcast set gives 10 predicted values for a specific forecast 

range. The forecast fields are interpolated using a conservative method onto the grid of the 

observational dataset used for verification before any analysis. More details on the model 

experiments analyzed in this work are provided in Table 1.  

A sister ensemble has been built from the “historical” coupled simulations and the 

first years of the climate projections following the CMIP5 RCP4.5 (Representative 

Concentration Pathway 4.5W/m2, Taylor et al., 2012) scenario run with the same models. In 

these experiments, the simulated natural variability is not constrained to follow the 

contemporaneous observed one except through the effect of the external radiative forcings, 

which are exactly the same as in the Init MME. Additionally, errors in the response to the 

external radiative forcings could accumulate over time. This ensemble is referred to as NoInit 

thereafter. Both Init and NoInit CMIP5 experiments include observed time-dependent solar 

irradiance variations and volcanic aerosols until 2005 whereas these would not be known in a 

true prediction exercise.  

The Init and NoInit ensembles do not contain the same number of members. We have 

checked that restricting those ensembles to the subsets allowing for the same number of 

members for each model in the two ensembles do not affect our main conclusions (not 

shown). 
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2.2. Observational data 

 

For temperature verification, we have used a combination of land surface temperatures from 

the National Centers for Environmental Prediction (NCEP) GHCN/CAMS dataset (Fan and 

van den Dool, 2008), SST from the NCDC ERSST v3b dataset (Smith et al, 2008) and, north 

of 60°N, the GISTEMP dataset with 1200km decorrelation scale (Hansen et al 2010). This 

dataset covers the 1960-2012 period. For precipitation, a land-only monthly dataset is 

considered because of the sparse observational coverage over the oceans before 1979. We use 

the Global Precipitation Climatology Centre (GPCC) v5 data (Rudolf et al 2010) for the 

1960-2012 period. For sea level pressure, we have used the HadSLP2 dataset (Allan and 

Ansell, 2006) for the 1960-2004 period. 

 

2.3. Forecast skill assessment  

 

In our study we focus on the analysis of the skill for the annual values and contrast the 

summer (JJA) and winter (DJF) values. We compute JJA, DJF and annual means for both the 

model experiments and observations. The performance of the MME is assessed for the 

average of the predicted values over forecast years or seasons 2 to 5 and 6 to 9. For the winter 

season, the average over forecast seasons 2 to 5 and 6 to 9 comprises the December values 

from years 1 to 4 and 5 to 8 respectively. When initialized from an estimate of the observed 

climate state, climate models drift towards their attractor, which leads to systematic errors in 

climate forecasts. These systematic errors depend on the forecast time and we therefore apply 

a drift correction to our multi-model ensemble (Goddard et al., 2012; Meehl et al., 2014). 

Anomalies are computed using the so-called “per-pair” methodology (Garcia-Serrano and 

Doblas-Reyes, 2012): the modeled or observed climatology is defined as a function of the 
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forecast time (multi-year or multi-season average), by averaging the predicted variable 

(temperature or precipitation) across the start dates taking into account only the predicted 

values for which observations are available at the corresponding date; a forecast-time-

dependent climatology is computed for each individual model averaging all members. The 

climatology of each model is then subtracted from each hindcast to obtain anomalies over the 

whole predicted period for each member of each model: 
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member, S the number of start dates and NA refers to a missing value. Then, ensemble-mean 

anomalies are computed for each model averaging all its members and the multi-model 

ensemble-mean anomalies are computed giving an equal weight to each model, regardless of 

the number of ensemble members available for that model. The same method is applied to the 

observations to obtain anomalies over the whole verification period. All the climate 

prediction scores described below are computed from those anomalies. 

Hindcast prediction skill is measured using the anomaly correlation coefficient 

(ACC), the mean square skill score (MSSS) or the Brier Skill Score (BSS). The ACC is 

computed by correlating the predicted MME anomalies with the observed ones across the 
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where X’sf is the MME mean anomaly for forecast time f and startdate s, and O’sf is the 

corresponding observed anomaly. A t-test, after a Fisher-Z transformation, is performed to 

assess the significance level of an ACC or of a difference in ACC, accounting for the 

autocorrelation of the data when computing the degrees of freedom following von Storch and 

Zwiers (1999). Indeed, hindcasts initialized every 5 years cannot be considered as 

independent when attempting to predict decadal climate variability, hence our reduction of 

the degrees of freedom based on von Storch and Zwiers (1999). It is worth noting that only 9 

or 10 observations (when verifying predictions for forecast years 6-9 or 2-5 respectively) can 

be used to compute the ACC or any other skill score, and those 9-10 data are reduced by 

about a factor 2 to obtain the number of effective independent data. Increasing the frequency 

of the start dates would not increase significantly the number of independent data since the 

additional hindcasts would still not be independent for analyses of decadal climate variability. 

Extending backward the period which is sampled by our start dates would be necessary to 

obtain more independent hindcasts and more robust estimates of the added-value from 

initialization in terms of skill scores. Obtaining accurate initial conditions is unfortunately 

harder to achieve as we extend the hindcast period back into the past.  

The MSSS is computed as 1 minus the ratio of the mean square error (MSE) of the 

predicted per-pair MME anomalies over the MSE of a climatological forecast (Goddard et al, 

2013): 
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A Fisher test is performed to assess the significance level of a MSSS accounting for the 

autocorrelation of the data following von Storch and Zwiers (1999). Since the MME is used 

in the forecast skill assessment through the ACC and the MSSS, externally forced signals and 
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any signal due to the initialization will stand out (that is only the robust patterns, consistent 

across members and models will stand out). In contrast, any “noise” will be to a large extent 

eliminated by the MME averaging operation.  

The BSS is computed for the lower, middle and upper terciles: 
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where psft is the forecast probability for a given tercile t to occur, for forecast time f and 

startdate s, osft is its observed probability (0 or 1) and ot is its observed climatological 

probability. The model terciles and the model forecast probabilities are estimated from the 

multi-model ensemble of model mean anomalies which makes an ensemble of 11 values 

(models) for each start date, each variable and each forecast averages. This approach ensures 

equal representativeness for all models in a similar fashion as we operated for the 

deterministic skill measures (ACC and MSSS).  

The skill gained by the initialization process is assessed by computing the difference 

between Init and NoInit ACC. Whenever this difference in skill is positive the initialization 

process increases the skill beyond what is achievable based on the integration of the model 

response to external radiative forcing only. For temperature, we compute additionally the 

skill scores after detrending the observed, Init and NoInit grid-point temperature by 

subtracting their respective global land mean averaged between 60°S and 60°N at land points 

and global ocean mean averaged between 60°S and 60°N at ocean points. We have checked 

that a linear detrending led to similar qualitative conclusions (not shown). The robustness of 

our conclusions on the added-value from the initialization is also assessed by computing the 

ratio between the root mean square error (RMSE) of Init over the RMSE of NoInit. A Fisher 

test is performed to assess the significance level of this ratio accounting for the 

autocorrelation of the data following von Storch and Zwiers (1999). 
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 The linkage between the AMO and the Mediterranean temperature and precipitation is 

assessed via correlation maps of observed temperature and precipitation with the observed 

AMO index. The AMO index used here is defined as in Trenberth and Shea's (2006): the SST 

averaged over the North Atlantic (80°W-0°E / EQ-60°N) minus the global (60°S-60°N) SST 

average. Previous research shows that this definition largely decontaminates the AMO index 

from the long-term warming (e.g. van Oldenborgh et al. 2009, 2012). This AMO index 

represents the differential warming of the North Atlantic Ocean with respect to the global 

oceans. The ability of the CMIP5 MME to capture the linkage between the AMO and the 

Mediterranean temperature and precipitation is assessed by computing similar correlation 

maps but for the predicted variables. The temperature is detrended prior to the computation of 

those correlation maps whereas the precipitation is not. The subsequent comparison between 

the AMO correlation patterns and the ACC patterns aims at highlighting any AMO derived 

predictability. By extending these analyses to the sea level pressure, we aim to highlight the 

atmospheric mechanisms by which the AMO predictability contributes to the Mediterranean 

temperature and precipitation skill and to which extent those are captured by our MME. 

3. Results 

  

3.1. Temperature skill and role of the AMO 

 

The Init ACC maps (Figure 1, top row) show a high and significant skill over most of 

the study domain for the temperature averaged over forecast years 2 to 5 (left panel) and 6 to 

9 (right panel). Though slightly lower than the ACC, the MSSS maps show a very consistent 

pattern of high and broadly significant skill (Figure 1, fourth row). Most of this high skill 

originates from the external radiatively forced climate signal since the differences in ACC 

between Init and NoInit are small (Figure 1, second row). None of the differences in ACC are 
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significant. However, as mentioned in section 2.3, only 9 (right panel) or 10 (left panel) data 

are used to compute the ACC, and those 9-10 data, only 5 years apart, cannot be considered 

as independent, hence a high significance threshold. Additionally, the skill in NoInit is 

already very high due to the long-term warming trend. Hence, any increase in ACC when 

capturing the superimposed internal variability or correcting the model response to the 

external radiative forcings prior to the initialization date is of minor magnitude compared to 

the NoInit ACC. Despite the lack of significance of the differences in ACC, those differences 

show an increase in ACC over the Eastern Atlantic and the Mediterranean Sea. To highlight 

the added-value from the initialization, we re-compute the maps of difference in ACC 

between Init and NoInit after detrending the grid-point observed and modeled (both Init and 

NoInit) temperature as described in section 2.3 (Figure 1, third row). It highlights the increase 

in ACC thanks to the initialization over the Eastern Atlantic and the Mediterranean Sea and a 

decrease over Northern Europe and Sub-Saharan Africa. The ratio between the Init RMSE 

and the NoInit RMSE (Figure 1, bottom row) exhibits again a similar pattern of improved 

performance with initialization over the Eastern Atlantic and the Mediterranean Sea and of 

decreased performance over Northern Europe and Sub-Saharan Africa. The probabilistic 

verification (Figure S2) shows broadly consistent features apart from the Sub-Saharan Africa 

where there is no clear signal. In agreement with the conclusions from the deterministic 

verification, we observe: 1) a larger BSS in Init than NoInit over the Eastern Atlantic for all 

terciles and both forecast averages except for the lower tercile and forecast years 6-9, 2) a 

larger BSS in Init than NoInit over the Mediterranean Sea for the middle tercile but a noisier 

response for the other two terciles, 3) a lower BSS in Init than in NoInit over the Northern 

Europe for the lower and upper terciles but a noisier response for the middle tercile.  

The increase in ACC over the Eastern Atlantic and the Mediterranean Sea with 

initialization might be associated with their linkage to the AMO, the latter already known to 
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have an increased skill with initialization in the CMIP5 MME (Doblas-Reyes et al., 2013; 

Garcia-Serrano et al, 2014). The observed annual AMO index underwent a positive phase 

during the first decade of the hindcast period, followed by a negative phase that lasted about 

three decades and a final positive phase, stronger than the first positive phase (Figure 2 top 

row). Those multi-decadal oscillations produce a slight positive trend over the hindcast 

period. NoInit does not exhibit more than this slight positive trend at both forecast averages. 

A higher and significant skill in predicting the annual AMO index is obtained in Init which 

captures the multi-decadal oscillations, but also successfully reproduces the minimum in the 

70s and the recent maximum at forecast years 2 to 5. The positive trend is less pronounced in 

the winter (Figure 2 second row) than in the annual mean AMO index. Accordingly a larger 

added-value of the initialization appears in winter: the difference between the Init and NoInit 

ACC is larger. By contrast, the positive trend is more pronounced in summer (Figure 2 

bottom row) and the differences between Init and NoInit performance weaker. The difference 

between Init and NoInit performance decreases at forecast years 6 to 9 as compared to 

forecast years 2 to 5 (Figure 2, right column).  

 The correlation maps of observed temperature with the observed AMO index (Figure 

3, top row) exhibit a rotated T-structure, with positive correlation covering the Eastern 

Atlantic, Northern Africa and the Mediterranean Sea while negative correlations appear over 

Europe. The maps for forecast years 2-5 (left panel) and 6-9 (right panel) are very similar 

even though they are based on different observed time windows ([1962-1965] to [2006-2009] 

for forecast years 2-5; [1966-1969] to [2006-2009] for forecast years 6-9) which confirm the 

robustness of this correlation pattern against sampling (which is not the case for sea level 

pressure for example as mentioned later). The pattern of correlations between the ensemble-

mean temperature and the ensemble-mean AMO index is smoother than the observed pattern 

because of the MME averaging operator. Init captures the linkage between the AMO and the 



This article is protected by copyright. All rights reserved 

A
cc

ep
te

d 
A

rti
cl

e 
Eastern Atlantic, Mediterranean Sea and northern North Africa (Figure 3, middle row), which 

is consistent with the increase in ACC with initialization in those regions. Init however 

exhibits negative correlations between the AMO index and the temperature between about 

10°N and 20°N and positive correlations over Europe which do not appear in the 

observations, probably at the origin of the decrease in ACC with initialization in both regions. 

The AMO index exhibits a positive trend, related to its negative-to-positive phase transition 

described above, which might correlate well with the external radiatively forced warming 

signal. Subtracting the correlation between the NoInit AMO and temperature from the 

correlation between the Init AMO and temperature allows isolating the linkage between the 

temperature and the multidecadal AMO oscillations around the model accumulated response 

to the external radiative forcings, identifying the AMO-related signature coming from the 

initialization. Such differences between Init and NoInit correlations of the AMO index with 

temperatures (Figure 3, bottom row) share strong similarities with the differences between 

Init and NoInit ACC after detrending (see Figure 1, third row). The ability of the Init MME to 

capture the observed AMO variability seems to contribute substantially to its skill in 

predicting multi-year averaged temperature over our study domain. 

In boreal summer, the Init ACC is similarly high and significant in most of the study 

domain (Figure 4, top row), consistent with the Init MSSS pattern, and mostly originating 

from the externally forced climate signal. The differences in ACC between Init and NoInit 

though still small, show a slightly different pattern than for the annual mean temperature, and 

less spatially coherent.  The ratio of the Init RMSE over the NoInit RMSE provides 

consistent patterns of added-value from the initialization with the differences between Init 

ACC and NoInit ACC. There is still an increased skill over the Eastern Atlantic with 

initialization but the added-value over the Mediterranean Sea is less pronounced.  There are 

also two additional areas where the initialization tends to increase the skill: over Eastern 
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Europe and sub-Saharan Africa. In those two regions, the correlation between the observed 

JJA AMO index and the observed JJA temperature has an opposite sign to the one for annual 

temperature: it becomes positive over Eastern Europe and negative over sub-Saharan Africa 

(Figure 5, top row). The latter is probably due to the positive link between the AMO and the 

West African monsoon (Mohino et al. 2011; van Oldenborgh et al. 2012), which negatively 

feedbacks on local land-surface temperature (Giannini et al. 2003, 2005; Kucharski et al. 

2012). The correlation between the Init JJA AMO index and the Init JJA temperature is 

positive over most of the domain except for the sub-Saharan Africa (Figure 5, middle row), 

as in the annual correlation maps (Figure 3, middle row). The Init and observed correlation 

maps are therefore more consistent over Eastern Europe and sub-Saharan Africa for the JJA 

means than for the annual ones, hence a larger added-value of the initialization in JJA over 

those two regions. The probabilistic verification (Figure S3) consistently shows an increased 

BSS with initialization in the Eastern Atlantic for the upper and middle terciles and in the 

Mediterranean region and over Eastern Europe for all the terciles and forecast averages.   

The winter (DJF) stands out as the season for which the increase in ACC with 

initialization is the largest, especially over the oceans (Figure 6, second and third rows), and 

consistently the season for which the decrease in RMSE is the largest (Figure 6, bottom row). 

The skill, both deterministic (Figure 6) and probabilistic (Figure S4), remains improved over 

the Eastern Atlantic but it is also improved over the Eastern North Africa, Eastern 

Mediterranean and Eastern Europe, in terms of RMSE and ACC. The skill is strongly reduced 

though over Western Africa and Western Europe, especially for forecast years 2 to 5, and 

over the Arabian Peninsula. DJF is also the season for which the Init ACC (Figure 6, top row) 

and MSSS (Figure 6, fourth row) skill are the lowest, as well as the BSS for all terciles 

(Figure S4). The warming trend has indeed lower relative amplitude in this season compared 

to the amplitude of the internal natural variability (Figure S1). The correlation maps of 
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observed DJF temperature with the observed DJF AMO index rather exhibit an L-pattern 

with positive values over Eastern Atlantic, Northern Africa, Eastern Mediterranean Sea and 

the Arabian Peninsula and negative values over Europe (Figure 7, top row). This pattern is 

however not robust against the sampling (left and right panels) and slightly different from the 

one obtained by Mariotti and Dell’Aquila (2012) over a different period. The observed 

linkage between the DJF AMO and the DJF temperature is not properly captured by Init over 

Europe. Over the Mediterranean Sea, the signature is noisy (Figure 7, middle row). The 

increase in skill with initialization in those regions therefore does not seem to be related to 

the ability of the MME in predicting the AMO. However, Init is able to simulate the observed 

AMO correlation pattern over the Eastern Atlantic and Northern Africa reasonably well and 

over the Arabian Peninsula to some extent. Although boreal winter (DJF) is the season for 

which the initialization allows for the largest increase in skill in predicting the AMO index 

(Figure 2 middle row), there is little agreement between the pattern of differences in ACC 

skill Init-NoInit and the pattern of Init-NoInit differences in correlations of the temperature 

with the AMO index (Figure 7, bottom row). The ability of the MME to capture the observed 

winter AMO seems to contribute to the skill in predicting winter temperature only over 

confined regions such as the Egypt-Sudan area and Eastern Atlantic. 

3.2. Precipitation skill and role of the AMO 

 

 As discussed in the introduction, previous studies have not highlighted any AMO-

related precipitation variability in the Mediterranean. Hence the basis for decadal 

precipitation prediction is currently unclear. The precipitation patterns additionally exhibit 

less spatial coherence than the temperature patterns. We therefore face a double-challenge for 

precipitation forecast skill: the lack of knowledge about predictability sources and the spatial 

noise. Nevertheless, an exploratory analysis of decadal prediction skill is presented here to 
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potentially gain further insight in regional precipitation predictability including that from 

externally forced causes. 

 Despite the noisy ACC Init patterns for total precipitation (due to the low spatial 

coherence of precipitation events compared to temperature), significant ACC appear over 

Northern Europe and over sub-Saharan Africa for both forecast year ranges: 2 to 5 and 6 to 9 

(Figure 8, top row). A high MSSS is also seen in those two regions, though not significant 

(Figure 8, third row) as well as a high BSS for the lower and upper terciles (Figure S5). The 

Init skill is however generally lower for precipitation than for temperature, mainly because 

the externally forced signal has lower relative amplitude compared to the internally generated 

variability (Figure S1). The high skill in northern Europe and sub-Saharan Africa originates 

mainly from the accumulated model response to the external radiative forcing since weak 

differences in ACC appear between Init and NoInit (Figure 8, second row), except for part of 

Western Africa and for the South-Eastern tip of the Arabian Peninsula. A larger BSS in Init 

than NoInit is also seen over part of Western Africa for the lower and upper terciles and for 

both forecast averages (Figure S5). The long-term warming has been shown to have an 

impact on the West African monsoon, with maximum amplitude over the western Sahel (Ting 

et al. 2009; Mohino et al. 2011; Smith et al. 2012). A larger added-value from the 

initialization (Figure 8, second and fourth rows) is obtained for precipitation than for 

temperature, because the signal from internal variability has larger relative amplitude 

compared to the externally forced signal (Figure S1), hence a larger room for improvement 

with initialization. The patterns of precipitation forecast skill are however much less spatially 

coherent than those of temperature hence we have a lower confidence in their physical 

robustness. The correlation maps of observed precipitation with the observed AMO index 

exhibit a tripolar pattern, with a positive band over northern Europe, a negative band 

extending from Western Europe toward the Arabian Peninsula and a positive band over 
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Northern Africa (Figure 9, top row). This tripolar pattern is captured by Init, although with a 

slight southward (northward) shift of the negative band over Western (Eastern) Europe 

(Figure 9, middle row). The correlations are higher and less noisy in Init than in the 

observations since the MME mean operator smoothes out any signal other than externally 

forced or persisting the initial conditions. The core of the positive correlation bands, i.e. over 

Northern Europe and sub-saharan Africa, which are well captured by Init corresponds to high 

ACC and MSSS in Init. In transitional areas between positive and negative correlation bands 

of precipitation with the AMO index (southern Europe and Mediterranean Sea), Init fails to 

capture accurately the linkage between precipitation and the AMO (slight shift of the 

patterns) and the ACC and MSSS are low in those areas. The only region where the Init-

NoInit differences in correlation with the AMO index (Figure 9, bottom row) are consistent 

with the pattern of Init-NoInit differences in ACC skill (Figure 8, second row) locates over 

the westernmost part of North Africa. 

 In summer (JJA), high and significant ACC cover also most of Northern Africa and a 

few points in Northern Europe (Figure 10, top row). The pattern of Init skill is robust against 

the score considered but the MSSS (Figure 10, third row) and the BSS (Figure S6) show 

more modest performance. MSSS are significant over Egypt but this performance is not 

supported by the other skill scores. Although the differences in ACC between Init and NoInit 

are not significant, a spatially coherent increase in ACC with initialization appears over 

Western Africa (Figure 10, second row), together with a decrease in RMSE (Figure 10, fourth 

row). This low but positive added-value from the initialization in multi-year prediction skill 

over the West African monsoon region might be associated with the positive, although not 

statistically significant, skill of the Sahelian precipitation regime found by García-Serrano et 

al. (2013). The correlation maps of observed JJA precipitation with the observed JJA AMO 

index exhibit a similar tripolar pattern to the annual mean maps, but with a negative band 



This article is protected by copyright. All rights reserved 

A
cc

ep
te

d 
A

rti
cl

e 
centered on the Mediterranean Sea (Figure 11, top row). The positive center of action over 

Africa is well captured by Init, including in terms of shape, which could explain its high skill 

in predicting JJA precipitation in this area (Figure 11, second row). As for annual means, the 

westernmost part of North Africa is the region showing the largest consistency between Init-

NoInit differences in correlation with the AMO index (Figure 11, bottom row) and Init-

NoInit differences in ACC skill (Figure 10, second row). This result is consistent with 

previous evidence on the predictor role of the AMO upon the Sahelian rainfall (Mohino et al. 

2011; van Oldenborgh et al. 2012; García-Serrano et al. 2013). 

 The winter Init ACC patterns are particularly noisy, with a few points of significant 

ACC surrounded by negative ones spread over Northern Africa and a few positive ACC over 

Northern Europe (Figure S7). The MSSS show a significant skill over the Eastern Sahel 

which does not correspond to any positive ACC but with a decrease in BSS for all terciles 

and forecast averages (Figure S8). The correlation maps of observed DJF precipitation with 

the observed DJF AMO index exhibit a very different pattern from the summer one with 

rather a dipolar structure across the Western Mediterranean which Init fails to capture (Figure 

S9).  
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4. Discussion  

 

 As mentioned in section 3.1, the AMO fluctuations exhibit a recent phase transition 

from negative conditions to positive conditions, which shapes a positive trend. Note that this 

index is computed as the SST averaged over the North Atlantic minus the global SST average 

to minimize the effect of the long-term warming. For consistency, the temperature has been 

detrended by subtracting its global ocean mean at ocean grid points and its global land mean 

at land grid points prior to computing the correlation between the AMO and the grid-point 

temperature as explained in section 2.3. The correlation between the AMO and grid-point 

temperature anomalies shown in Figure 3, 5 and 7 might be affected by a residual warming 

signal in the grid-point temperature. Similar qualitative results were obtained with a linear 

detrending method (not shown) but such method does not filter out perfectly the warming 

signal either. Whether this residual warming and the warming trend in the AMO are related to 

a larger sensitivity to radiative forcings in our study domain than in other regions or whether 

it is related to internal variability remains unclear. Given the shortness of the available time-

series, a proper assessment is highly challenging. For precipitation, we have chosen not to 

detrend because of the regional sensitivity to climate change and the uncertainties about 

whether those changes are attributable to climate change or not (Trenberth et al., 2007).  

 As explained in section 2.3, only 9 to 10 data can be used to compute the skill scores 

shown in this article and those 9 to 10 data are not independent since the CMIP5 retrospective 

predictions are initialized every 5 years and we focus on decadal climate variability. An 

extension of the period sampled by our start dates would allow for more independent 

hindcasts and more robust estimates of the added-value of initialization in terms of skill 

scores. However, an extension backward in time is highly challenging given the lack of 

accurate observational data to initialize the predictions. The denser observational network 
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that grows with time will allow for a forward extension in the coming decades and therefore 

for more robust estimates of the prediction skill scores. Likewise, 9 to 10 data are used to 

detrend time-series, which questions the accurate applicability of any method. This leads to 

consider that detrending methodologies represent an important source of uncertainty in 

decadal climate prediction.  

Mariotti and Dell’Aquila (2012) suggested that the linkage between the AMO and the 

Mediterranean region relies mainly on atmospheric processes. To assess to what extent those 

atmospheric mechanisms are captured by the CMIP5 MME, we computed correlation maps 

of the AMO index with the sea level pressure in both the observations and the model data for 

annual means (Figure S10), summer (Figure S11) and winter (Figure S12) values. The pattern 

obtained for the observations is not robust against the sampling, contrary to the patterns 

obtained previously for temperature or precipitation, which suggests that the sea level 

pressure variability is dominated by other factors and we don’t have enough data to isolate 

accurately the AMO influence on this variable. The MME fails to capture the observed 

patterns, but it remains unclear whether this failure is only an apparent failure due to a 

sampling issue or a real failure suggesting some room for improvement of the skill in 

predicting Mediterranean decadal climate variability through a better representation of the 

atmospheric mechanism linking the Atlantic to the Mediterranean region.   

 

 

5. Conclusions 

 

In this article, we have used the extensive CMIP5 database of multi-model ensemble decadal 

hindcasts to assess the state-of-the-art skill in predicting the Mediterranean temperature and 

precipitation and the reasons behind this skill. High and significant skill in predicting 4-year 
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averaged annual and summer mean temperature is found over most of our study domain. Still 

positive but slightly lower skill is found during the winter season. Most of the high skill 

originates from the model accumulated response to the external radiative forcings. The 

initialization contributes however to the temperature forecast skill over the Mediterranean 

Sea and surrounding land areas. The high and significant correlations between the observed 

Mediterranean temperatures and the observed AMO in the summer and annual means which 

are captured by the multi-model ensemble suggest that this added skill is related to the ability 

of the multi-model ensemble to predict the AMO. Although the winter season stands as the 

season with the largest increase in AMO forecast skill with initialization, the linkage between 

the AMO and the Mediterranean temperatures are poorly captured by the multi-model 

ensemble. The increased skill in annual mean temperature with initialization seems to 

originate from the winter for the Eastern Mediterranean and from the summer for the Western 

Mediterranean. The results for the annual means are more robust than the ones for the 

seasonal means though. High and significant skill is also found for annual and summer mean 

precipitation over northern Europe and sub-Saharan Africa, which is mostly explained by the 

model accumulated response to the external radiative forcings except over Western Africa in 

summer. The positive correlation between summer observed AMO and precipitation in the 

latter region are well captured by the multi-model ensemble which seems to contribute to the 

precipitation forecast skill. The AMO-related skill in summer precipitation does not seem to 

compensate for the weak signal in winter. The winter precipitation forecast skill is much 

lower and noisier than the summer and annual mean ones but improving the winter 

precipitation forecast skill would be highly relevant. Improving the precipitation forecast skill 

stands as a challenge though, given the current lack of knowledge about its predictability 

sources. 
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List of Tables: 

Model 
Initialization Methodology 

# of Init 

Members 

# of NoInit 

Members 

HadCM3 (Gordon et 

al. 2000; Pope et al. 

2000) 

Coupled anomaly assimilation : ERA-40 

and ERA Interim atmospheric reanalyses, 

ocean observations 

10 10 

MRI-CGCM3 

(Yukimoto et al. 

2001; Tatebe et al, 

2012) 

Full-field assimilation 9 1 

MIROC4 (Sakamoto 

et al. 2012) 
Assimilation in the coupled model of ocean 

anomalies of gridded subsurface 

observations of T and S 

3 3 

MIROC5 (Hasumi 

and Emori 2004; 

Watanabe et al, 

2010) 

6 1 

CANCM4 

(Fyfe et al, 2011; 

Merryfield et al., 

2013) 

Coupled assimilation of the ERA40 and 

ERA Interim atmospheric reanalyses, 

observed SSTs  and  SODA and GODAS 

subsurface ocean T and S, beforehand 

adjusted to preserve T-S relationship 

10 10 

CNRM-CM5 

(Voldoire et al, 2012) 

Ocean T and S nudged (3-D Newtonian 

damping) toward NEMOVAR-COMBINE 
10 6 
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in the coupled model; NEMOVAR-

COMBINE reanalysis produced using 

multivariate 3DVAR data assimilation in 

NEMO ocean model 

MPI-M (Jungclaus et 

al, 2006; Matei et al, 

2012) 

Nudging in the coupled model of T and S 

anomalies obtained from an ocean-only run 

forced with NCEP atmospheric reanalyses 

10 3 

GFDL-CM2 

(Delworth et al. 

2006; Yang et al, 

2013) 

Coupled assimilation of atmospheric 

reanalysis and ocean observations of 3-D T 

and S and SST 

10 10 

CMCC-CM 

(Scoccimarro et al. 

2011; Bellucci et al., 

2013) 

Full field ocean initialization from 3 

different realizations of CMCC-INGV ocean 

synthesis of T and S 

3 1 

IPSL-CM5 (Dufresne 

et al. 2012; 

Swingedouw et al., 

2013) 

Nudging in the coupled model of SST 

anomalies to Reynolds observations 
6 3 

EC-Earth v2 

(Hazeleger et al. 

2010; Du et al, 2012; 

Hazeleger et al. 

Full-field initialization : ERA-40 and ERA 

Interim atmosphere/land reanalyses;   

NEMOVAR-S4 ocean reanalysis 

10 11 
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2013) 

Table 1: CMIP5 model experiments analyzed in this work. The number of ensemble 

members analyzed in the Init and NoInit MME are specified. 
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