Preprint Open Access

Estimation of olfactory sensitivity using a Bayesian adaptive method

Höchenberger, Richard; Ohla, Kathrin


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/d2115191-c3b5-45cd-927b-5ad15b649fb4/Hoechenberger_Ohla_2019_All_Data.xlsx"
      }, 
      "checksum": "md5:78dd3eb3f3b1ebe3e6d057ce0c1513f9", 
      "bucket": "d2115191-c3b5-45cd-927b-5ad15b649fb4", 
      "key": "Hoechenberger_Ohla_2019_All_Data.xlsx", 
      "type": "xlsx", 
      "size": 20168
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/d2115191-c3b5-45cd-927b-5ad15b649fb4/Hoechenberger%20%26%20Ohla%20-%20Estimation%20of%20Olfactory%20Sensitivity%20Using%20a%20Bayesian%20Adaptive%20Method%20-%20Preprint%20-%20Rev%202.pdf"
      }, 
      "checksum": "md5:6d0d78631911af5b73299ef8f6dcd5d2", 
      "bucket": "d2115191-c3b5-45cd-927b-5ad15b649fb4", 
      "key": "Hoechenberger & Ohla - Estimation of Olfactory Sensitivity Using a Bayesian Adaptive Method - Preprint - Rev 2.pdf", 
      "type": "pdf", 
      "size": 2295875
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/d2115191-c3b5-45cd-927b-5ad15b649fb4/Threshold_Trial_Sequence_Figures.zip"
      }, 
      "checksum": "md5:cc0e17a56e6c70848221e3dad5c73785", 
      "bucket": "d2115191-c3b5-45cd-927b-5ad15b649fb4", 
      "key": "Threshold_Trial_Sequence_Figures.zip", 
      "type": "zip", 
      "size": 4558582
    }
  ], 
  "owners": [
    43935
  ], 
  "doi": "10.5281/zenodo.2840358", 
  "stats": {
    "version_unique_downloads": 200.0, 
    "unique_views": 98.0, 
    "views": 106.0, 
    "version_views": 244.0, 
    "unique_downloads": 74.0, 
    "version_unique_views": 224.0, 
    "volume": 208855129.0, 
    "version_downloads": 250.0, 
    "downloads": 94.0, 
    "version_volume": 474852598.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.2840358", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.2548620", 
    "bucket": "https://zenodo.org/api/files/d2115191-c3b5-45cd-927b-5ad15b649fb4", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.2548620.svg", 
    "html": "https://zenodo.org/record/2840358", 
    "latest_html": "https://zenodo.org/record/2840358", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.2840358.svg", 
    "latest": "https://zenodo.org/api/records/2840358"
  }, 
  "conceptdoi": "10.5281/zenodo.2548620", 
  "created": "2019-05-15T13:18:31.791443+00:00", 
  "updated": "2020-01-20T17:31:45.672164+00:00", 
  "conceptrecid": "2548620", 
  "revision": 4, 
  "id": 2840358, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.2840358", 
    "description": "<p>The ability to smell is crucial for most species as it enables the detection of environmental&nbsp;threats like smoke, fosters social interactions, and contributes to the sensory evaluation of food&nbsp;and eating behavior. The high prevalence of smell disturbances throughout the life span calls&nbsp;for a continuous effort to improve tools for quick and reliable assessment of olfactory function.&nbsp;Odor-dispensing pens, called Sniffin&rsquo; Sticks, are an established method to deliver olfactory stimuli&nbsp;during diagnostic evaluation. We tested the suitability of a Bayesian adaptive algorithm (QUEST) to&nbsp;estimate olfactory sensitivity using Sniffin&rsquo; Sticks by comparing QUEST sensitivity thresholds with&nbsp;those obtained using a procedure based on an established standard staircase protocol. Thresholds&nbsp;were measured twice with both procedures in two sessions (Test and Retest). Overall, both procedures&nbsp;exhibited considerable overlap with QUEST displaying slightly higher test-retest correlations, less&nbsp;variability between measurements, and reduced testing duration. Notably, participants were more&nbsp;frequently presented with the highest concentration during the QUEST which may foster adaptation&nbsp; and habituation effects. We conclude that further research is required to better understand and&nbsp;optimize the procedure for&nbsp;assessment of olfactory performance.</p>", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "Estimation of olfactory sensitivity using a Bayesian adaptive method", 
    "relations": {
      "version": [
        {
          "count": 4, 
          "index": 3, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "2548620"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "2840358"
          }
        }
      ]
    }, 
    "keywords": [
      "smell sensitivity", 
      "olfaction", 
      "threshold", 
      "staircase", 
      "QUEST"
    ], 
    "publication_date": "2019-05-15", 
    "creators": [
      {
        "orcid": "0000-0002-0380-4798", 
        "affiliation": "Institute of Neuroscience and Medicine INM-3, Research Center J\u00fclich, J\u00fclich, Germany; Psychophysiology of Food Perception, German Institute of Human Nutrition Potsdam-Rehbr\u00fccke, Nuthetal, Germany", 
        "name": "H\u00f6chenberger, Richard"
      }, 
      {
        "orcid": "0000-0001-7265-0449", 
        "affiliation": "Institute of Neuroscience and Medicine INM-3, Research Center J\u00fclich, J\u00fclich, Germany; Psychophysiology of Food Perception, German Institute of Human Nutrition Potsdam-Rehbr\u00fccke, Nuthetal, Germany", 
        "name": "Ohla, Kathrin"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "subtype": "preprint", 
      "type": "publication", 
      "title": "Preprint"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.2548620", 
        "relation": "isVersionOf"
      }
    ]
  }
}
244
250
views
downloads
All versions This version
Views 244106
Downloads 25094
Data volume 474.9 MB208.9 MB
Unique views 22498
Unique downloads 20074

Share

Cite as