Dataset Open Access

A comprehensive dataset for the accelerated development and benchmarking of solar forecasting methods

Carreira Pedro, Hugo; Larson, David; Coimbra, Carlos


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/68c7feea-d2e8-4e9f-a55d-b50df76f91ed/Folsom_irradiance.csv"
      }, 
      "checksum": "md5:f7deba7ccd089dbd3f52a46405a7dfc2", 
      "bucket": "68c7feea-d2e8-4e9f-a55d-b50df76f91ed", 
      "key": "Folsom_irradiance.csv", 
      "type": "csv", 
      "size": 76536976
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/68c7feea-d2e8-4e9f-a55d-b50df76f91ed/Folsom_NAM_lat38.579454_lon-121.260320.csv"
      }, 
      "checksum": "md5:3d917eeecdf967d1f90f803fad5e5467", 
      "bucket": "68c7feea-d2e8-4e9f-a55d-b50df76f91ed", 
      "key": "Folsom_NAM_lat38.579454_lon-121.260320.csv", 
      "type": "csv", 
      "size": 1599165
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/68c7feea-d2e8-4e9f-a55d-b50df76f91ed/Folsom_NAM_lat38.599891_lon-121.126680.csv"
      }, 
      "checksum": "md5:30024faae0123990cf29c81c281eaccc", 
      "bucket": "68c7feea-d2e8-4e9f-a55d-b50df76f91ed", 
      "key": "Folsom_NAM_lat38.599891_lon-121.126680.csv", 
      "type": "csv", 
      "size": 1593101
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/68c7feea-d2e8-4e9f-a55d-b50df76f91ed/Folsom_NAM_lat38.683880_lon-121.286556.csv"
      }, 
      "checksum": "md5:c0d6db7093b957603cb05c90fff23167", 
      "bucket": "68c7feea-d2e8-4e9f-a55d-b50df76f91ed", 
      "key": "Folsom_NAM_lat38.683880_lon-121.286556.csv", 
      "type": "csv", 
      "size": 1599189
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/68c7feea-d2e8-4e9f-a55d-b50df76f91ed/Folsom_NAM_lat38.704328_lon-121.152788.csv"
      }, 
      "checksum": "md5:792f830c261e2c041d35ebeb6eadbeac", 
      "bucket": "68c7feea-d2e8-4e9f-a55d-b50df76f91ed", 
      "key": "Folsom_NAM_lat38.704328_lon-121.152788.csv", 
      "type": "csv", 
      "size": 1590411
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/68c7feea-d2e8-4e9f-a55d-b50df76f91ed/Folsom_satellite.csv"
      }, 
      "checksum": "md5:f68086048ee5d764d1d992404147c421", 
      "bucket": "68c7feea-d2e8-4e9f-a55d-b50df76f91ed", 
      "key": "Folsom_satellite.csv", 
      "type": "csv", 
      "size": 15711562
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/68c7feea-d2e8-4e9f-a55d-b50df76f91ed/Folsom_sky_image_features.csv"
      }, 
      "checksum": "md5:86d58b6b84393399735a93ce1657cfab", 
      "bucket": "68c7feea-d2e8-4e9f-a55d-b50df76f91ed", 
      "key": "Folsom_sky_image_features.csv", 
      "type": "csv", 
      "size": 104681298
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/68c7feea-d2e8-4e9f-a55d-b50df76f91ed/Folsom_sky_images_2014.tar.bz2"
      }, 
      "checksum": "md5:fb2dee79429725ac91df539b310a9f98", 
      "bucket": "68c7feea-d2e8-4e9f-a55d-b50df76f91ed", 
      "key": "Folsom_sky_images_2014.tar.bz2", 
      "type": "bz2", 
      "size": 13759682249
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/68c7feea-d2e8-4e9f-a55d-b50df76f91ed/Folsom_sky_images_2015.tar.bz2"
      }, 
      "checksum": "md5:bce043f846a4dd01668a32943578b652", 
      "bucket": "68c7feea-d2e8-4e9f-a55d-b50df76f91ed", 
      "key": "Folsom_sky_images_2015.tar.bz2", 
      "type": "bz2", 
      "size": 16945355105
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/68c7feea-d2e8-4e9f-a55d-b50df76f91ed/Folsom_sky_images_2016.tar.bz2"
      }, 
      "checksum": "md5:af72cd28b398fb531ae1ab877c19eba0", 
      "bucket": "68c7feea-d2e8-4e9f-a55d-b50df76f91ed", 
      "key": "Folsom_sky_images_2016.tar.bz2", 
      "type": "bz2", 
      "size": 18616207524
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/68c7feea-d2e8-4e9f-a55d-b50df76f91ed/Folsom_weather.csv"
      }, 
      "checksum": "md5:b04e0dc7edf3513a769ea2c8c59beb27", 
      "bucket": "68c7feea-d2e8-4e9f-a55d-b50df76f91ed", 
      "key": "Folsom_weather.csv", 
      "type": "csv", 
      "size": 138793384
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/68c7feea-d2e8-4e9f-a55d-b50df76f91ed/Forecast_day-ahead.py"
      }, 
      "checksum": "md5:763f1666ff1485d631b7417cc8c4a5e8", 
      "bucket": "68c7feea-d2e8-4e9f-a55d-b50df76f91ed", 
      "key": "Forecast_day-ahead.py", 
      "type": "py", 
      "size": 5071
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/68c7feea-d2e8-4e9f-a55d-b50df76f91ed/Forecast_intra-day.py"
      }, 
      "checksum": "md5:6030752b33ce675859d131833a5e127d", 
      "bucket": "68c7feea-d2e8-4e9f-a55d-b50df76f91ed", 
      "key": "Forecast_intra-day.py", 
      "type": "py", 
      "size": 5112
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/68c7feea-d2e8-4e9f-a55d-b50df76f91ed/Forecast_intra-hour.py"
      }, 
      "checksum": "md5:7dd387b298e4c75f84a5fe7093bde2dd", 
      "bucket": "68c7feea-d2e8-4e9f-a55d-b50df76f91ed", 
      "key": "Forecast_intra-hour.py", 
      "type": "py", 
      "size": 5134
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/68c7feea-d2e8-4e9f-a55d-b50df76f91ed/Irradiance_features_day-ahead.csv"
      }, 
      "checksum": "md5:889efab48e0c0c690c45b11e641ba388", 
      "bucket": "68c7feea-d2e8-4e9f-a55d-b50df76f91ed", 
      "key": "Irradiance_features_day-ahead.csv", 
      "type": "csv", 
      "size": 725564
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/68c7feea-d2e8-4e9f-a55d-b50df76f91ed/Irradiance_features_intra-day.csv"
      }, 
      "checksum": "md5:971eee5f86677536b6238e73d923cedc", 
      "bucket": "68c7feea-d2e8-4e9f-a55d-b50df76f91ed", 
      "key": "Irradiance_features_intra-day.csv", 
      "type": "csv", 
      "size": 8266520
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/68c7feea-d2e8-4e9f-a55d-b50df76f91ed/Irradiance_features_intra-hour.csv"
      }, 
      "checksum": "md5:9e25e78b816e51b95d4349f304155f56", 
      "bucket": "68c7feea-d2e8-4e9f-a55d-b50df76f91ed", 
      "key": "Irradiance_features_intra-hour.csv", 
      "type": "csv", 
      "size": 49579520
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/68c7feea-d2e8-4e9f-a55d-b50df76f91ed/NAM_nearest_node_day-ahead.csv"
      }, 
      "checksum": "md5:978905d0c0d1b1488325b33456446d23", 
      "bucket": "68c7feea-d2e8-4e9f-a55d-b50df76f91ed", 
      "key": "NAM_nearest_node_day-ahead.csv", 
      "type": "csv", 
      "size": 519327
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/68c7feea-d2e8-4e9f-a55d-b50df76f91ed/Postprocess.py"
      }, 
      "checksum": "md5:73601ae78e2e49942673688650abfa3d", 
      "bucket": "68c7feea-d2e8-4e9f-a55d-b50df76f91ed", 
      "key": "Postprocess.py", 
      "type": "py", 
      "size": 4801
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/68c7feea-d2e8-4e9f-a55d-b50df76f91ed/Sat_image_features_intra-day.csv"
      }, 
      "checksum": "md5:8af401d02a090108b1863cb953ef64cf", 
      "bucket": "68c7feea-d2e8-4e9f-a55d-b50df76f91ed", 
      "key": "Sat_image_features_intra-day.csv", 
      "type": "csv", 
      "size": 20753628
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/68c7feea-d2e8-4e9f-a55d-b50df76f91ed/Sky_image_features_intra-hour.csv"
      }, 
      "checksum": "md5:a81c753c308213e2b506b94e0412403a", 
      "bucket": "68c7feea-d2e8-4e9f-a55d-b50df76f91ed", 
      "key": "Sky_image_features_intra-hour.csv", 
      "type": "csv", 
      "size": 23572470
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/68c7feea-d2e8-4e9f-a55d-b50df76f91ed/Target_day-ahead.csv"
      }, 
      "checksum": "md5:ed4959b21d282177cedcefe2e8e27f83", 
      "bucket": "68c7feea-d2e8-4e9f-a55d-b50df76f91ed", 
      "key": "Target_day-ahead.csv", 
      "type": "csv", 
      "size": 1158472
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/68c7feea-d2e8-4e9f-a55d-b50df76f91ed/Target_intra-day.csv"
      }, 
      "checksum": "md5:9d530ea7cbe0f122bc26041e9da74afd", 
      "bucket": "68c7feea-d2e8-4e9f-a55d-b50df76f91ed", 
      "key": "Target_intra-day.csv", 
      "type": "csv", 
      "size": 10663334
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/68c7feea-d2e8-4e9f-a55d-b50df76f91ed/Target_intra-hour.csv"
      }, 
      "checksum": "md5:ac6ebc385b6f6112c68ea967fc437c69", 
      "bucket": "68c7feea-d2e8-4e9f-a55d-b50df76f91ed", 
      "key": "Target_intra-hour.csv", 
      "type": "csv", 
      "size": 64523351
    }
  ], 
  "owners": [
    60965
  ], 
  "doi": "10.5281/zenodo.2826939", 
  "stats": {
    "version_unique_downloads": 2706.0, 
    "unique_views": 678.0, 
    "views": 743.0, 
    "version_views": 743.0, 
    "unique_downloads": 2706.0, 
    "version_unique_views": 678.0, 
    "volume": 253876111364358.0, 
    "version_downloads": 17183.0, 
    "downloads": 17183.0, 
    "version_volume": 253876111364358.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.2826939", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.2826938", 
    "bucket": "https://zenodo.org/api/files/68c7feea-d2e8-4e9f-a55d-b50df76f91ed", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.2826938.svg", 
    "html": "https://zenodo.org/record/2826939", 
    "latest_html": "https://zenodo.org/record/2826939", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.2826939.svg", 
    "latest": "https://zenodo.org/api/records/2826939"
  }, 
  "conceptdoi": "10.5281/zenodo.2826938", 
  "created": "2019-06-25T19:47:27.652664+00:00", 
  "updated": "2020-01-24T19:25:10.862705+00:00", 
  "conceptrecid": "2826938", 
  "revision": 5, 
  "id": 2826939, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.2826939", 
    "description": "<p><strong>Description</strong><br>\nThis repository contains a comprehensive solar irradiance, imaging, and forecasting dataset.&nbsp;<br>\nThe goal with this release is to provide standardized solar and meteorological datasets to the research community for the accelerated development and benchmarking of forecasting methods.&nbsp;<br>\nThe data consist of three years (2014&ndash;2016) of quality-controlled, 1-min resolution global horizontal irradiance and direct normal irradiance ground measurements in California.&nbsp;<br>\nIn addition, we provide overlapping data from commonly used exogenous variables, including sky images, satellite imagery, Numerical Weather Prediction forecasts, and weather data.&nbsp;<br>\nWe also include sample codes of baseline models for benchmarking of more elaborated models.</p>\n\n<p><strong>Data usage</strong><br>\nThe usage of the datasets and sample codes presented here is intended for research and development purposes only and implies explicit reference to the paper:<br>\n<em>Pedro, H.T.C., Larson, D.P., Coimbra, C.F.M., 2019. A comprehensive dataset for the accelerated development and benchmarking of solar forecasting methods.&nbsp;Journal of Renewable and Sustainable Energy 11, 036102. https://doi.org/10.1063/1.5094494</em></p>\n\n<p>Although every effort was made to ensure the quality of the data, no guarantees or liabilities are implied by the authors or publishers of the data.</p>\n\n<p><strong>Sample code</strong><br>\nAs part of the data release, we are also including the sample code written in Python 3.&nbsp;<br>\nThe preprocessed data used in the scripts are also provided.&nbsp;<br>\nThe code can be used to reproduce the results presented in this work and as a starting point for future studies.&nbsp;<br>\nBesides the standard scientific Python packages (numpy, scipy, and matplotlib), the code depends on pandas for time-series operations, pvlib for common solar-related tasks, and scikit-learn for Machine Learning models.&nbsp;<br>\nAll required Python packages are readily available on Mac, Linux, and Windows and can be installed via, e.g., pip.&nbsp;</p>\n\n<p><strong>Units</strong><br>\nAll time stamps are in UTC (YYYY-MM-DD HH:MM:SS).<br>\nAll irradiance and weather data are in SI units.<br>\nSky image features are derived from 8-bit RGB (256 color levels) data.<br>\nSatellite images are derived from 8-bit gray-scale (256 color levels) data.</p>\n\n<p><strong>Missing data</strong><br>\nThe string &quot;NAN&quot; indicates missing data</p>\n\n<p><strong>File formats</strong><br>\nAll time series data files as in CSV (comma separated values)<br>\nImages are given in tar.bz2 files</p>\n\n<p><strong>Files&nbsp;</strong></p>\n\n<ul>\n\t<li><em>Folsom_irradiance.csv</em>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Primary&nbsp; &nbsp; &nbsp; &nbsp;One-minute GHI, DNI, and DHI data.</li>\n\t<li><em>Folsom_weather.csv&nbsp;</em> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Primary&nbsp; &nbsp; &nbsp; &nbsp;One-minute weather data.</li>\n\t<li><em>Folsom_sky_images_{YEAR}.tar.bz2</em> &nbsp; &nbsp;Primary&nbsp; &nbsp; &nbsp; &nbsp;Tar archives with daytime sky images captured at 1-min intervals for the years 2014, 2015, and 2016, compressed with bz2.</li>\n\t<li><em>Folsom_NAM_lat{LAT}_lon{LON}.csv </em>&nbsp; &nbsp;Primary&nbsp; &nbsp; &nbsp; &nbsp;NAM forecasts for the four nodes nearest the target location. {LAT} and {LON} are replaced by the node&rsquo;s coordinates listed in Table I in the paper.&nbsp;</li>\n\t<li><em>Folsom_sky_image_features.csv </em>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Secondary&nbsp; &nbsp; Features derived from the sky images.</li>\n\t<li><em>Folsom_satellite.csv </em>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Secondary &nbsp; 10 pixel by 10 pixel GOES-15 images centered in the target location.&nbsp;</li>\n\t<li><em>Irradiance_features_{horizon}.csv</em>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Secondary &nbsp; Irradiance features for the different forecasting horizons ({horizon} 1&frasl;4 {intra-hour, intra-day, day-ahead}).&nbsp;</li>\n\t<li><em>Sky_image_features_intra-hour.csv</em>&nbsp; &nbsp; &nbsp; &nbsp;Secondary &nbsp; Sky image features for the intra-hour forecasting issuing times.&nbsp;</li>\n\t<li><em>Sat_image_features_intra-day.csv</em>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Secondary &nbsp; Satellite image features for the intra-day forecasting issuing times.&nbsp;</li>\n\t<li><em>NAM_nearest_node_day-ahead.csv </em>&nbsp; &nbsp; &nbsp;Secondary &nbsp; NAM forecasts (GHI, DNI computed with the DISC algorithm, and total cloud cover) for the nearest node to the target location prepared for day-ahead forecasting.</li>\n\t<li><em>Target_{horizon}.csv</em>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Secondary &nbsp; Target data for the different forecasting horizons.</li>\n\t<li>F<em>orecast_{horizon}.py </em>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Code&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Python script used to create the forecasts for the different horizons.&nbsp;</li>\n\t<li><em>Postprocess.py</em>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Code&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Python script used to compute the error metric for all the forecasts.</li>\n</ul>\n\n<p>&nbsp;</p>", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "A comprehensive dataset for the accelerated development and benchmarking of solar forecasting methods", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "2826938"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "2826939"
          }
        }
      ]
    }, 
    "version": "V1", 
    "references": [
      "Pedro, H.T.C., Larson, D.P., Coimbra, C.F.M., 2019. A comprehensive dataset for the accelerated development and benchmarking of solar forecasting methods.  Journal of Renewable and Sustainable Energy 11, 036102. https://doi.org/10.1063/1.5094494"
    ], 
    "keywords": [
      "solar irradiance forecasting", 
      "sky images", 
      "satellite images", 
      "numerical weather prediction", 
      "forecast benchmarking"
    ], 
    "publication_date": "2019-06-24", 
    "creators": [
      {
        "affiliation": "University of California San Diego", 
        "name": "Carreira Pedro, Hugo"
      }, 
      {
        "affiliation": "University of California San Diego", 
        "name": "Larson, David"
      }, 
      {
        "affiliation": "University of California San Diego", 
        "name": "Coimbra, Carlos"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "type": "dataset", 
      "title": "Dataset"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.1063/1.5094494", 
        "relation": "isCompiledBy"
      }, 
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.2826938", 
        "relation": "isVersionOf"
      }
    ]
  }
}
743
17,183
views
downloads
All versions This version
Views 743743
Downloads 17,18317,183
Data volume 253.9 TB253.9 TB
Unique views 678678
Unique downloads 2,7062,706

Share

Cite as