Dataset Open Access

Datasets and Supporting Materials for the IPIN 2017 Competition Track 3 (Smartphone-based, off-site)

Antonio Ramon Jimenez Ruiz; Germán Martín Mendoza-Silva; Fernando Seco; Joaquín Torres-Sospedra


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Antonio Ramon Jimenez Ruiz</dc:creator>
  <dc:creator>Germán Martín Mendoza-Silva</dc:creator>
  <dc:creator>Fernando Seco</dc:creator>
  <dc:creator>Joaquín Torres-Sospedra</dc:creator>
  <dc:date>2017-04-22</dc:date>
  <dc:description>This package contains the datasets and supplementary materials used in the IPIN 2017 Competition (Sapporo, Japan).

Contents:


	Track3_LogfileDescription_and_SupplementaryMaterial.pdf: Description of the logfiles and supplemental materials.
	Track3_TechnicalAnnex.pdf: Technical annex describing the competition 
	01-Logfiles: This folder contains a subfolder with the 25 training logfiles, a subfolder with the 9 validation logfiles, and a subfolder with the 7 blind evaluation logfiles as provided to competitors.
	02-Supplementary_Materials: This folder contains the Matlab/Octave parser, the raster maps, the visualization of the training routes and the location of the BLE beacon (CAR) and some Wi-Fi APs (UJIUB).
	03-Evaluation: This folder contains the scripts used to calculate the competition metric, the 75th percentile on the 505 evaluation points. The ground truth is also provided in MatLab format and as a CSV file. Since the results must be provided with a 2Hz freq. starting from apptimestamp 0, the GT includes the closest timestamp matching the timing provided by competitors.


Please, cite the following works when using the datasets included in this package:


	Torres-Sospedra, J.; Jiménez, A. R.; Moreira, A.; Lungenstrass, T.; Lu, W.-C.;  Knauth, S.; Mendoza-Silva, G.M.; Seco, F.; Perez-Navarro, A.; Nicolau, M.J.; Costa, A.; Meneses, F.; Farina, J.; Morales, J.P.; Lu, W.-C.; Cheng, H.-T.; Yang, S.-S.; Fang, S.-H.; Chien, Y.-R. and Tsao, Y. Off-line evaluation of mobile-centric Indoor Positioning Systems: the experiences from the 2017 IPIN competition Sensors Vol. 18(2), 2018. http://dx.doi.org/10.3390/s18020487
	Jimenez, A.R.; Mendoza-Silva, G.M.; Seco, F.; Torres-Sospedra, J. Datasets and Supporting Materials for the IPIN 2017 Competition Track 3 (Smartphone-based, off-site). http://dx.doi.org/10.5281/zenodo.2823924 


Additional information can be found at:


	http://evaal.aaloa.org/2017/2017-competition-home
	http://indoorloc.uji.es/ipin2017track3/


For any further questions about the database and this competition track, please contact: 


	Joaquín Torres (jtorres@uji.es) Institute of New Imaging Technologies, Universitat Jaume I, Spain. 
	Antonio R. Jiménez (antonio.jimenez@csic.es) Center of Automation and Robotics (CAR)-CSIC/UPM, Spain. 



    </dc:description>
  <dc:description>We would like to thank Topcon Corporation for sponsoring the competition track with an award for the winning team. We are also grateful to Francesco Potortì, Sangjoon Park, Hideo Makino, Nobuo Kawaguchi, Takeshi Kurata and Jesús Ureña for their invaluable help in organizing and promoting the IPIN competition and conference. Many thanks to Raúl Montoliu, Emilio Sansano, Marina Granel and Luis Alisandra for collecting the databases in the UJITI building. Parts of this work were carried out with the financial support received from projects and grants: REPNIN network (TEC2015-71426-REDT), LORIS (TIN2012-38080-C04-04), TARSIUS (TIN2015-71564-C4-2-R (MINECO/FEDER)), SmartLoc (CSIC-PIE Ref.201450E011), "Metodologías avanzadas para el diseño, desarrollo, evaluación e integración de algoritmos de localización en interiores" (TIN2015-70202-P), GEO-C (Project ID: 642332, H2020-MSCA-ITN-2014—Marie Sklodowska-Curie Action:Innovative Training Networks).</dc:description>
  <dc:identifier>https://zenodo.org/record/2823924</dc:identifier>
  <dc:identifier>10.5281/zenodo.2823924</dc:identifier>
  <dc:identifier>oai:zenodo.org:2823924</dc:identifier>
  <dc:relation>info:eu-repo/grantAgreement/EC/H2020/642332/</dc:relation>
  <dc:relation>doi:10.5281/zenodo.2823923</dc:relation>
  <dc:relation>url:https://zenodo.org/communities/ipin</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:subject>Indoor Positioning</dc:subject>
  <dc:subject>Indoor Navigation</dc:subject>
  <dc:subject>Competition datasets</dc:subject>
  <dc:subject>Kalman filter</dc:subject>
  <dc:subject>Particle filter</dc:subject>
  <dc:subject>RF Fingerprinting</dc:subject>
  <dc:subject>Pedestrian Dead Reckoning</dc:subject>
  <dc:subject>Map Matching</dc:subject>
  <dc:subject>Sensor Fusion</dc:subject>
  <dc:title>Datasets and Supporting Materials for the IPIN 2017 Competition Track 3 (Smartphone-based, off-site)</dc:title>
  <dc:type>info:eu-repo/semantics/other</dc:type>
  <dc:type>dataset</dc:type>
</oai_dc:dc>
233
158
views
downloads
All versions This version
Views 233233
Downloads 158158
Data volume 26.8 GB26.8 GB
Unique views 207207
Unique downloads 4949

Share

Cite as