Journal article Open Access

Directional charge transport in layered, two‐dimensional triazine‐based graphitic carbon nitride

Noda, Yu; Merschjann, Christoph; Tarábek, Ján; Amsalem, Patrick; Koch, Norbert; Bojdys, Michael J.


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/2787253</identifier>
  <creators>
    <creator>
      <creatorName>Noda, Yu</creatorName>
      <givenName>Yu</givenName>
      <familyName>Noda</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-0715-5534</nameIdentifier>
    </creator>
    <creator>
      <creatorName>Merschjann, Christoph</creatorName>
      <givenName>Christoph</givenName>
      <familyName>Merschjann</familyName>
      <affiliation>Helmholtz-Zentrum Berlin</affiliation>
    </creator>
    <creator>
      <creatorName>Tarábek, Ján</creatorName>
      <givenName>Ján</givenName>
      <familyName>Tarábek</familyName>
      <affiliation>Institute of Organic Chemistry and Biochemistry of the CAS</affiliation>
    </creator>
    <creator>
      <creatorName>Amsalem, Patrick</creatorName>
      <givenName>Patrick</givenName>
      <familyName>Amsalem</familyName>
      <affiliation>Humboldt-Universität zu Berlin</affiliation>
    </creator>
    <creator>
      <creatorName>Koch, Norbert</creatorName>
      <givenName>Norbert</givenName>
      <familyName>Koch</familyName>
      <affiliation>Humboldt-Universität zu Berlin</affiliation>
    </creator>
    <creator>
      <creatorName>Bojdys, Michael J.</creatorName>
      <givenName>Michael J.</givenName>
      <familyName>Bojdys</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-2592-4168</nameIdentifier>
      <affiliation>Humboldt-Universität zu Berlin</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Directional charge transport in layered, two‐dimensional triazine‐based graphitic carbon nitride</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2019</publicationYear>
  <subjects>
    <subject>carbon nitride</subject>
    <subject>semiconductors</subject>
    <subject>thin films</subject>
    <subject>layered compounds</subject>
    <subject>2D materials</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2019-05-13</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/2787253</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1002/anie.201902314</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Triazine‐based graphitic carbon nitride (TGCN) is the most recent addition to the family of graphene‐type, two‐dimensional and metal‐free materials. Although hailed as a promising low‐bandgap semiconductor for electronic applications, so far, only its structure and optical properties have been known. Here, we combine direction‐dependent electrical measurements and time‐resolved optical spectroscopy to determine macroscopic conductivity and microscopic charge carrier mobilities in this layered material &amp;ldquo;beyond graphene&amp;rdquo;. Electrical conductivity along the basal plane of TGCN is 65‐times lower than through the stacked layers; as opposed to graphite. Furthermore, we develop a model for this charge transport behavior based on observed carrier dynamics and random‐walk simulations. Our combined methods provide a path towards intrinsic charge transport in a direction‐dependent, layered semi‐conductor for applications in field‐effect transistors (FETs) and sensors.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/678462/">678462</awardNumber>
      <awardTitle>Layered functional materials - beyond 'graphene'</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
85
60
views
downloads
Views 85
Downloads 60
Data volume 38.6 MB
Unique views 77
Unique downloads 51

Share

Cite as