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Abstract 

The world is facing a water quality crisis resulting from continuous population 

growth, urbanization, land use change, industrialization, unsustainable water use 

practices and wastewater management strategies, among others. In this context, 

wastewater treatment (WWT) facilities are of vital significance for urban systems. 

Wastewater management clearly plays a central role in achieving future water 

security in a world where water stress is expected to increase. Life cycle assessment 

(LCA) can be used as a tool to evaluate the environmental impacts associated to 

WWTPs and improvement options. In this study, LCA is applied to compare the 

environmental performance of different scenarios for wastewater and sludge 

disposal in a WWT plant located in Southern Italy. The first scenario (BAU, Business 

As Usual) is based on the present sludge management performed within and outside 

the case-study plant: after mechanical treatment, dewatered sludge is transported by 

truck to a landfill for final disposal, while treated water is released to a river. The 

second scenario (B) assumes a partially circular pattern, with anaerobic fermentation 
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of sludge to biogas, biogas use for electricity and heat cogeneration, integrated by 

additional thermal energy from previously recovered waste cooking oil (WCO), 

electricity and heat feedback to upstream WWT steps (including sludge drying), and 

final disposal of dried sludge to landfill and water to river. The third scenario (C) 

suggests an improved circular pattern with gasification of the dried sludge to further 

support heat and electricity production (with very small delivery of residues to 

landfill). The fourth scenario (D) builds on the third scenario in that the volume of 

treated wastewater is not discharged into local rivers but is partially used for 

fertirrigation of Salix Alba fields, whose biomass is further used for electricity 

generation. In doing so, the water P and N content decreases and so does the water 

eutrophication potential. Finally, a renewable scenario (E) is built assuming that the 

electricity demand of the WWT plant is met by a green electricity mix, for 

comparison with previous options. The most impacted categories in all scenarios 

result to be Freshwater Eutrophication Potential (FEP) and Human Toxicity Potential 

(HTP). Increased circularity through recycling in scenarios B and C reduces the 

process contribution to some environmental impact categories such as Global 

Warming Potential (GWP) and Fossil Depletion Potential (FDP), but does not 

provide significant improvement to FEP. Fertirrigation in scenario D lowers FEP by 

about 60% compared to the BAU scenario. Furthermore, HTP is lowered by almost 

53%. Finally, other options are discussed that could be also explored in future studies 

to evaluate if and to what extent they could further improve the overall performance 

of the WWT plant. 

 

1.   Introduction 

 

Global population is expected to exceed nine billion people by 2050. Population 

increases are expected to further increase water usage and wastewater production 

(Corcoran et al., 2010). The world is facing a water quality crisis resulting from 

continuous population growth, urbanization, land use change, industrialization, food 

production practices, increased living standards, unsustainable water use practices 

and wastewater management strategies. Wastewater has a direct impact on the 

biological diversity of aquatic ecosystems and its inappropriate management is 

capable of disrupting the fundamental integrity of life support systems, on which a 

wide range of sectors, from urban development to food production and industry, 



 

depend (UNWATER, 2016). 

In this context, wastewater treatment (WWT) facilities are  of vital significance for 

urban systems. It has been acknowledged that wastewater management clearly plays 

a central role in achieving future water security in a world where water stress is 

likely to further increase (OECD, 2012). While being crucial for pollutants removal 

and reusable water supply, WWT consumes resources and triggers environmental 

emissions during a plant lifetime (Shao et al., 2014). Urban wastewater management 

requires large material, energy, economic and technological investments for the 

construction and operation of treatment plants. Energy consumption in WWT plants 

and the related greenhouse gas (GHG) emissions are also steadily increasing due to 

strict treatment requirements. 

A crucial aspect of WWT is represented by the management of sewage sludge. 

Sludge is an unavoidable by-product of WWT and may hold many toxic substances 

such as pathogens, heavy metals and organic contaminants, which can cause serious 

environmental pollution. The management of this by-product is still a challenge 

especially in developing countries, due to the lack of clear regulation, lack of a 

methodology for selecting a suitable sludge management system and high 

investment and operation cost for refurbishing (upgrading) old WWT facilities. 

Given the need to achieve long-term sustainability, the objectives of urban water 

systems need to go beyond the protection of public health and receiving bodies, and 

also focus on strategies to reduce the impacts on natural resources, to optimize the 

use of energy and water and reduce waste generation. Urban systems should adopt 

innovative approaches to wastewater management to maximize the recovery of 

useful materials and/or energy and minimize emissions releases. It is critical for 

decision-makers to adopt appropriate urban development strategies so that cities can 

move toward sustainable development (Dong et al., 2016). 

A step ahead toward more sustainable procedures requires the identification of 

management routes capable of maximizing recycle and recovery benefits through low 

energy impact systems and development of operational systems appropriate to local 

circumstances (Spinosa et al., 2011). The optimization of system processes, the upgrade 

to more efficient technologies, and the improvement of energy management, and energy 

generation within the WWT plants (i.e., sludge digestion with biogas production and 

reuse, sludge gasification for syngas generation and use) are possible ways to lower 

energy consumption and environmental impacts as well as to achieve energy self-



 

sufficiency. 

Nonetheless, it is crucial to evaluate the effectiveness of such implemented options 

in terms of reduction of resources consumption, waste, and emissions. Indicators of 

efficiency and environmental performance are fundamental to marking progress 

toward more sustainable patterns of human development (Brown et al., 2012). 

Life cycle assessment (LCA) is a valuable tool that can be used to evaluate the 

environmental impacts associated to WWT plants (Guest et al., 2009). LCA investigates 

the environmental impacts of systems or products from cradle to grave throughout the 

full  life cycle, from the withdrawal, refining and supply of materials and fuels, through 

the production and operation of the investigated objects, to their final disposal or 

recycling (Rebitzer et al., 2004). LCA provides a comprehensive set of environmental 

indicators that can be interpreted as impact indicators at global and local level. This set 

of indicators offers information about potential or realized effects of human activities 

on environmental phenomena of concern thus resulting crucial for assessing the 

environmental sustainability of human-driven systems (McBride et al., 2011). 

Several LCA studies were conducted to assess the environmental impacts caused 

by WWT systems as reviewed in Corominas et al. (2013). Published LCA studies 

about WWT plants deal with the energy consumption, GHG emissions of existing 

plants as well as the potential energy and GHG emission benefits that can be achieved 

by introducing new alternative technologies (Corominas et al., 2013). LCA has been 

often applied to evaluate different types of conventional WWT plants (Hospido et al., 

2004; Pasqualino et al., 2009; Rodriguez-Garcia et al., 2012). Other LCA studies 

explored non-conventional WWT techniques (i.e., constructed wetlands, biological 

filters and sand filtration systems) and new designs of WWT as feasible alternatives 

with lower environmental impacts compared to conventional technologies (Machado 

et al., 2007; Yildirim and Topkaya, 2012; Bisinella de Faria et al., 2015). 

Several studies were more focused on the LCA of sludge management strategies. 

Some studies compared alternative options for sludge treatment inside the WWT 

plants (Hospido et al., 2005; Peregrina et al., 2006; Cao and Pawlowski, 2013) while 

others suggested and compared alternatives for sludge management also outside the 

WWT plants (Houillon and Jolliet, 2005; Valderrama et al., 2013). 

In this paper LCA is used to compare the environmental performance of different 

scenarios for sludge management in a WWT plant located in the municipality of 

Nocera Superiore, in the province of Salerno, Southern Italy. The different scenarios 



 

aim at decreasing the amount of sludge disposed of in landfill as well as at increasing 

the energy efficiency of the different process steps via increased recycling of still 

usable waste resources. The alternatives chosen have been selected according to the 

potentialities of the investigated WWT plant and those of the area where the WWTP 

evaluated is located. 

 

2.   Material and methods 

 

2.1.   The methodological framework 

 

This study was performed by applying the Life Cycle Assessment method (LCA) to 

empirical foreground data collected on-field by the authors. LCA is a tool for assessing 

the potential environmental impacts and resources used throughout a product’s lifecycle, 

from raw material acquisition, via production and use phases, to waste management, 

from the so-called “cradle-to-grave” perspective (ISO 14040, 2006; ILCD, 2012). All 

activities and processes result in environmental impacts due to consumption of 

resources, emissions of substances into the natural environment, and other 

environmental exchanges. LCA allows technology comparisons in terms of 

environmental burden, providing valuable insights about the environmental 

performance of different technologies across categories through the development of life 

cycle indicators. Although developments of the tool continue to be achieved, 

International Standards of the ISO 14000 series provide a consensus framework for 

standardized LCAs (ISO 14040, 2006; ISO 14044, 2006). The ILCD Handbook (ILCD, 

2012), stemming from the ISO 14040-44 standards, confirms the importance and the 

role of LCA as a decision-supporting tool in contexts ranging from product development 

to policy making. The Handbook provides clear and goal-specific methodological 

recommendations, specific terminology and nomenclature, an accurate verification and 

review frame other supporting documents and tools. LCA provides a large set of 

environmental indicators. Currently, a large number of indicators can be found in the 

LCA literature. They refer to different types  of indicator: life cycle impact indicators 

(LCI), midpoint life cycle impact assessment (LCIA) indicators, and endpoint LCIA 

indicators. Selected LCI flows can be useful in tracking the quantity of flows, e.g. the 

use of secondary energy throughout the product’s life cycle. 

These are not direct impact indicators, but they can be useful for the interpretation 



 

phase of any LCA study. Midpoint LCIA indicators (or potential indicators) make it 

possible to characterize different environmental problems, such as climate change, 

ozone depletion, photochemical ozone formation, acidification, eutrophication and 

resource depletion. End-point LCIA indicators refer to actual damage categories, 

such as damage to resources, damage to human health, and damage to the ecosystem. 

 

2.2.   Research goals 

 

The present situation and legislation in Europe, the state of the art of the available 

technologies, the development of circular economy concepts, and the achieved 

maturity of the LCA method, make the implementation of new and sustainable 

strategies for wastewater and sludge management urgent, crucial and feasible, within 

a Circular Economy and Technology framework. With this aim, the WWTP of 

Nocera Superiore located in Southern Italy was chosen as case-study. This choice 

was driven by the characteristics of this WWTP and the sludge management 

currently applied inside and outside the plant. Nocera Superiore WWTP is a modern 

and centralized plant exploiting the most wide-spread technology in Europe, 

i.e. the advanced activated-sludge process. On the other hand, the operation of such 

systems is cost and energy intensive, mainly due to the aeration and sludge treatment 

associated processes. Additionally, nevertheless the sludge treatment line includes 

dynamic thickening, belt press dewatering, anaerobic digestion with biogas 

recovery and heat drying, the sludge treatment in this WWTP is poorly performed. 

This is due to the fact that anaerobic digestion and heat drying treatment steps are 

presently not in operation for technical and administrative reasons. The resulting wet 

sludge cannot be disposed of within Campania Region due to environmental 

concerns and specific legislation. For this reason, the wet sludge is transported to 

Puglia Region for disposal in a controlled sanitary landfill (the average 

transportation distance is 200 km), causing further environmental and economic 

costs. For these reasons, Nocera Superiore WWTP is particularly suited to be chosen 

as case-study, where evaluating the possible environmental benefits due the 

implementation of new wastewater and sludge management strategies aimed at 

decreasing the amount of waste disposed of as well as at increasing the energy 

efficiency of the different process steps via increased recycling of still usable waste 

resources. 



 

Therefore, this study is conducted to answer the following research questions: 
•   What are the environmental impacts of the “Business-As-Usual (BAU) scenario”?  

•   What are the system’s hotspots? 
•   Are there circular (reuse, recycling) alternatives to BAU? 

•   If so, are they feasible and less impacting? What are their costs and benefits? 

 

In light of this, the main research objectives are: 
•   To evaluate the environmental performance of the business-asusual (BAU) 

scenario of Nocera Superiore WWTP. This scenario is based on the actual 

wastewater and sludge management currently performed inside and outside the 

case-study WWTP. 
•   To compare the environmental performance of the BAU scenario with alternative 

scenarios for wastewater and sludge disposal. In fact, once the “hotspots” 

throughout the entire Life Cycle are identified, a consequential LCA can be 

carried out in order to evaluate possible environmental benefits provided by the 

proposed alternative scenarios. 

•   To propose improved management strategies to reduce the environmental 

impacts associated to wastewater treatment and sludge management. 

 

2.3.   Scope definition 

 

2.3.1.   Description of the investigated scenarios 

Four scenarios for wastewater and sewage sludge treatment are considered in this 

study (Fig. 1a–d). The first scenario (scenario A, business-as-usual, hereafter BAU) is 

based on the WWT processes actually performed in the WWT plant of Nocera 

Superiore: after mechanical treatment, dewatered sludge is transported by truck to a 

landfill for final disposal, while treated water is released to a river. The second scenario 

(scenario B) assumes the anaerobic digestion of sewage sludge with biogas recovery 

within the WWT plant and its use for cogeneration of heat and electricity. As the 

investigated WWTP is already equipped with a two-stage mesophilic digester, the 

mesophilic fermentation of sludge was chosen as the technology to be evaluated. 

Anaerobic digestion consists of a series of biological processes in which 

microorganisms break down biodegradable material in the absence of oxygen. In such a 

process biogas is produced in anaerobic tanks where sludge is mixed and maintained at 



 

a temperature of 30–40 ◦C, in order to optimize bacterial activity (Jungubluth et al., 

2007). The recovered biogas is then used for heat and electricity cogeneration. 

Electricity is fedback to the WWT process, in order to lower the huge demand for grid 

power. Heat is used for downstream thermal drying of digestate, in order to lower its 

mass and make transportation less energy expensive. Moreover, while wet sludge cannot 

be disposed of in Campania region, dry sludge disposal in local landfills is allowed. As 

a consequence, transport distance to landfill decreases to 30% of the distance in scenario 

BAU. Thermal drying of digestate also benefits from the use of heat from WCO 

collected from restaurants, hotels and agro-food industry in Campania Region. WCO is 

collected and transported to a treatment plant where it is mechanically pre-treated to 

lower the content of solid waste by means of decantation and centrifugation. The purified 

WCO can be directly burnt to produce energy or used as a useful feedstock for biodiesel 

production (Ripa et al., 2014). 

In this study the recovered WCO is combusted for heating purpose, i.e. thermal 

drying of digestate. The amount of used WCO is assumed to be a fraction of the total 

WCO collected in Campania Region calculated according to the population 

equivalents (PE) of the WWT plant (300,000 PE). WCO covers 15% of the total 

energy demand of thermal drying of digestate, while about 55% is covered by the use 

of biogas from anaerobic digestion. The residual energy demand (about 30%) is 

supposed to be met by the use of purchased methane. 

The third scenario (scenario C) suggests a furtherly circular pattern: the sludge is 

dried and the residual mass is gasified. Syngas is added to previously produced biogas 

for heat and power cogeneration. The heat and electricity generated are fedback to 

the WWT plant. Heat produced from syngas is used for the thermal drying of sludge. 

This feedback of heat avoids the use of the methane required in scenario B. In so 

doing, thermal drying of digestate is totally performed by utilizing heat produced 

within the WWT plant. The feedback of electricity further lowers the demand for grid 

power of BAU scenario. A very small residual fraction of digestate is landfilled. 

The fourth scenario (scenario D) is drawn on the same assumptions as scenario C 

except for the final disposal of wastewater. In all previous scenarios, treated 

wastewater is released to a nearby river, with discharge within the law limits. Scenario 

D is based, instead, on a pioneering bioenergy production system investigated in 

Sweden by Buonocore et al. (2012), integrating wastewater treatment and willow 

(Salix Viminalis) farming. The Mediterranean climate of Campania Region is 



 

suitable for willow production. Furthermore, as pointed out by Fahd et al. (2012), by 

combining statistical data about available land in Campania Region in 1985 with data 

regarding the agricultural and polluted land and the urbanised areas in 2006, there 

are about 150,000 ha of marginal land abandoned or set aside since they do not 

provide enough income to the farmer. As a consequence, their hypothetical use for 

an energy-oriented system linked to the WWT would not compete with food 

production. 

In this context, scenario D assumes that almost 50% of the treated wastewater 

volume is not discharged into surface waters, but it is used for irrigating willow 

cropped on marginal land (about 1150 ha) in the same area where the WWT plant is 

located. The amount of wastewater needed is estimated by taking into account land 

availability, nutrients content in wastewater, and water and nutrients requirements of 

willow during the growth season (May–October) (Guidi et al., 2008). The residual 

amount of treated wastewater is assumed to be released to a nearby river.  

 



 

 
 

Fig. 1. Flow diagrams of scenarios investigated for sewage sludge treatment: (a) 

scenario A, business as usual − BAU; (b) scenario B, (c) scenario C; (d) scenario 

D. Scenarios B–D differ from scenario A according to increased implementation 

of circular patterns (recycling of still usable energy content of sludge or external 

waste resources). 



 

  

 

 
 

Fig. 1. (Continued) 

 

Since willow can uptake 75–95% of nitrogen and phosphorus in wastewater, the 

annual wastewater load can easily meet the requirements of willow in terms of water 

and nutrients. Irrigation with nutrient-rich water would promote plant growth, thus 

resulting in high biomass yield (7.2 t dry mass/ha). Willow is harvested and delivered 

to a Combined Heat and Power plant for cogeneration of heat and electricity. A 

fraction of the generated electricity (30%) is supposed to be fedback to the WWT 

plant thus preventing the demand for grid power. The remaining fraction of electricity 

generated by the CHP plant (around 70%) would be supplied to local industrial and/or 

domestic users and it is considered as an avoided burden to the regional system in 

which the WWT system is embedded. In order to include the benefits provided by the 

virtuous use of local biomass for electricity generation, the scale of interest is 

expanded to include the entire regional area. This choice allows to account for the 

advantages due to the electricity that is not fed back to the plant and that would not 

be considered in the results if only the plant scale is considered. 

Furthermore, scenario D is compared with a renewable scenario (scenario E) 

assuming that the electricity used in the BAU scenario is met by renewable sources. 

The assumption is based on data available from the Enel Green Power that is a 

society of the Enel Group developing and managing energy generation from 

renewable sources at a global level and present in Europe, Americas, Asia and Africa 



 

  
  

(http://www.enelgreenpower.com/en-GB/).1
2 The “Enel Green Power” mix adopted 

in this scenario is based on the renewable power installed in Italy. It includes 49.9% 

of hydroelectric, 23.8% of geothermal, 23.7% of wind and 2.6% of solar. 

The Ecoinvent 2.2 database is used for relevant background data of anaerobic 

digestion, syngas production, WCO combustion, power cogeneration and irrigation 

processes. The ReCiPe midpoint method3 was chosen among the LCIA methods. The 

method allowed to assess the environmental impacts in different impact categories: 

climate change (GWP), fossil depletion (FD), freshwater eutrophication (FEP), 

human toxicity (HTP), particulate matter formation (PMFP), photochemical oxidant 

formation (FOFP), and terrestrial acidification (TAP). The method provides 

characterization factors to quantify the contribution to impact categories and 

normalization factors to allow a comparison across categories. Normalization is also 

performed by using the Recipe Midpoint H normalization factors (Sleeswijk et al., 

2008). 

 

2.3.2.   System function and functional unit 

The definition of the functional unit (FU) is a crucial issue for LCA studies. In this 

study the treatment of 1000 m3 of wastewater was chosen as functional unit. (FU). All 

materials, emissions, cost, energy consumption, and recovery levels are referred to this 

amount of treated wastewater. 

Furthermore, the investigated WWTP was designed to treat about 3.0 107 m3 per 

year, while the actual volume of wastewater treated over the considered period was 

1.1 107 m3. This is due to the fact that some areas of the Municipalities served by 

the plant are still not connected to the local sewerage system. 

 

2.3.3.   System boundaries 

 

This LCA analysis can be defined as an expanded “gate to gate” study, since the 

perimeter fences of the investigated WWTP were set as the physical system 

boundaries of the directly analyzed construction and operation phases, while for the 

                                                        
2  Enel is a multinational manufacturer and distributor of electricity and gas 

(https://www.enel.it). 
3 http://www.lcia-recipe.net/ 



 

processes production of chemicals, electricity, construction materials, waste 

disposal, transportation, anaerobic digestion, gasification and fertirrigation, the 

system boundaries were expanded by using case studies from the Ecoinvent database 

and scientific literature. Fig. 2 illustrates the system boundary for the base case model. 

The system boundary includes as a first step the delivery of wastewater to the plant 

and as the last step the release of wastewater effluent. In light of this, the performed 

LCA study covers the actual processes associated to wastewater treatment, including: 
•   the construction phase and production of construction materials, 

•   the operation and maintenance (O&M) phase, 
•   the treatment performed within the WWTP, the transportation and final 

disposal of sludge, grit and screening waste. 

Finally, the decommissioning phase is excluded from this study due to insufficient 

data pertaining to such a phase. 

 

2.3.4.   Assumptions 

The main assumptions made in this study are listed as follows: Construction 

Phase: according to the performed literature review, a WWTP life-span of 30 years 

was assumed. The construction of the sewer system within the Municipalities served 

by the investigated plant was not taken into consideration. 

 

 
 

Fig. 2. Physical boundaries of scenario BAU. 

 



 

 

Table 1 

Total contribution of the four scenarios to selected impact categories. Values 

are referred to 1000 m3 of wastewater treated (functional unit). 

 

 

 

a Characterization factors are expressed as potential impact for a time horizon of 100 years. 

b Characterization factors are expressed as potential impact for an infinite time horizon. 

 

Direct GHG Emissions: according to the IPCC Guidelines for National Greenhouse 

Gas Inventories, the direct emissions of CO2 due to wastewater and sludge treatment 

were not accounted for, since they are considered as of biogenic origin (IPCC, 2007). 

With regard to the direct emissions of CH4 and N2O, the emission factors of 0.0053 g 

CH4*g CODinflow*−1 and 28 g N2O N*kg TKN−1 were applied, respectively (GWRC, 

2011; Daelman et al., 2013).4  

Production of Paracetic Acid (PAA): as there is no available data on the production of 

PAA in the Ecoinvent database, the production processes of acetic acid (CH3COOH) 

and hydrogen peroxide (H2O2) were considered, assuming that the production of 1 kg of 

PAA requires 0.45 kg of CH3COOH, 0.79 kg of H2O2 and 0.28 kg of water. 

Production of Polyelectrolyte: since the Ecoinvent database has no data about the 

production of Polyelectrolyte, the production process of acrylonitrile was 

considered, which is the precursor of the polyelectrolyte used in the investigated 

WWTP. 

Waste Disposal: in order to evaluate the environmental burdens related to sludge 

disposal, the Ecoinvent process “disposal, urban solid waste, 22,9% water, to sanitary 

landfill” was chosen. The process was conveniently modified by including the 

environmental impacts due to the use of sludge handling equipment within sanitary 

landfill, assuming a diesel consumption of 1.16 L*ton handled sludge−1. [60]. With 

regards to grit disposal, the process “disposal, inert waste, 5% water, to inert material landfill” 

was considered, while the processes “disposal, plastics, mixture, 15,3% water, to sanitary 

                                                        
4  TNK: Total Kjehldahl Nitrogen is defined as the sum of organically bound nitrogen and 
ammonia, while total nitrogen is the combination of organic nitrogen and inorganic nitrogen 
(NH3, NO3, NO2). 

      

      

  
 
 

 
 

 
 

 

 

 
 

 
 
 

 
 

 
 

 
 

      
      

 



 

landfill” and “disposal, paper, 11,2% water, to sanitary landfill” were used to estimate the 

environmental burdens caused by the disposal of screening waste, assuming that such a 

waste is only composed by paper and plastic. 

Sludge Gasification (scenarios C and D): in the absence of sewage sludge gasification-

specific data in the Ecoinvent database, the process “synthetic gas, at fixed bed gasifier 

(wood)” was chosen to estimate the environmental impacts due to the gasification of 

digested sludge, assuming a syngas production of 1.92 Nm3*kg dried sludge−1 and a 

Low Heat Value of 5.2 MJ*m−3. 

 

2.3.5.   Data quality 

 

Data quality details are provided in this section. Regarding the temporal 

coverage, foreground data on the operation phase refer to the period November 

2012–October 2013. For the background data, preference was given to the latest 

representative data. 

In terms of geographical coverage, foreground data refer to the area directly 

involved by the investigated process, while background data refer to European and 

Italian case-studies (whenever possible) or geographical areas with similar climatic 

conditions. 

Completeness is guaranteed since all the flows which could be realistically 

investigated within the constraints imposed by available data and current knowledge 

were considered. 

Whenever foreground data were not available, the study drew upon background 

data as representative as possible (from a technological, temporal and geographical 

point of view) of the investigated processes. Finally, all the made assumptions, data 

sources and applied calculation models are clearly identified, in order to allow an 

independent practitioner to reproduce the results of this LCA study and any 

conclusions or recommendations drawn. The calculation procedures and raw data 

processing are described in the supplementary material. 

 

3.   Results 

 

The life-cycle contribution per 1000 m3 of wastewater (FU) to selected impact 

categories in the investigated scenarios is displayed in Table 1. The characterized 



 

impacts of the scenarios are shown as percentages in Fig. 3, where the potential 

improvements achievable in scenarios B–D are compared to the results of scenario 

A (put conventionally at 100%). 

Results show that the contributions to the chosen impact categories decrease in all the 

scenarios when compared with the BAU scenario. Scenarios B and C reduce the 

contribution to the Global Warming Potential (GWP) by 9% and 35% respectively, 

while the contribution to Fossil Depletion Potential (FDP) is lowered by 9% and 36%. 

The contribution to other impact categories, as Human Toxicity Potential (HTP), 

Particulate Matter Formation Potential (PMFP) and Terrestrial Acidification Potential 

(TAP), is also lower compared to the BAU scenario (Fig. 3). 

The Freshwater Eutrophication Potential (FEP) does not substantially change in 

scenarios B and C while it results 53% lower in scenario D compared to the BAU 

scenario. 

Scenario D is also capable of reducing HTP by almost 60%. All the other categories 

also benefit from this scenario (Fig. 3). 

Fig. 4 shows the normalized impacts of the four scenarios. The most impacted 

category results to be the FEP in all the scenarios. The second most impacted category 

is HTP. Still, scenario D results the most valuable option for reducing the contribution 

to both these impact categories. 

The characterized impacts of scenario D are also compared to those of the 

renewable scenario—scenario E (put conventionally at 100% in Fig. 5). Results show 

that scenario D has higher potential for abating the contribution to environmental 

impacts categories even when a green mix is assumed to be used within the WWT 

plant. The comparison between normalized impacts of scenario D and the renewable 

scenario (Fig. 6) confirms that the scenario D would be more capable of reducing the 

impacts in most of the selected categories (i.e., FEP and HTP) compared to the choice 

of an electric green mix for powering the WWT plant (that is, anyway, a better choice 

than the BAU scenario). 

 

4.   Discussion 

 

4.1.   Environmental performance of alternative scenarios 

 

The investigated scenarios are oriented towards achieving the energy self-



 

sufficiency of the investigated WWTP, decreasing other impacts not directly 

involving energy supply, and at the same time, sensibly reducing the amount of waste 

to be transported and disposed of. 

Energy production from sewage sludge (i.e. biogas and syngas production) is an 

important energy source, capable to sensibly reduce plant’s dependency on fossil 

resources, thus mitigating its energy-related environmental burdens. To this end, the 

combined application of anaerobic digestion, dehydration and gasification has proved 

to be one of the most promising technologies in terms of both energy recovery and 

sludge mass reduction (Lacroix et al., 2014; Cao and Pawlowski, 2013). The latter 

gain is also noteworthy, as the delivery and disposal of sludge have resulted to be 

among the most important contributions to the environmental profile of WWTPs 

(Corominas et al., 2013). 

Also the reuse of recovered WCO within the WWTP represents an additional step 

towards closing the local resource circle by linking the treatment of different kinds 

of municipal wastes, i.e. wastewater, its by-products and waste cooking oil generated 

from households and restaurants (of course, WCO inclusion requires a boundary 

expansion to also account for the WCO collection and treatment). In the last scenario, 

additional interesting benefits are coupled with the possibility to reuse wastewater 

for irrigation of energy crop fields, in order to provide biomass for energy purpose. 

This solution manages not only to further minimize plant’s dependency on fossil 

fuels, but also to sensibly reduce the volume of treated wastewater to be discharged 

in receiving water bodies. 

Among the investigated scenarios, the best environmental performance was 

achieved in scenario D that represents a circular pattern where a) sludge is not 

disposed in landfill but further processed to generate biogas and syngas and b) the 

volume of treated wastewater is not completely discharged into surface waters but 

partially reused for fertirrigating willow fields for biomass production and electricity 

generation. 

The negative value for the fossil depletion and the terrestrial acidification 

categories resulting for scenario D are due to the avoided impacts associated to the 

cogeneration of heat and power (CHP) from willow biomass fertirrigation by means 

of nutrients in wastewater. The energy generated is much greater than the power 

demand of the WWT system so that the avoided impact refers to the avoided use of 

grid electricity by the territorial system. The latter, in fact, benefits from the surplus 



 

electricity and heat cogenerated by using willow biomass. 

The contribution associated to the avoided impact needs to be carefully interpreted. 

The avoided impact was calculated by subtracting the environmental burden of the 

amount of electricity generated by the Italian mix that would not be used by the 

regional system. In this case, the avoided impact mainly depends on the specific 

electric mix (Italian electricity mix in 2013, www.terna.it). Of course, if this mix 

changes, results would change as well. Furthermore, these benefits can only be 

included if the boundary of scenario D is extended to the broader regional scale to 

account for fossil energy replacement. 

The use of wastewater for irrigation and fertilization of willow cropped land allows 

non-negligible energy savings and contributes to renewable energy generation, but is 

only feasible if land is available at short distance from the WWT plant. This requires 

that WWT plant designs are made considering this option into account since the very 

beginning. 

As a result of this “towards zero-emission” oriented production pattern, where 

waste generated by a process can be used  and upgraded as input to support another 

process, the overall generation of waste and emissions decreases significantly. Such 

a perspective should represent a valuable option for a sustainable management of 

wastewater and sewage sludge. 

The FEP resulted the most impacted category in all the scenarios. This finding is due 

to the high content in nitrogen and phosphorus in wastewater mainly deriving from 

human and agro-industry waste. Wastewater discharges are understood to make a 

significant contribution to the problems of eutrophication and scenario D seemed to 

be a valuable option for reducing the nutrient pollution of surface waters. The 

abatement of the eutrophication impacts in scenario D is due to the utilization of 

wastewater for growing willow crops that avoids the discharge of nutrients rich 

treated water into the river. However, the amount of wastewater supposed to be used 

for fertirrigating willow fields only amounted to about 50% of the total annual volume 

generated by the WWT plant. 

 



 

 
 

Fig. 3. Characterized impacts of the four scenarios (percentage values; data from 

Table 1). 

 

 

Fig. 4. Normalized impacts of the four scenarios to impact categories. 

Normalization factors from Sleeswijk et al. (2008). 

 

HTP was the second impacted category. The high contribution to human toxicity is 

associated to sludge disposal in landfill. The contribution to the HTP decreases from 

scenarios A to D since their circularity allows the recycling of sludge within the 



 

WWT plant thus reducing the amount landfilled. Scenario D resulted to be the best 

option also in abating the HTP burden. However, the advantage due to the generation 

of electricity from local fertirrigated willow biomass is partially offset by wood 

combustion that also contributes to HTP. In order to overcome this last problem, 

scenario D could be complemented by the use of an appropriate fraction of wood 

biomass for platform chemicals instead of combustion. Fiorentino et al. (2014) 

demonstrated that if wood biomass is processed in a bio-refinery context, by selecting 

appropriate feedstock and technology suitable for the utilized raw materials, bio-

based products actually generate higher environmental and economic benefits than 

an energy-oriented pattern. Such alternative was also not integrated in this study (as 

it would require an optimization of the wood fraction allocated to CHP and the wood 

fraction allocated to the chemical route) but it would certainly be interesting for future 

studies to explore the potential mitigation of environmental impacts that could be 

achieved over this new pattern. 

 

 
 

Fig. 5. Comparison between characterized impacts of the renewable scenario and 

scenario D. 



 

 

 

Fig. 6. Comparison between normalized impacts of the renewable scenario and 

scenario D. 

 

Finally, a green electricity mix supplied by the national electric company ENEL is 

supposed to be used within the WWT plant (scenario E). Conventional electricity 

generation is a significant source of greenhouse gas emissions. The emissions from 

conventional electricity generation contribute to a number of serious environmental 

problems, including acid rain, fine particulate pollution, and climate change (EPA, 

2010). Green power generates less pollution than conventional power and produces 

no net increase in greenhouse gas emissions, helping protect human health and the 

environment. 

In this study the adoption of a renewable electricity mix was an important option, 

although not capable of significantly reducing the impact to eutrophication and 

human toxicity as does scenario D. 

 

4.2.   LCIA indicators for WWT systems 

 

The use of LCA allowed the calculation of environmental impact indicators. The 

outcomes of this study can be regarded as robust, effective and appropriate since 

they appear to be capable of (i) relating pollutants emissions to their environmental 



 

  

  

effects, (ii) describing the environmental impacts caused by wastewater and sludge 

treatments with sufficient accuracy and (iii) capturing the differences in the 

environmental performance due to the implementation of the proposed treatment 

technologies. Furthermore, through the investigated case study also the main limits of 

LCA indicators applied to wastewater treatment systems can be addressed, 

i.e. the quantification and meaning of the Eutrophication Potential, Global Warming 

Potential and Toxicity Potential indicators. High uncertainties are still associated with 

them, mainly due to incomplete regionalization of impact assessment methods, to 

relevant substances still not being characterized in LCA database and to uncertainty on 

the inventory part (Roux et al., 2010; Zang et al., 2015). In fact, neither Eutrophication 

nor Toxicity potential indicators can be fully assessed by LCA methods by means of the 

present characterization models, as they do not appear capable of capturing the local 

conditions as well as taking all the substances affecting the above impact categories into 

proper account (Roux et al., 2010; Zang et al., 2015). LCA indicators on Eutrophication 

provide useful insights on potential impacts but do not allow to infer the actual 

modification of the eutrophication level of a specific river due to wastewater 

discharges, simply because of the fact that the river quality upstream of the discharge 

point is not taken into account. Being eutrophication highly site-specific, more efforts 

should be put in developing and implementing new characterization models capable 

of taking local factors such as recipient ecosystem quality and sensitivity to nutrients 

emissions and emission source location into consideration (Zang et al., 2015). With 

regards to toxicity indicators, pathogens as well as the so-called Pharmaceuticals & 

Personal Care Products (PPCP) that are discharged into receiving water bodies are not 

currently characterized in LCA neither for human toxicity nor ecotoxicity, thus leading 

to underestimate such impacts (Roux et al., 2010). Toxicity-related impact categories 

have recently received increasing attention by means of efforts for the development 

of more accurate characterization models for toxicity, which should be integrated in 

current LCA software and databases (Zang et al., 2015). The aforementioned 

shortcomings are of particular significance for WWTP-related LCA studies, since, 

historically, the collection and treatment of wastewater has been performed to protect 

human health and prevent ecosystem eutrophication. Concerning Global Warming 

Potential, it is crucial to calculate more accurately the direct GHG emissions, since 

N2O, CH4 and fossil CO2 emissions from WWTPs are understood to make a significant 

contribution to the plants’ carbon footprint, most often exceeding the contribution of 



 

indirect GHG emissions associated with electricity use, so far considered the main 

source of GWP impact (IPCC, 2007; GWRC, 2011; Zang et al., 2015). Some Authors 

have concluded that direct N2O emissions are the largest contributor to a plant’s 

carbon footprint by far (GWRC, 2011; Rodriguez-Garcia et al., 2012; Daelman et al., 

2013), pointing out that the use of a generic emission factor to estimate such emissions 

from an individual WWTP is inadequate, being emissions affected by a large number 

of local parameters. The non-negligible uncertainty associated with N2O emissions 

estimate is mainly due to the difficulty of identifying the prominent mechanisms of 

nitrification-denitrification processes and factors influencing such emissions (Crutzen et 

al., 2007; GWRC, 2011; Zang et al., 2015). With regard to fossil CO2 emissions, some 

authors have pointed out that up to 20% of the biodegradable carbon present in 

wastewater may be of fossil origin (mainly related to detergents, cosmetics and 

pharmaceuticals) which is still not accounted for in Life Cycle Inventories, thus 

leading to underestimate the associated impacts expressed by the indicators 

(Rodriguez-Garcia et al., 2012; Zang et al., 2015). Furthermore, as methane is 

understood to make a non-negligible contribution to the overall GHG emissions from 

WWTPs, it is of vital importance to develop calculation models allowing to accurately 

estimate direct emissions from both the water and sludge treatment lines (GWRC, 

2011; Bao et al., 2015). Progress in the LCA methodology capable of better 

addressing these still unaccounted for aspects might radically change the LCIA results 

of wastewater treatment systems, thus helping develop new and more comprehensive 

LCA indicators, that are more representative of the real environmental impacts 

caused by WWTPs. 

 

5.   Conclusions 

 

Life cycle assessment, used in this study, allowed to compare the environmental 

performance of different scenarios for wastewater and sludge management, 

characterized by different degrees of recycling within the plant as well as at larger 

regional scale. 

Results showed that the most desirable option would be a circular pattern where a) 

sludge is processed to generate biogas and syngas to be further combusted for the 

generation of electricity and heat, b) collected and refined waste cooking oil from the 

surrounding area is used as additional heat source, and c) wastewater is used to 



 

fertirrigate wood crops for bioenergy purposes. 

The circularity adopted in this scenario decreases the overall environmental 

impacts of the WWT plant, allows the plant to be totally energy self-sufficient and 

contributes to (although small) renewable energy generation. 

Treated wastewater supports biomass fertirrigation that can be used together with 

other bio-wastes (such as waste cooking oil) to produce energy, nulling plant’s power 

requirement and even creating additional income through the sale of surplus energy 

to the local grid. 

It is evident from the investigated case study that new and improved processes and 

technology are capable of generating opportunities for impact reduction in WWT 

plants, but each option needs to be carefully evaluated over the entire life cycle, 

according to the particular context in which the WWT plant is located. 

Further improvements of the wastewater and sludge management could be 

implemented by adopting additional circular strategies at larger scale, after careful 

LCA evaluation. Results clearly show, however, that an improved wastewater 

treatment plant should not be considered a potential energy source (in spite of the 

biogas and syngas generation and additional biomass production) but instead a self-

sufficient facility providing the much more important water treatment service at low 

or no energy cost. The biomass energy production becomes a tool for and a co-

product of the abatement of water eutrophication potential, requiring a large land 

availability and occupation for this to happen. When marginal land is available, the 

WWT plant and its improved circular features may provide additional benefits, which 

calls for preliminary ecodesign and appropriate siting of the plant within the 

urbanized area that releases the wastewater and enough rural area to receive the 

treated water and allow biomass cropping. Finally, although LCA has proved to be 

a desirable tool to evaluate the environmental impacts of WWT plants, efforts are still 

needed to investigate some impact categories and to provide LCA indicators more 

adapted to the specific local context in which the WWT plant is embedded. 
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1.   Calculation procedures and raw data processing 

 

The Life Cycle Inventory (LCI) is structured according to the two considered main phases of the 

investigated system product, i.e. construction and operation phase. Accordingly, the data needed to 

establish the inventory were collected for each phase. 

 

1.1   Data collection 

 

Data were collected independently for the construction and operation phases, thus allowing objective 

review of individual data sets before their contribution to the overall life cycle results is determined. 

Data collection was an iterative process, whereby ensuring all necessary life cycle information. 

Foreground data, provided by Consorzio Nocera Ambiente (local society managing the wastewater 

treatment plant), concern electricity and process chemicals consumptions, volume and characteristics 

of influent and effluent as well as the amount of waste to be transported and disposed of for the 

operation phase. With regards to the construction phase, foreground data refer to the identification 

and quantification of the construction materials, their transportation to the plant, the amount of 

excavated earthen materials as well as the land covered by the construction site. On the other hand, 

background data on production of process chemicals, construction materials, waste disposal, 

transportation and electricity generation were obtained from the Swiss Ecoinvent database. 
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Concerning the Italian electricity mix, it was updated to that of 2013 (www.terna.it). Direct GHG 

emissions due to wastewater and sludge management within the investigated WWTP were estimated 

by means of using the emission factors of 0.0053 g CH4*g CODinflow*-1 and 28 g N2O-N*kg TKN-1, 

respectively (GWRC, 2011; Daelman et al., 2013). Finally, inventory data for transportation distances 

to sanitary landfills were calculated based on data obtained from Michelin Street Guide 

(www.viamichelin.it). 

1.2   Data analysis 

The collected data were converted to values that relate to the functional unit (1000 m3 of treated 

water). The adjusted data were entered into the OpenLca LCA software and modeled into 

environmental inputs and outputs and then aggregated to result in two inventory tables. 

1.2.1   LCI of the Construction Phase 

The infrastructure components of the investigated WWTP as well as the materials needed to build 

them were estimated by consulting the Bill of Quantities of Nocera Superiore Plant. In this document 

all materials, parts and labor needed to build the plant are itemized. Collecting data for the 

construction phase was a detailed-oriented and time-consuming task, as it required to scrutinize the 

bill of quantities of a very complex plant composed of thousands of different components. For the 

construction phase it was considered: 

• Concrete and reinforcing steel for the construction of reinforced concrete works;

• Lean concrete ("poor concrete") for the construction of the foundations;

• Sand, gravel and limestone used in the construction of civil works;

• Plaster used for masonry covering;

• Chromium Steel for the production of screens, rotostrainer, crane bridges and scrapers

(sedimentation tanks), compressors, blowers, dosing pumps, storage tanks of PAA, sluice gates, 

piping system, screw conveyors, immersed agitators, steelworks, polyelectrolyte dosing units, metal 

components of the digester, conveyor belts, belt presses and storage silos; 

• Cast iron for the production of hoist pumps, recirculation pumps and check and gate valves,

• Aluminum for the building coating and window fixtures;

• Synthetic rubber (EPDM) for the production of air disc diffuser membranes;

• Polyethylene for pipes production;

• Polyvinylchloride (PVC) for the production of pipes as well as air disc diffuser bodies;



 

•   PRFV for pipe production; 

•   The Land occupied by the construction site of the investigated WWTP as well as the 

environmental impacts due to the use of earth-moving machineries within the site and the 

transportation of the excavated materials to sanitary landfill. 

 

The LCI results for the construction phase are listed in table 1. 

 

 
 

In this table, all the materials used for the construction of the investigated plant, their transportation 



to the construction site as well as the area occupied by the site are expressed (calculated) in absolute 

terms as well as related to the chosen Functional Unit. Concerning the latter point, results were 

obtained by dividing the amount of each material by the total lifetime of the plant, and then by the 

wastewater treated per year. The values so obtained were then multiplied by 1,000, in order to express 

the results in relation to the chosen Functional Unit. Finally, it was assumed that the water treated per 

year (for every year during the WWTP lifetime) is 11,450,610 m3, which is the volume of treated 

wastewater by Nocera Superiore plant throughout the investigated year. 

1.2.2   LCI of the Operation Phase 

Concerning the Operation phase, the electricity and process chemicals (PAA & polyelectrolyte) 

consumptions, their transportation to the plant, the volume and characteristics of influent and effluent, 

the direct GHG emissions as well as the amount of waste to be transported and disposed of were 

considered. The volume of treated wastewater, the electricity and process chemicals consumptions as 

well as the wastes produced throughout the investigated year are listed in table 2. The values listed in 

the table are calculated on monthly and annual basis. 

Table 2: Summary of volume of treated wastewater, electricity and process chemicals 

consumptions, and amount of wastes produced over the investigated period. 

The sanitary landfills and the recycling plant where the different types of waste are transported, the 

estimated transportation distances, the average amount of waste per trip, the number of truck trips 

and the total waste transport (expressed in mass*distance) calculated for each kind of waste are listed 

in Table 3. 



Table 3: Waste transport. 

Table 4 itemizes the process chemicals used throughout the reference year, the transportation 

distances from the factories to the dealer and from the dealer to the WWTP, the average amount of 

goods per trip, the number of trips and the total goods transport for each means of transport. 

Table 4 - Transport of process chemicals 

Table 5 lists the estimated direct pollutants emissions released to the receiving water body throughout 

the investigated period. 

Table 5: Direct pollutants emissions in the receiving water body. 



Finally, the LCI results for the operation phase related to the chosen Functional Unit are summarized 

in tables 6a and 6b, while the methodology employed to estimate the direct GHG emissions is 

described in the following paragraph. 

Tables 6a and b: LCI results for the operation phase. 

1.2.2.1 Estimation of Direct GHG Emissions 

WWTPs are also direct sources of CO2, CH4 and N2O, as a result of the biological processes tanking 

place in both aerobic and anaerobic treatment steps. Direct GHG emissions can be regarded as a 

nonnegligible contributor to the carbon footprint of WWTPs, that need to be taken into consideration. 

The different treatment steps which can be involved in direct GHG emissions are shown in figure 1 

(GWRC, 2011). 

Figure 1: Treatment steps of Nocera Superiore WWTP where GHGs can be emitted. 

The GHGs released during wastewater treatment as well as the accounting methods used in the 

inventory are described separately in the following part of this paragraph. 

CO2 emissions According to the Guidelines for National Greenhouse Gas Inventories (IPCC, 2006), in 



this study the direct emissions of CO2 released during wastewater and sludge treatment are not 

accounted for, since they are considered as biogenic origin. 

CH4 emissions – in order to estimate the direct methane emissions released by Nocera Superiore 

WWTP, equation 1 proposed by the IPCC (2006) as well as the emission factors determined during 

field testing at Papendrecht and Kortenoord WWTPs (IPCC, 2006) were considered. 

IPCC equation 1 

CH4Emissions WWTP = (COD influent – COD effluent) * EF Where: 

COD influent – COD effluent is the COD removed during wastewater treatment at Nocera Superiore 

WWTP, that was chosen as activity datum of the investigated process. 

EF is the emission factor of CH4, which is calculated through the IPCC equation 2 

FE = B0 * MCF 

Where: 

Bo is the maximum amount of CH4 that can be produced per unit of COD in wastewater, expressed 

as Kg of CH4 * Kg COD-1; The IPCC default value is 0.25 kg CH4 * kg COD-1. 

MCF is the methane correction factor, which indicates the extent to which Bo is released from the 

investigated WWTP. The default MCF value for aerobic and well managed WWTPs ranges from 0 

to 0.1. 

FE is, therefore, a function of the maximum amount of CH4 that can be produced per unit of COD 

(Bo) and the methane correction factor (MCF) indicating the extent to which Bo is released in the 

investigated WWTP. 

The emission factors found during field testing at Papendrecht and Kortenoord WWTPs (GWRC, 

2011), equal to 0.0087 g CH4*g CODinfluent*-1 e 0.0053 g CH4*g CODinfluent*-1were also considered. 

The aforementioned emission factors were selected since both plants take advantage from the same 

treatment technology exploited by Nocera Superiore WWTP and their sludge treatment lines do not 

include the anaerobic digestion of sludge. The so calculated CH4 emissions are listed in table 7. 

Table 7: Estimation of direct CH4 emissions over the investigated period. 



 

Results gained by the IPCC equation 1 depend most upon the choice of the MCF value. Since there 

was no element capable to drive this choice, the use of the IPCC equation was rejected. Therefore, it 

was decided to apply the emission factor determined at Kortenoord WWTP, since it has the same 

wastewater treatment schema (A2/O activated-sludge process) as the investigated plant, with also a 

similar treatment capacity (100,000 PE). Finally, the emission factors estimated by Daelman et al. 

(2012; 2013) were not taken into consideration because of the different sludge treatment schema hold 

by Kralingseveer WWTP, which is equipped with an anaerobic digester with biogas recovery6. 

N2O emissions – With regard to the estimation of N2O emissions, the IPCC equation 3 as well as the 

emission factor proposed by Daelman et al. (2013) were evaluated. 

 

IPCC equation 3 

N2Oplant = (P * FIND-COMM * EF) 

Where: 

P is population served by the investigated WWTP, 

Find-comm is the fraction of industrial and commercial co-discharged protein, equal to 1.25 (default 

value proposed by the IPCC); 

EF is the N2O emission factor, equal to 3.2 g N2O*person*year-1 (default value proposed by the 

IPCC). 

 

As it has already been pointed out, the EF proposed by the IPCC is based only on a field study in 

which the plant was not expressly designed for nitrogen removal. Therefore, its use may lead to 

underestimate the direct N2O emissions from WWTPs. In order to overcome this problem, some 

Countries such as Denmark and USA have developed specific emission factors for their own GHG 

inventories. In Table 8 the aforementioned EFs as well as the nitrous oxide emission estimated by 

using the IPCC equation 3 with the considered EFs are reported. 

 

 

 

 

 

 

 

                                                        
6 Nocera Superiore WWTP is also equipped with a two-stage anaerobic digester, which is however not in 
operation. 



Table 8: Direct N2O emissions calculated by using the IPCC equation 3. 

Emission factor proposed by Daelman et al. (2013) – The pioneering study carried out by Daelman 

et al. (2013) was the first long-term, on-line monitoring campaign measuring nitrous oxide and 

methane emissions from a municipal wastewater treatment plant. For this study, the average N2O 

emission factor was 28g N2O-N*kg TKNinfluent
-1, or 2.8% of the incoming nitrogen. As a comparison, 

the emission factor proposed by the IPCC is 3.2 g N2O-N*PE-1, which amounts to 0.35 g N2O-N*kg 

TKNinfluent
-1 for developed countries, characterized by a high intake of protein (Kampschreur et al., 

2009). The IPCC emission factor is therefore eighty times lower than the EF found in this study. 

Furthermore, the nitrous oxide emission monitored in this study showed a great seasonal dynamic, 

which was not fully understood. 

The emission factor proposed by Dealman et al. (2013) was applied in this study to estimate the N2O 

emissions throughout the investigated period, since it is based on a long term monitoring campaign 

(which was capable of taking the different operating and environmental conditions faced by the 

investigated WWTP over time into account) carried out at a WWTP employing a similar waterline 

treatment schema. As the incoming TKN throughout the investigated period was 78,861.1 kg, the 

estimated N2O emission at Nocera Superiore WWTP is 3,469.9 kg. 

1.3 Energy and mass balance for the investigated scenarios 

The energy and mass balances of the sludge treatment line in scenario B are presented in Figure 2. 

Values are related to the chosen FU. Heat (red) and electricity (yellow) produced within the plant are 

shown by large dashes lines. 



Figure 2: Sludge treatment line process diagram of Scenario B. 

Similarly, Figure 3 shows the energy and mass balances of the sludge treatment line in scenario C 

and D. Values are related to the chosen FU. Heat (red) and electricity (yellow) produced within the 

plant are shown by large dashes lines. 

Figure 3: Sludge treatment line process diagram of Scenario C and D. 
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