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Abstract—This paper demonstrates the application of the
Finite-Difference Time-Domain method for dispersive media to
indoor ultra-wideband channel modeling. A new description
of the frequency dispersion of building materials, based on a
partial-fraction approach, is proposed, utilizing experimentally
measured data on complex permittivity values reported in the
literature. The analytical dispersion model for a series of building
materials is estimated through the Vector Fitting technique and
the through-the-wall penetration is calculated for indicative cases.
Finally, a small two-dimensional office environment is studied
and several channel characteristics are calculated demonstrating
the flexibility and robustness of the proposed formulation in
communication modeling. The proposed FDTD implementation
covers all the bandwidth in a single run instead of running
simulations for every frequency or subband.

I. INTRODUCTION

Following the increasing interest in ultra-wideband (UWB)

systems [1], [2] during the last years, the need for radio

network planning tools that aid operators to design and opti-

mize their wireless infrastructure is rising. In order to increase

the reliability of these tools and to successful implement

such systems, assiduous study of the propagation channel is

necessary.

Currently used techniques make use of empirical or semi-

empirical models due to their quick implementation and

short running time. However, these models suffer from a

lack of precision in complex environments such as urban

and indoor scenarios, where the various obstacles should be

more accurately modeled. It is thus necessary to make use

of deterministic models based on physical laws that try to

compute the reflection, diffraction, transmission and scattering

on obstacles.

Ray-tracing [3] and geometric-like models have been pro-

posed to this end. They have shown to be very efficient, except

in severe environments, where a large number of multipath

reflections need to be computed, and where the diffraction

phenomena, even with the Uniform Theory of Diffraction

(UTD), are difficult to simulate.

Another well known approach to compute radio wave prop-

agation is the Finite-Difference Time-Domain (FDTD) method

[4], which solves directly Maxwell’s equations on the nodes

of a discrete grid. This method is very appealing, since it rig-

orously takes into account wave-matter interaction. In several

works [5]–[13], FDTD formulations are exploited in 2- and 3-

D implementations for the study of propagation mechanisms

for indoor or between nearby buildings communications. In all

the aforementioned works the material modeling is restricted

either to non-dispersive media or lossy materials with a static

conductivity term.

In this work, we exploit the time-domain nature of the

FDTD technique by also taking into account the frequency

dependent material properties. Instead of running individual

simulations for every single frequency or subband of interest,

all relevant information is obtained using a wide frequency

content excitation pulse in a single run with the aid of the

Fourier transform. This property renders the FDTD method

an indispensable tool for the study of wideband propagation

channels. Especially, in UWB systems where the bandwidth

is greater than 500 MHz and sometimes several GHz, the

dielectric permittivity and the losses of building materials vary

significantly in such large frequency ranges. Furthermore, the

proposed formulation avoids the division of the frequency

band of interest into subbands as presented in [8].

Although the main disadvantage of the FDTD method

to solve electrically large problems is the excessive com-

putational requirements, advances in processing capabilities

(multicore CPU, graphical processing units (GPU)) and par-



TABLE I
PF FITTED PARAMETERS OF SOLID CONCRETE BASED ON

MEASUREMENTS REPORTED IN [17].

Parameter Value

ǫ∞ 6.3
a1 −3.0268× 1010 rad/sec

c1 −1.4263× 1010 rad/sec

a2 −1.5923× 1010 rad/sec

c2 4.6218× 1010 rad/sec

TABLE II
PF FITTED PARAMETERS OF PLYWOOD BASED ON MEASUREMENTS

REPORTED IN [17].

Parameter Value

ǫ∞ 2.1
a1 (−0.00789± 0.5010j)× 1010 rad/sec

c1 (0.4138∓ 3.0340j)× 108 rad/sec

a2 (−0.5619± 1.4077j)× 1010 rad/sec

c2 (8.3735∓ 3.7212j)× 108 rad/sec

allel computing are making their application to the indoor

propagation problem tractable [14], [15].

In the present work the permittivity of several building

materials is fitted to a partial-fraction (PF) function using

the Vector Fitting technique [16]. VF is a robust method

extensively used from high-voltage power systems to mi-

crowave systems and high-speed electronics and produces

guaranteed stable poles that are real or come in complex

conjugate pairs. In Section II, the fitted functions are fed

into the developed dispersive FDTD technique based on PF

terms and applied in 1-D and 2-D problems (Section III).

The investigated examples of Section IV demonstrate that the

proposed numerical framework is an effective tool in the study

and design of indoor communication systems, restricted only

by the power of available computational resources. Finally, in

Section V, the conclusions are drawn.

II. MODELING OF BUILDING MATERIALS WITH PF

MODELS

Most materials in nature exhibit frequency dependent elec-

tromagnetic characteristics, a property which is described by

the term frequency dispersion [18]. Various dispersion func-

tions have been extensively used to describe the variation of

media complex permittivity, including Debye, Drude, Lorentz,

Cole-Cole, and Davidson-Cole models. Typically, the param-

eters of the dispersion functions are estimated by a fitting

process of experimentally acquired data during material char-

acterization. In recent years, additional dielectric functions,

e.g. complex-conjugate pole-residue pairs [19], Drude-critical

points [20], and the modified Lorentz model [21], have been

proposed for the accurate representation of material dispersion,

such as in the case of metals, semiconductors, and graphene,

in the optical/IR and THz frequencies. It can be proved that

all of the aforementioned models can be incorporated in a

generalized form based on partial fractions (PF) [22], [23]. In

TABLE III
PF FITTED PARAMETERS OF HOLLOW CONCRETE BASED ON

MEASUREMENTS REPORTED IN [17].

Parameter Value

ǫ∞ 2.8
a1 (−0.78607± 0.5706j)× 1010 rad/sec

c1 (1.9365∓ 0.1166j)× 1010 rad/sec

a2 (−0.57466± 1.0503j)× 1010 rad/sec

c2 (−0.6805± 1.3468j)× 1010 rad/sec

a3 (−0.4085± 1.2842j)× 1010 rad/sec

c3 (−0.3116∓ 0.62139j)× 1010 rad/sec

TABLE IV
PF FITTED PARAMETERS OF BRICK BASED ON MEASUREMENTS

REPORTED IN [24].

Parameter Value

ǫ∞ 2.5
a1 −0.02531× 1010 rad/sec

c1 0.02217× 1010 rad/sec

a2 −2.8311× 1010 rad/sec

c2 2.457694× 1010 rad/sec

a3 (−0.03106± 2.2926j)× 1010 rad/sec

c3 (0.004512∓ 0.02679j)× 1010 rad/sec

the PF model, the relative permittivity is described via

ε(ω) = ε∞ +

M
∑

p=1

χp(ω), (1)

with the susceptibility function defined as

χp(ω) =







cp
jω−ap

, if ap is real

cp
jω−ap

+
c∗
p

jω−a∗

p

, if ap is complex
(2)

where ε∞ is the relative permittivity at infinite frequency,

cp and ap are the poles and residues, respectively, and ∗
denotes the complex conjugate. Although PF models have been

applied to model metals in optical/IR spectrum, such models

have not been applied yet for the frequency description of

the permittivity of media such as building materials in the

microwave bands.

In the present work we describe the dielectric properties

of building materials encountered in wireless communication

systems using the PF formulation and estimate the parame-

ters of the model through the VF technique [16]. VF is a

robust numerical method for rational approximation in the

frequency domain using poles and residues, which is widely

used to calculate a reduced-order passive macromodel for the

characterization of terminal frequency responses. The resulting

rational expression has stable poles, real or complex conjugate

pairs, which are compatible with the PF formulation of (1).

We use tabulated measured data for solid concrete, plywood,

hollow concrete [17] and brick [24] and the parameters yielded

by the VF technique are shown in Tables I-IV.

In Fig. 1 the real and the imaginary parts of dielectric

permittivities of the fitted functions are shown against the

measurement data for each material under consideration. It
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Fig. 1. (a) Real and (b) imaginary part of the dielectric permittivity of the
fitted models and the measurement data for plywood, hollow concrete, solid
concrete and brick.

is noted that the fitted models can also be used in nonde-

structive evaluation, grounding penetrating radars [25] and

other engineering applications. Additionally, the proposed PF

modeling of materials can be also exploited in other time-

domain methods in computational electromagnetics e.g. finite-

integration technique.

III. FDTD FORMULATION WITH PF DISPERSIVE MODELS

We start the derivation of the FDTD formulation used in the

following simulations, from the Ampére-Maxwell equation in

the frequency domain

jωε0 ε(ω)E(ω) = ∇×H(ω), (3)

where ε(ω) is the frequency-dispersive relative permittivity of

the medium, which is assumed to follow (2).

The term jωε0ε(ω)E(ω) for the case of complex ap in (2)

can be written as

jωε0εo(ω)E(ω) = jωε0ε∞E(ω) +
∑

p

Jp(ω) +
∑

p

J
′

p(ω),

(4)

by introducing the additional variables Jp and J
′

p defined as

Jp(ω) = jωε0
cp

jω − ap
E(ω), (5)

J
′

p(ω) = jωε0
c∗p

jω − a∗p
E(ω). (6)

Equations (5)-(6) are transformed into the time domain as

dJp

dt
− apJp = ε0cp

dE

dt
, (7)

dJ ′

p

dt
− a∗pJ

′

p = ε0c
∗

p

dE

dt
. (8)

Given that in the time domain the electric field component

E is a real quantity, i.e. dE∗/dt = dE/dt, it can be concluded

that J
′

p = J
∗

p. Moreover, since z + z∗ = 2ℜ{z} with ℜ{·}
denoting the real part of a complex value, (4) in the time

domain becomes

ε0ε∞
dE

dt
+
∑

p

(

Jp + J
′

p

)

= ε0ε∞
dE

dt
+
∑

p

2ℜ{Jp}. (9)

In case ap is a real pole, (5) holds and one obtains

ε0ε∞
dE

dt
+
∑

p

(

Jp + J
′

p

)

= ε0ε∞
dE

dt
+
∑

p

Jp, (10)

since Jp is in this case a real quantity and J
′

p is zero. In both

cases, only Jp is needed to be updated and stored in memory.

Taking into account (4), (3) in the time domain is written

as

∇×H = ε0ε∞
dE

dt
+

∑

p

ξpℜ{Jp}, (11)

where both cases described by (9) and (10) are unified via the

addition of the extra parameter ξp, defined as

ξp =

{

1, if ap is real,

2, if ap is complex
. (12)

Equation (5) is also transformed into the time domain

dJp

dt
− apJp = ε0cp

dE

dt
, (13)

and after discretization at time step n+ 1/2 we get

δtJ
n+1/2
p

∆t
− apµtJ

n+1/2
p = ε0cp

δtE
n+1/2

∆t
, (14)

where δt and µt are the central difference and average op-

erators over ∆t, respectively, defined as δtF
n = Fn+1/2 −

Fn−1/2, µtF
n = 0.5(Fn+1/2 + Fn−1/2). Finally, we obtain

the following update equation

J
n+1

p = d1pJ
n
p + d2pE

n+1 + d3pE
n, (15)
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with

d1p =
1 + ap∆t/2

1− ap∆t/2
, d2p =

ε0cp
1− ap∆t/2

d3p = −d2p. (16)

Similarly, (11) is discetized at time step n+ 1/2

∇×H
n+1/2 = ε0ε∞

δtE
n+1/2

∆t
+
∑

p

ξpℜ{µtJ
n+1/2
p }. (17)

Using (15) in (17) the update equation of the E is yielded

E
n+1 = C1

(

C2E
n−

1

2

∑

p

ξpℜ{(1 + d1p)J
n
p}+∇×H

n+1/2
)

,
(18)

where

C1 =
∆t

ε0ε∞ + 0.5∆t
∑

p ξpℜ{d2p}
, (19a)

C2 = ε0ε∞/∆t− 0.5
∑

p

ξpℜ{d3p}. (19b)

The Faraday-Maxwell equation is discretized as in the standard

FDTD scheme [4].

The most common criticism of using FDTD method in

propagation modeling is the overwhelming CPU and memory

requirements. In fact, the proposed technique demand M
complex variables, where M is the number of PF terms in

(1) for storing each component of Jp per FDTD cell, i.e.

48M additional bytes over the standard FDTD method for the

3D case when double precision is used. The modeling of a

moderate office environment of dimensions 20m× 20m in 2D

using the proposed method with 3 PF terms and assuming

FDTD cell size λmin/20 with maximum frequency of interest

3 GHz demands approximately 1 GB of memory. Finally,

the updating of each component of Jp and E involves 4M
additional complex multiplications per FDTD cell. It is noted

that the emerging technologies of clustering computing [14]

are making the study of indoor propagation problem using

FDTD approaches tractable.

The present method goes beyond current capabilities of

time domain commercial simulators. The results given in the

following section were produced with an in-house FDTD code

written in MATLAB which has also been extended to more

complicated dispersive/anisotropic materials [26].

IV. NUMERICAL RESULTS

A. Through-the-Wall Penetration Loss

As a benchmark problem, we study the penetration loss

through walls of different material and thickness using the

proposed numerical formulation in comparison to analytical

solutions [27]. We consider 10-cm and 5-cm walls made of

brick, plywood and solid concrete. A plane wave impinges

perpendicularly on the wall and the material dispersion is

described via the PF model as explained in Section 2 with

parameters shown in Tables I, II, and IV. The FDTD code ran

with ∆ = 1 mm and ∆t = 0.3∆z/c0, where c0 is the velocity
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Fig. 2. Penetration loss through a (a) brick, (b) plywood and (c) solid
concrete wall of thickness 5 cm and 10 cm. FDTD results using the fitted PF
dispersion model are compared to the analytical solution calculated for the
experimentally measured permittivity values.

of light in vacuum. The computational domain was backed

with a 12-cell Convolution Perfectly Matched Layer (CPML)

[28] and the excitation source was a modulated Gaussian pulse

with frequency content in the region 1 − 3 GHz. In Fig. 2

the penetration loss is calculated, demonstrating acceptable
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Fig. 3. Floor plan of the two-dimensional office under study. The transmitter
(Tx) and the receivers’ (Rx1 and Rx2) locations are shown. The dashed line
indicates the path along which power loss is calculated in Fig. 6.
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Fig. 4. Electric field as a function of time at Rx1 and Rx2.

agreement between the FDTD and the reference solution. The

divergence between the numerical solution and the analytical

one is owing to the quality of the fitting since the numerical

dispersion of the FDTD method is negligible with the chosen

space step ∆.

B. UWB Channel Characterization of Two-dimensional Envi-

ronment

The floor plan of a two-dimensional office environment

selected as a case-study is shown in Fig. 3. The walls are

5 cm thick and made of solid concrete, which is modeled as a

dispersive material with parameters as in Table I. Transverse

magnetic (TM) polarized field is considered with FDTD cells

of ∆x = ∆y = 5 mm and time step was chosen 3.538×10−12

sec. The stability criterion of the presented FDTD method
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Fig. 5. Power Delay Profile at Rx1 and Rx2.

can be extracted by an analogous manner of [29]. The FDTD

code ran for 25000 time steps in a computational domain of

836× 636 cells. A single field component Ez is used for the

excitation with frequency content in the region 1 − 3 GHz.

The FDTD grid resolution corresponds to λmin/20, while the

computational domain is terminated by a 8-cell CPML [28].

In Fig. 4, the electric field is shown at the receivers’ locations.

It is observed that the amplitude of the direct wave in Rx1 is

lower than the corresponding in Rx2 because Rx1 is behind

the wall. The profile of the recorded time-domain signals in

Fig. 4 reveals various late-time pulses arriving at the receivers,

owing to reflections at the room’s walls. In Fig. 5 the power

delay profiles, normalized over the maximum received field,

are shown for Rx1 and Rx2.

In Fig. 6 the path loss is calculated for the path depicted

in Fig. 3 for two different frequencies around 2.42 GHz and

2.82 GHz. The path loss exponent is also calculated obtaining,

as expected, values lower than that of an isotropic antenna,

owing to the positioning of the transmitter at the corner of

the room, where back-reflections enhance the transmittance

towards the path where power loss is calculated. It is stressed

that the calculation for both frequencies was done using

Discrete Fourier Transform (DFT) of the stored electric field

in the locations of the path after the FDTD simulation. One

of the strengths of the proposed time-domain formulation is

the ability to extract results in the whole frequency of interest

with a single simulation. In Fig. 6 the path loss exponent is

also depicted.

V. CONCLUSION

Wideband characterization of the building material permit-

tivity is obtained through fitting processes based on the vector
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Fig. 6. Path loss calculated from 1 to 2.7 m away from the transmitter, as
indicated in Fig. 3. The least square (LS) fitted lines and the values of path
loss exponent (in parentheses) are also shown

fitting technique. Full-wave time-domain numerical analysis

of indoor propagation channels by rigorously incorporating

material dispersion is presented. The proposed framework can

be an alternative to empirical models and with the advances in

processing computer power can lead to accurate propagation

studies of UWB systems.
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