
Efficient Energy Management in Distributed Web Search
Matteo Catena

ISTI-CNR
Pisa, Italy

matteo.catena@isti.cnr.it

Ophir Frieder
Georgetown University
Washington, DC, USA

ophir@ir.cs.georgetown.edu

Nicola Tonellotto
ISTI-CNR
Pisa, Italy

nicola.tonellotto@isti.cnr.it

ABSTRACT
Distributed Web search engines (WSEs) require warehouse-scale
computers to deal with the ever-increasing size of the Web and the
large amount of user queries they daily receive. The energy con-
sumption of this infrastructure has a major impact on the economic
profitability of WSEs. Recently several approaches to reduce the
energy consumption of WSEs have been proposed. Such solutions
leverage dynamic voltage and frequency scaling techniques in mod-
ern CPUs to adapt the WSEs’ query processing to the incoming
query traffic without negative impacts on latencies.

A state-of-the-art research approach is the PESOS (Predictive
Energy Saving Online Scheduling) algorithm, which can reduce
the energy consumption of a WSE’ single server by up to 50%.
We evaluate PESOS on a simulated distributed WSE composed of
a thousand of servers, and we compare its performance w.r.t. an
industry-level baseline, called PEGASUS. Our results show that
PESOS can reduce the CPU energy consumption of a distributed
WSE by up to 18% with respect to PEGASUS, while providing query
response times which are in line with user expectations.
ACM Reference Format:
Matteo Catena, Ophir Frieder, and Nicola Tonellotto. 2018. Efficient Energy
Management in Distributed Web Search. In The 27th ACM International
Conference on Information and Knowledge Management (CIKM ’18), October
22–26, 2018, Torino, Italy. ACM, New York, NY, USA, 4 pages. https://doi.
org/10.1145/3269206.3269263

1 INTRODUCTION
High performance query processing is fundamental for the success
and the profitability of web search engines (WSEs) [3]. Indeed,
WSEs manage an ever growing collection of Web documents and
receive billions of queries per day but, at the same time, their users
are impatient and expect results for their queries in sub-second
times (e.g., 500 ms) [1].

To satisfy such performance requirements, WSEs adopt a dis-
tributed architecture, i.e., they are deployed on clusters of thou-
sands of multi-core servers. This architecture ensures that most
users will quickly receive their results, keeping them satisfied. How-
ever, such many servers consume a significant amount of energy,
mostly accountable to the power consumption of their CPUs [2].
The resulting electricity expenditure can hinder the profitability of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’18, October 22–26, 2018, Torino, Italy
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6014-2/18/10. . . $15.00
https://doi.org/10.1145/3269206.3269263

WSEs, as they can consume tens of megawatts of electric power.
Therefore, energy efficiency is an important aspect for the economic
successfulness of WSEs. We too focus on energy efficiency and eval-
uate two energy management approaches using real world data.
Our experiments demonstrate considerable gains using a recently
proposed research energy management scheduler.

General energy studies are not new, examples including [7, 14]
Recent studies show however that users negatively react to large
response time, but they can hardly notice response times that are
faster than their expectations [1]. Therefore, WSEs can trade-off
performance (i.e., longer response times) for lower energy con-
sumptions when this does not affect the user experience. Such
trade-offs are feasible by varying the frequency and voltage of CPU
cores in WSEs’ servers via Dynamic Frequency and Voltage Scaling
(DVFS) technologies [13]. Thanks to DVFS, WSEs can save energy
by answering queries no faster than necessary. State-of-the-art
implementations of this principle are PEGASUS and PESOS.

PEGASUS (Power and Energy Gains Automatically Saved from
Underutilized Systems) is a technique that aims at improving the
energy efficiency of large scale systems such as WSEs [8]. Experi-
mentally shown, PEGASUS reduces by up to 20% the power con-
sumption of a Google Search production cluster, while keeping its
latencies within an acceptable service level objective (SLO). Dif-
ferently, the PESOS (Predictive Energy Saving Online Scheduling)
algorithm is designed to reduce the CPU energy consumption of
single servers [4]. Experimentally evaluated, PESOS can reduce the
CPU energy consumption of a query processing server by almost
50%, while response times are kept below a desired time threshold.

While PESOS results are significant, their validity is limited, as
PESOS has only been tested on a single server configuration. In-
stead, the de facto standard for WSEs is to rely on a distributed
architecture, as PEGASUS correctly assumes. In this work we fill
the gap between PESOS and PEGASUS by evaluating the perfor-
mance of PESOS on a distributed WSE, and comparing PESOS and
PEGASUS in terms of energy consumption and their success in
meeting response time requirements. To this end, we simulate the
behavior of PESOS when deployed on thousands of servers, con-
ducting experiments on the ClueWeb09 (cat. A) corpus and using
the MSN2006 query log. Results show that PESOS can reduce the
CPU energy consumption of a distributed WSE by up to 18% with
respect to PEGASUS, while providing query response times which
are in line with user expectations.

2 BACKGROUND
Distributed Search. Given a document collection, a posting list

is associated to each term appearing in the collection, containing
the list of the documents in which the term occurs. The set of the
posting lists for all the terms is called the inverted index. A WSE
must manage huge amounts of documents and process billions of

Short Paper CIKM’18, October 22-26, 2018, Torino, Italy

1555

https://doi.org/10.1145/3269206.3269263
https://doi.org/10.1145/3269206.3269263
https://doi.org/10.1145/3269206.3269263

queries per day with low latencies. Hence, WSEs partition into
smaller shards the inverted index used to match user queries. In
fact, query processing times depend on the lengths of the posting
lists, namely on the number of postings traversed, decompressed,
and scored [12]. The posting lists of an index shard are shorter than
the corresponding ones in the original inverted index, resulting in
reduced processing times.

After partitioning, index shards are assigned to different shard
servers. When a query is sent to the WSE, it is first received by a
query broker which dispatches the query to every shard server. Each
server computes the query results on its shard independently from
the others. These partial results are sent back to the broker, which
aggregates them [3, 6]. The aggregated results are the same that
would be provided by a single inverted index; since the computation
is now distributed across several servers, query processing times
are reduced. The query broker collects and aggregates the partial
results from the shards, and the final results are sent to the issuing
user. The set of shard servers holding all the index shards is an
index replica.

Since a WSE can receive thousands of queries per second, a
single index replica may not be sufficient to deal with such arrival
rates. Therefore, WSEs are usually deployed on clusters of servers
which host multiple index replicas. By distributing and replicating
the inverted index on multiple servers, a WSE can process large
volumes of incoming queries with low latencies.

Energy Management. The described distributed and replicated
search architectures consume megawatts of electricity, mostly ac-
countable to their CPUs [2]. Yet, relatively few focus on reducing
the CPU energy consumption of WSEs without degrading their
query latencies. Here we focus on PEGASUS and PESOS as both
exploit the CPU energy minimization based on DVFS technology.

PEGASUS [8] is a feedback-based controller designed to manage
the power consumption of all the WSE’s index replicas. PEGASUS
works by dynamically capping the power consumption of the shard
servers’ CPUs. Since large core frequencies correspond to large
power consumption, capping the CPUs’ power consumption limits
the maximum frequency cores operate. Power capping is performed
by constantly monitoring the WSE latencies and by reacting ac-
cording to a set of rules designed to target a service level objective
(SLO) latency T . While the actual value of T is not disclosed, it
is expressed in terms of the 30-seconds moving average latency.
To target T , PEGASUS raises the WSE’s power cap when the in-
stantaneous latency Y surpasses T , to avoid SLO violations in the
near future. This allows the CPUs’ cores to select large frequen-
cies, hence to consume large amount of energy to quickly process
queries. Conversely, PEGASUS lowers the power cap when Y is
well below T . In that case, SLO violations are unlikely to occur and
so CPUs’ cores are forced to select small frequencies to save energy.
This continuous adjustment of its power cap allows the WSE to
meet the SLO while enabling energy savings. All PEGASUS’ rules
are summarized in Table 1; refer to [8] for further details.

Unlike PEGASUS, PESOS [4] reduces CPU energy consumption
of single shard servers, while processing each query within τ ms
from its arrival. The algorithm bases its decision on query efficiency
predictors (QEPs), which are techniques to estimate the processing
time of a query before its processing [10]. PESOS uses QEPs to

Table 1: PEGASUS’ rules as presented in [8]. X is the mea-
sured SLO latency (i.e., the 30-seconds moving average la-
tency), Y is the measured instantaneous latency (i.e., the
completion time of a query), and T is the target SLO latency.

Input Action

X > T Set max power, wait 5 minutes
Y > 1.35T Set max power
Y > T Increase power by 7%
0.85T ≤ Y ≤ T Keep current power
Y < 0.85T Lower power by 1%
Y < 0.60T Lower power by 3%

solve a modified version of theminimum-energy scheduling problem
(MESP) [16]. In MESP, a set of jobs must be scheduled on a CPU to
meet their deadlines and minimize energy consumption of the CPU.
Jobs can be preempted and their processing volumes are known,
while the CPU speed can vary continuously and is unbounded.

The MESP always admit a feasible schedule since arbitrary large
amounts of work can be performed in infinitesimal time by se-
lecting arbitrary large CPU speeds. Moreover, the MESP can be
optimally solved in O(n3) by using the YDS algorithm proposed
by Yao et al. [16]. However, YDS cannot be used directly on search
engines since the MESP assumes unconstrained processing speed
but the frequencies available on actual CPU cores are discrete and
bounded. Moreover, the MESP assumes that job processing volumes
are known a priori while query processing volumes may not be [10].

PESOS overcomes these limitations by using the posting as the
unit of work associated to a query since the query processing time
correlates with the number of postings to evaluate [10]. Conse-
quently, PESOS uses two classes of QEPs: given a query, estimates
howmany postings are evaluated; and given the number of postings
and a core frequency, estimates the query processing time.

PESOS adapts YDS to multi-core shard servers by using such
QEPs. It initially replaces query processing volumes with the num-
ber of predicted postings to be evaluated, relaying this information
to YDS. Then, it translates the cores’ speeds returned by YDS into
valid core frequencies, by predicting query processing times.

3 DISTRIBUTEDWSE SIMULATION
To evaluate the performance of PESOS and PEGASUS at a realistic
scale, we simulate a distributed WSE1. In doing so, we want to
investigate the following research questions (RQs):

(1) Does PESOS help reducing the CPU energy consumption of
a distributed WSE?

(2) Does PESOS provide acceptable latencies in a distributed
WSE?

(3) How does PESOS compare to PEGASUS in term of both
latencies and energy consumption?

To answer RQ1 and RQ3, we simulate the energy consumption
(measured in megawatt hours, MWh) of a WSE’s CPUs, while we
simulate its tail latency (computed 95th percentile of response times
distribution) to answer RQ2 and RQ3. To better understand the
benefits of PEGASUS and PESOS for WSEs, we will also compare
their performance with a WSEs which always operates its CPUs’
1The source code is availabe at: https://github.com/catenamatteo/eem-dws-simulator

Short Paper CIKM’18, October 22-26, 2018, Torino, Italy

1556

https://github.com/catenamatteo/eem-dws-simulator

cores at maximum frequency for the sake of low latencies. We refer
to this configuration as PERF.

Simulating the Energy Consumption. ACPU consumes an amount
of electric power that depends on the kind of tasks it is perform-
ing and on its configuration, i.e., the number of its cores which
are actively performing some task and the frequencies at which
they operate [2]. For our simulation, we assume that all the WSE’s
CPUs are Intel i7-4770K, which is the same model used for the
experiments in [4]. The i7-4770K has 4 physical cores2 which ex-
pose 15 operational frequencies ranging from 800 MHz to 3.5 GHz.
These characteristics result in 3,875 possible CPU configurations
in terms of active cores and core frequencies. The simulator maps
each of these configurations to their power consumption to ac-
curately estimate the energy consumption of a CPU dedicated to
query processing.

We index the ClueWeb09 (cat. B) collection using the Terrier
IR platform [9]. We index the collection removing stopwords and
applying the Porter stemmer. The resulting inverted index stores
document identifiers and term frequencies, compressed with Elias-
Fano [15]. The inverted index is kept inmainmemory by a dedicated
server equipped with 32 GB RAM and the i7-4770K processor. This
setting is then used to perform the following preliminary experi-
ments. For each possible CPU configuration, we launch a number
of instances of the search platform equal to the number of active
cores in the configuration. Each search instance is pinned to one of
the cores, which operates at the frequency indicated by the CPU
configuration. The instances continuously match queries from the
first day of the MSN2006 log against the aforementioned inverted
index, to retrieve the top 1,000 documents using BM25 and MaxS-
core. We use Mammut [5] to measure the energy being consumed
by the CPU to derive its power consumption.

These preliminary experiments allow us to map each CPU con-
figuration to its power consumption and to use this information in
the simulator. Our simulated CPU consumes 0.8 Watts when idle,
and up to 34.2 Watts when all its cores are busy processing queries
at 3.5 Ghz.

To validate our approach, we simulated the processing of the
whole second day of the MSN2006 query log against the ClueWeb09
(cat. B) inverted index, on a single server with a i7-4770K CPU and
32 GB RAM. The simulated server adopts PESOS to reduce its CPU
energy consumption. The same experiment was conducted in the
real world, and we find that our simulation underestimates by just
∼1% the actual energy consumption of the server’s CPU.

Simulating the Latency. We simulate the WSE tail rather than
mean latency as tail latency is considered a better performance
indicator [6]. In particular, for comparison purposes we chose the
95th percentile latency to mirror prior efforts [4, 8, 11].

The data used in our simulation are collected from real-world
experiments carried out using Terrier on the same server described
earlier. In this case, we use the ClueWeb09 (cat. A) collection, whose
Web pages are organized into five different folders (B, A2, A3, A4,
and A5) that we use as a form of document partitioning to perform
distributed search. In practice, we consider ClueWeb09 (cat. A) to
be composed by five partitions (the folders), each containing ∼50

2We do not exploit here hyperthreading, reflecting the experimental setup in [4].

millions Web pages. We use Terrier to index each of these partitions
independently, in the same way described earlier.

Since the resulting inverted index is composed by five shards,
each index replica of our simulatedWSEmanages five shard servers.
Lo et al. do not report the exact number of index replicas in the
Google Search production cluster used for their experiments [8].
They rather affirm that the cluster contains “thousands of servers”,
and we speculate it has at least 1,000 servers. Therefore, we adopt
the same number of shard servers in our simulator, resulting in the
simulation of a distributed WSE with 200 index replicas.

To exercise our simulated WSE, we use the second day of query
arrivals from the MSN2006 log. This reports only a small fraction
of the actual arrivals, which can be efficiently served with just one
index replica. Therefore, we decided to multiply the number of
queries received every second by a factor 200, i.e., for every query
arrival in the original query log we simulate 200 concurrent query
arrivals. For each of these arrivals, we generate a simulated query
according to a query template. A query template is a representation
of an actual query, which reports its number of terms and its pro-
cessing time on every index shard and at every frequency. We build
our query templates by randomly sampling 10,000 unique queries
from the second day of the MSN2006 log. We process these queries
using Terrier as described earlier. To build its query template, every
query is processed on each of the five index shards and at each of
the 15 core frequencies (i.e., 75 times).

Configuring PEGASUS and PESOS. Originally, PEGASUS expresses
the target SLO latencyT in terms of the 30-seconds moving average
latency metric. Since we focus on the 95th-tile percentile latency,
in our simulator, we modified PEGASUS’ rules in Table 1 to express
the SLO as the 30-seconds moving 95th-percentile. The target SLO
is set to 500 ms, according to [1]. Similarly, we also impose the
time budget τ of PESOS to 500 ms. Additionally, PESOS requires a
training phase to generate its QEPs, as in [10]. We train the QEPs as
described in [4], i.e., we train different QEPs for queries of different
lengths. For each length, we used 10,000 unique queries, randomly
sampled from the first day of the MSN2006 log. We train QEPs for
queries with 1 up to 5 query terms, while longer queries (6+ terms)
are managed by a common QEPs. In total, we use 60,000 queries for
the training phase of PESOS. Once QEPs are trained, we estimate
the number of postings to score and the processing times at each
core frequency of the 10,000 query templates used in the simulation.
Predictions are performed offline since they take less than 0.2 ms
on average, i.e., they are unlikely to affect the simulation times.

4 EXPERIMENTAL RESULTS
To answer RQ2 and RQ3, we initially discuss the latencies of our
simulated WSE in its various configurations. Then, we analyze the
CPU energy consumption of PEGASUS and PESOS w.r.t. PERF to
answer RQ1 and RQ3.

In Figure 1 we observe that both PEGASUS and PESOS are closer
than PERF to the 500 ms SLO. PERF exhibits a tail latency of ∼350
ms at the cost of a large energy consumption. While PESOS tail
latencies are closer than PEGASUS’ ones to the target SLO, we
also observe that PESOS leads to small latency violations in the
early and late hours. This happens because the WSE receives fewer
queries during nighttime than during daytime; therefore PESOS

Short Paper CIKM’18, October 22-26, 2018, Torino, Italy

1557

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Time of day (hours)

300

350

400

450

500

550

600

T
ai

l
la

te
nc

y
(m

s)

Perf Pegasus Pesos

Figure 1: The 30-seconds moving 95th-%tile latency of PERF,
PEGASUS, and PESOS, both per second and with a order 3
Savitzky-Golay smoothig over a ten minutes time window.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Time of day (hours)

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

E
ne

rg
y

w
.r

.t
.

P
er

f

Pegasus Pesos

Figure 2: The CPU energy consumption of PEGASUS and PE-
SOS w.r.t. PERF, both per second andwith a order 3 Savitzky-
Golay smoothing over a ten minutes time window.

tends to select small core frequencies. This results in previously
unobserved latency violations [4], but which emerge at scale due to
the variability of response times across different shard servers [6].
Nevertheless, such limited violations (on average 509 ms) do not
negatively affect the user experience [1].

In the same periods of the day, PEGASUS processes queries much
faster than necessary, likely because PEGASUS “is a conservative
policy that aims to slowly reduce the power limit without causing
any SLO violations along the way” [8]. Therefore, PEGASUS fails
to capture full advantage of small workloads to save energy, to
not hinder the system responsiveness. This is why the CPU energy
consumption of PEGASUS is similar to PERF in early and late hours,
as shown in Figure 2. Energy savings up to ∼20% w.r.t. PERF are
observable during the rest of the day, confirming the results in [8].

Conversely, PESOS can save ∼10% of CPU energy consumption
w.r.t. PERF early and late in the day. However, this comes at the cost
of small latency violations as shown in Figure 1. During the rest of
the day, PESOS remarkably reduces the CPU energy consumption
by∼30%w.r.t. PERF, while keeping theWSE’s tail latency just below
500ms. In fact, queryworkload is intense duringmidday, and PESOS
correctly selects large core frequencies in such situation [4].

Given these results, we can conclude that PESOS helps reducing
the CPU energy consumption of a distributed WSE (RQ1). In our
simulations, the CPUs in a day consume 254.02 MWh using PERF,
while with PESOS the consumption reduces to 179.26 MWh (-29%).
The same CPUs consume 218.40 MWh with PEGASUS, meaning
that PESOS consumes 18% less energy than PEGASUS (RQ3). How-
ever, such energy savings comes at the cost of negligible latency

violations when workload is scarce (RQ2), while PEGASUS never
violates the target SLO (RQ3).

5 CONCLUSIONS
We evaluated the performance of PESOS, an energy-saving strategy
designed for WSEs’ single servers, when deployed on a distributed
infrastructure. We compared PESOS to PEGASUS, an industry-
level baseline. Both strategies adapt the CPUs core frequencies
to the incoming query traffic exploiting DVFS technologies. We
simulated a distributed WSE deployed on a thousand servers, using
the ClueWeb09 document collection and the MSN query log. The
open-sourced simulation has been finely tuned to reproduce real-
world measurements both in terms of tail latencies and energy
consumption (∼1% deviations). Our results showed that PESOS
reduces the CPU energy consumption of a distributed WSE by up
to 18% w.r.t. PEGASUS, at the cost of negligible latency violations
(less than 2% on average) during low workloads periods.

ACKNOWLEDGMENTS
This paper is partially supported by the BIGDATAGRAPES (grant
agreement N◦780751) project that received funding from the Euro-
pean Union’s Horizon 2020 research and innovation programme
under the Information and Communication Technologies work pro-
gramme. We thank Stefano Ceccotti for his help in the early stages
of this work.

REFERENCES
[1] Ioannis Arapakis, Xiao Bai, and B. Barla Cambazoglu. 2014. Impact of Response

Latency on User Behavior in Web Search. In Proc. SIGIR. 103–112.
[2] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. 2013. The Datacenter as a

Computer: An Introduction to the Design of Warehouse-Scale Machines (2nd ed.).
Morgan & Claypool Publishers.

[3] B. Barla Cambazoglu and Ricardo A. Baeza-Yates. 2015. Scalability Challenges in
Web Search Engines. Morgan & Claypool Publishers.

[4] Matteo Catena and Nicola Tonellotto. 2017. Energy-Efficient Query Processing
in Web Search Engines. IEEE TKDE 29, 7 (2017), 1412–1425.

[5] Daniele De Sensi, Massimo Torquati, and Marco Danelutto. 2017. Mammut: High-
level management of system knobs and sensors. SoftwareX 6 (2017), 150 – 154.

[6] Jeffrey Dean and Luiz André Barroso. 2013. The tail at scale. Commun. ACM 56,
2 (2013), 74–80.

[7] Enver Kayaaslan, B. Barla Cambazoglu, Roi Blanco, Flavio P. Junqueira, and
Cevdet Aykanat. 2011. Energy-price-driven Query Processing in Multi-center
Web Search Engines. In Proc. SIGIR. 983–992.

[8] David Lo, Liqun Cheng, Rama Govindaraju, Luiz André Barroso, and Christos
Kozyrakis. 2014. Towards Energy Proportionality for Large-scale Latency-critical
Workloads. In Proc. ISCA. 301–312.

[9] Craig Macdonald, Richard McCreadie, Rodrygo LT Santos, and Iadh Ounis. 2012.
From puppy to maturity: Experiences in developing Terrier. Proc. OSIR at SIGIR
(2012), 60–63.

[10] Craig Macdonald, Nicola Tonellotto, and Iadh Ounis. 2012. Learning to Predict
Response Times for Online Query Scheduling. In Proc. SIGIR. 621–630.

[11] David Meisner, Christopher M. Sadler, Luiz André Barroso, Wolf-Dietrich Weber,
and Thomas F. Wenisch. 2011. Power Management of Online Data-intensive
Services. In Proc. ISCA. 319–330.

[12] Alistair Moffat, William Webber, Justin Zobel, and Ricardo Baeza-Yates. 2007.
A Pipelined Architecture for Distributed Text Query Evaluation. Information
Retrieval 10, 3 (2007), 205–231. Kluwer Academic Publishers.

[13] David C. Snowdon, Sergio Ruocco, and Gernot Heiser. 2005. Power Management
and Dynamic Voltage Scaling: Myths and Facts. In Proc. Workshop on Power Aware
Real-time Computing.

[14] Amin Teymorian, Ophir Frieder, and Marcus A. Maloof. 2013. Rank-energy
Selective Query Forwarding for Distributed Search Systems. In Proc. CIKM. 389–
398.

[15] Sebastiano Vigna. 2013. Quasi-succinct indices. In Proc. WSDM. 83–92.
[16] F. Yao, A. Demers, and S. Shenker. 1995. A scheduling model for reduced CPU

energy. In Proc. FOCS. 374–382.

Short Paper CIKM’18, October 22-26, 2018, Torino, Italy

1558

	Abstract
	1 Introduction
	2 Background
	3 Distributed WSE Simulation
	4 Experimental Results
	5 Conclusions
	Acknowledgments
	References

