Programming Tools for Rapid NFV-Based Media
Application Development in 5G Networks

Ugur Acar

Refik Fatih Ustok

Selcuk Keskin

Netas Telekomunikasyon Anonim Sirketi Netas Telekomunikasyon Anonim Sirketi Netas Telekomunikasyon Anonim Sirketi

Istanbul, TURKEY
uacar @netas.com.tr

David Breitgand
IBM Research
Haifa, ISRAEL

davidbr@il.ibm.com

Abstract—The emergence of virtualisation and Infrastructure-
as-a-Service (IaaS) have dramatically transformed the telecom
industry through network function virtualisation (NFV). A re-
cently introduced cloud-native concept, Platform as a Service
(PaaS), ensures to further boost the performance, portability
and cost efficiency of the NFV. SG-MEDIA project proposes the
application of a serverless paradigm known as Function-as-a- Ser-
vice (FaaS) to NFV for the media applications exploiting the 5G
technologies. In addition to integration of FaaS, the 5G-MEDIA
application/service development kit (SDK) supports microservice-
based application development for both hypervisor-based and
containerized approaches, specifically supporting Docker, uniker-
nel and LXC. In this paper, we provide an overview of the
5G-MEDIA SDK which is built to support NFV-based next
generation media applications and to achieve a development time
in the order of minutes. Furthermore, implementations of FaaS
Emulation and FaaS command line interface (CLI) tools are also
presented.

Index Terms—5G, 5G MEDIA, NFV, SDK

I. INTRODUCTION

Telecommunications industry is witnessing an extraordinary
global demand of mobile data volume that is expected to reach
30.5 exabytes per month by 2020 [1]. The 5th generation (5G)
wireless systems are expected to satisfy this demand improving
the network performance in terms of energy consumption,
throughput and latency, thus attribute to the rapidly increasing
number of network-connected end devices, internet users with
heavy usage patterns and popularity of applications includ-
ing cloud computing, immersive applications, smart video
streaming and gaming applications [2]. The H2020 5GPPP
Phase 2 project SG-MEDIA aims at innovating media-related
applications by investigating how these applications and the
underlying 5G network should be coupled and interwork to
the benefit of both [3]. The project aims to develop the
5G-MEDIA platform which provides mechanisms to flexibly
adapt service operations to dynamic conditions and react upon
events [4]. FaaS which was introduced by Amazon in 2014
[5] allows event-driven on-demand virtual network function
(VNF) instantiation and execution in contrast to traditional
virtual machine (VM) approach where virtual appliances are

Istanbul, TURKEY
fustok @netas.com.tr

Istanbul, TURKEY
selcukk @netas.com.tr

Avi Weit
IBM Research
Haifa, ISRAEL
weit@il.ibm.com

continuously running and thus result in low utilisation. To
the best of our knowledge, FaaS has not been applied to
NFV prior to 5G-MEDIA. One of the main challenges that
we face in design and development of the SG-MEDIA SDK
is harmonization between the existing VM oriented SDK
and tools and the novel FaaS approach. In our architecture,
we elegantly combine the two approaches within a single
framework that addresses all aspects of a media intensive
application lifecyce management in 5G networks.

The authors of [6] has discussed the service development
kit (SDK) of SONATA project which effectively extends
Management and Orchestration (MANO) framework and can
be considered as a sandbox to develop and try-out NFV-based
network services (NS). SG-MEDIA SDK provides applica-
tion/service developers with an open environment for the cre-
ation of new Network Apps. SDK supports the new program-
ming model and provide a set of well-integrated open source
networking-related and media specific proofing and packaging
tools, libraries, repositories and catalogues assisting the service
development, emulation, testing and validation process, prior
to the deployment phase. SDK supports microservice-based
apps development, based on the integration of innovative and
open source tools related to serverless computing (e.g. Open-
Whisk). In addition, provided services through SDK offers an
alternative development and deployment choices that push the
necessity of appropriate talent and technological barriers aside
and enable rapid service creation.

In this paper, we focus on 5G-MEDIA SDK which is
a set of tools that allows for the creation of applications,
network services or functions and supports developers in im-
plementing, packaging, deploying, analyzing the software. 5G-
MEDIA SDK integrates open-source tools related to serverless
computing and thus it aims to achieve a development time in
the order of minutes. The innovations that SG-MEDIA SDK
tools brings compared to the existing platforms can be listed
as follows:

e 5G-MEDIA SDK includes an all-in-one UI which enables

developers access all SDK tools in a single interface,

5o .
Application Descriptor >

) Package)

Private Catal
NSATIF Descriptors
Images (Unikernel, Docker Images)

[o]
J st |

Validator

)
(S

VIM-EMU
(OPENSTACK)

Kas VIM
(OPENWHISK)

Emulator

Service Monitoring

I

Fig. 1. 5G-MEDIA Overall SDK Interactions

therefore it improves user-time efficiency and provides
smooth user experience.

o FaaS Emulation (Lean OW) and FaaS CLI Tools im-
plemented in 5G-MEDIA SDK allows media application
developers (network service developers) to quickly de-
velop value added code while relieving them from the
infrastructure management concerns.

o VNF/NS Emulation toolkit including monitoring tools
provides visualization of pre-defined performance metrics
in the emulated multi-vim environment (i.e Openstack
and Openwhisk) (emulator). This allows media applica-
tion developers to test, verify their applications function-
ality and fine-tune their media application performance
before deploying to a live environment.

This document is organized as follows. In Section 2, each
SDK tool is described in detail such as all-in-one user interface
(UI), editor, validator, emulator and service monitoring. In
Section 3, we present an example workflow of 5G-MEDIA
SDK dealing with a media application. Finally we conclude
this paper with conclusions in Section 4.

II. 5G MEDIA SDK TOOLS

5G-MEDIA SDK provides a set of tools that helps develop-
ers easily implement and deploy new media related network
applications to the Service Virtualization Platform (SVP). The
SDK provides a programming model for application devel-
opers by providing several functionalities such as private NS
descriptor (NSD)/VNF descriptor (VNFD) catalogue, editor,
validator, emulator, service monitoring and profiling tools,
which allow defining complex media services consisting of
multiple VNFs. 5G-MEDIA overall SDK architecture is given
in Figure 1. As demonstrated in this figure, the first step is to
validate the descriptors via Validator. If the package is valid,
then it is imported onto the Catalogue. Then descriptor which
is imported into the catalogue can be instantiated through the
Editor.

A. All-in-one Ul

Since 5G-MEDIA SDK has a set of tools with several dif-
ferent functionalities, collecting all of them into one interface
is helpful for the developers to control the system quickly.
The interface consists of a set of navigation items which give

-oXx

[E5G-MEDIA SDK
P

EMULATOR

SDK

EDITOR

TOOL#3

TOOL#4
TOOL #n

Web based
CONTENT

Fig. 2. 5G-MEDIA All in One User Interface

fast access to each SDK tool. The proposed interface is a web
based GUI embedded into a desktop container (a.k.a desktop
application) which can be used by the developers on their
personal computers. The interface has links which open each
SDK tool as shown in Figure 2. Hereby, the developer can
easily use any tool of the SVP (i.e Open Source Management
and Orchestration (OSM) CLI [7], Lean OW CLI [8]) by
the interface without searching the starter file of the tool. On
the other hand, a CLI might be needed for some use cases.
Therefore, the navigators of the interface can be modified to
execute an external CLI application, e.g. PuTTY, Git, etc.
Another advantage of the all-in-one interface is to modify the
parameters of external application. By using a configuration
file, the interface can forward the external application to a
related path or access the related server without entering the
extra information for each time and thus provides flexibility
to developers. The proposed interface is build using two
platforms, i.e. Electron [9] and React [10]. React, which is
one of Facebook’s first open source projects, is a JavaScript
library for building Uls. First, encapsulated components that
manage their own state are built, and then they are composed
to make complex Uls. As a web-based framework, React
increases response speed of the all-in-one UI. However, due to
the usage of the SDK toolsets, the UI needs to open an external
application from personal computer of the developer. Because
of the security level, web-based frameworks like React cannot
to open the external application from local; for this reason,
Electron is used in combination with React to overcome this
problem.

B. Editor

The 5G-MEDIA Editor is a web-based application whose
frontend is running on the browser of the media application
developer. In fact, the editor runs on developer’s local OSM
environment so that the developer can manage emulation
environments such as vim-emu or lean-OW. It is the main UI
for adding new data centres/virtualized infrastructure managers
(VIM), designing, validating and onboarding media applica-
tions, VNF or NS to the private catalogue by building VNF
forwarding graphs (VNF-FG), instantiating or shutting down
a NS deployed in emulated data centres. Ul also visualizes
the topological dependencies or interconnection of involved

Client

ul
(Browser)

!

Application Server

OSM- NBI

Fig. 3. 5G-MEDIA Editor Architecture

VNFs of VNF-FG and descriptions of individual VNFs. This
interface can also be used to conveniently manage lifecycle
operations on VNFs and Network Services (NS) such as
instantiation or termination of them. 5G-MEDIA Editor is split
into a backend and a frontend part that can be executed by
different servers to improve its scalability. Figure 3 shows
this modularization and how the components can be split
between backend and frontend module. In this setup the
application logic is encapsulated in the backend module and
exposed via a RESTful interface to the frontend parts. The
frontend components are executed in the client’s browser. The
backend module also interfaces with the OSM system via the
Northbound REST API based on ETSI NFV-SOL-005 [11].

1) Specifications for FaaS Ul: A FaaS button is placed in
the composer of the OSM UI Therefore the developer can
list the FaaS VNFs pressing this button and can edit them
using the editor. The FaaS VNFs are uploaded on the OW
using the update OW API. The UI also includes a button for
FaaS accounts under the account sections like SDN or VIM
accounts. Hence, the developers are enabled to store access
credentials of OW through this menu. These access credentials
are used for authorization in any OW API calls related to FaaS
specific configurations.

C. Validator

In 5G-MEDIA, media applications (which are NSs) are
the chains of one or more VNFs, the orchestration of which
realizes the desirable end-to-end functionality. Each chain is
constructed and maintained by the Service Orchestrator (SO)
using the information which is included in the corresponding
NSD. This information can consist of the following

o The VNFs which are composing the service chain

o The Virtual Link Descriptors (VLDs) which describe the

resource requirements needed for links between VNFs
and endpoints of the network service.

o VNF-FG information which determines the traffic flow

and behaviour over the service chain.
In addition to a set of NSD and VNFDs, a 5G-MEDIA service
is also characterised by a package descriptor for the overall
service. Package descriptor is generally a compressed file with
a tar.gz extension which includes VNFD and NSD descriptor
files. Each of these descriptors follow a yaml schema language
format. SG-MEDIA Validation tools have been developed

Inputs 5G-MEDIA Validator Outputs

VNFDINSD
(YAML)

OSM Schema
OSMIM (JSON)

Command
Options

YAML to JSON
Converter
JSON Parser

Success
JSON

Validator or
Engine

Failure + Reason

CL Parser

Fig. 4. 5G-MEDIA Validator Architecture

[[oswm] 0oSM owwm | |

] }

Network Connectivity

Vim-Emu Core

Lean OW

Fig. 5. 5G-MEDIA Emulator High Level Design

in order to check if given descriptors are compliant with
5G-MEDIA schema format. The architecture of 5G-MEDIA
validator is given in Figure 4. The inputs of the validator are
specified as follows
e NSD/VNFD yaml files: NSD files can be validated with
a path where referred VNFD files are located.
e JSON Schema File: Schema file based on OSM informa-
tion model is considered.
e CL Parser: Node.js opt [12] is considered

D. Emulator

The 5G-MEDIA emulator mimics the architecture pre-
sented in [13]. Specifically, it represents a low footprint of
SVP with OSM being the entry point for the emulator and
OpenStack and FaaS VIMs managing all-in-one development
distros of OpenStack and Apache OpenWhisk, respectively.
This approach results in both realistic and resource efficient
emulation environments. The 5G-MEDIA Emulator supports
media application developers to locally prototype and test
their NSs in realistic end-to-end multi Point-of-Presence (PoP)
scenarios. This platform allows the execution of real network
functions, packaged as Docker containers, in emulated network
topologies running locally on the developer’s machine. The
emulation platform not only offers OpenStack-like APIs for
each emulated PoP but also provides OpenWhisk APIs via
Lean OW, which can therefore be installed to developers
personal computer. SG-MEDIA Emulator also integrates with
OSM, which is responsible for deploying and managing the
NSs which are tested in an emulated environment. SG-MEDIA
Emulator leverages vim emulator (a.k.a vim-emu/son-emu
[14]) and Lean OW to provide an emulated network in the
developers environment. The design of vim-emu is based
on Containernet [15] which extends the Mininet emulation

framework [16]. Furthermore, Containernet supports using
standard Docker containers as VNFs within the emulated
network. However, lean-ow uses Minikube [17] which is
a Kubernetes distribution used as a standard development
environment on a single machine. Minikube runs a single-
node Kubernetes cluster inside a VM on developers’ laptop.
As presented in Figure 5, Containernet support using standard
Docker containers as VNFs within the emulated network.
Furthermore, it also allows adding and removing containers
from the emulated network at runtime while supporting the
use of the emulator like a cloud infrastructure in which we can
start and stop compute resources (in the form of containers)
at any point.

1) Specifications of FaaS Emulation: The FaaS emulator
which compromises Lean OW and Minikube is not funda-
mentally different from the SVP, which uses a full clustered
installation of Apache OpenWhisk and of a K8s cluster. A
FaaS VNF that is to be emulated, should be pre-onboarded
into Lean OW in a regular way using a wskdeploy tool . This
tool allows to define the OpenWhisk action that implements
this VNF as Next, a VNFD should be defined for the VNF
and onboarded to the catalog via OSM. Again, this process is
not different from that of the regular onboarding. Finally, the
VNEFD should be instantiated using OSM. The VNF instance
and its status are shown in the OSM GUI. The instance can
be terminated from OSM on the users discretion as if it was
a regular VNF instance.

E. Service Monitoring

Virtualisation techniques such as VMs or containers en-
counter a significantly growing interest as telecom services
which are previously managed by hardware applications now
increasingly experience the softwarification [18]. However,
these containerization and virtualization techniques require
different kind of customizations or configurations. Therefore,
they can introduce bugs in the media application definitions,
which can slow down the application or network service
provisioning time. In order to avoid these bugs and decrease
the time required between the development process and the
operations side of a developed media application, 5G-MEDIA
SDK provides monitoring tools that allow rapid testing and
verification of any modified parameter.

The 5G-MEDIA SDK has a set of monitoring tools available
for media application developers that can gather and centralize
monitored metrics into a local database. Metrics can be queried
from either VNFs deployed in the emulator or in the Media
Service MAPE of SVP. After the metric data is stored in the
local database, further analysis can take place to debug or
optimize the performance of the monitored VNF or service.
Figure 6 shows the detailed flow of the monitoring tools.
Container monitoring tool in emulator (i.e cAdvisor) gathers
metrics related to the compute, storage or network and these
metrics are exported by starting a query scheduling. This
scheduling involves an SDN controller which uses OpenFlow
protocol to inquire the packet and byte counters of the virtual
network interfaces of the emulated service. In addition to the

REST AP

Visualization
SDK requests monitoring data, then SVP pushes to SDK
Metrics DB

Service Monitoring Tool

REST API

Emulator ! metrics export

1
I
1
|
1
monitoring | ___ metricsexport _ _ _ _ __ > Metrics GW. !
query loop R H
7 A :
Pl . P
RESTAI p Container Monitoring
OpenFlow
SN Containernet switches
Controller

Media Service
MAPE

Service Virtualization Platform

Fig. 6. Service Monitoring Tools High Level Design

interface counters, some particular flow counters can be in-
stalled so that a better, fine-grained network traffic monitoring
can be provided. Monitoring metrics of the emulator are then
pushed to a Metrics Gateway (i.e Prometheus Push Gateway)
from where the metrics are pulled by the external Metrics
Database (Prometheus database) in the SDK. The emulator has
a REST API to control the export of metrics to the Metrics
Gateway. This can also be controlled from a Monitoring
Service Descriptor (MSD) file that lists all needed metrics. The
gathered metrics can be visualized using the visualization tool
(i.e Grafana GUI) which visualizes the inquired metrics from
the Metrics Database using a web-based GUI. The required
metrics for virtualisation and the combination of these metrics
on different graphs are described by a Monitoring Service
Descriptor (MSD) file. The Service Monitoring Tool CLI then
prepares the Virtualisation dashboard by parsing this MSD file.

In 5G-MEDIA SDK, the FaaS VNFs monitoring is fully
aligned with the rest of the architecture. Instantiation of the
FaaS VNFs via the OSM FaaS Plugin causes VNFs to be
offloaded to Minikube (an all-in-one Kubernetes) by Lean
OW. Similarly to the monitoring architecture of SVP, in SDK,
we leverage the native Prometheus monitoring framework that
obtains metrics from cAdvisor (the native metric producer of
the Kubernetes) and stores them in the Prometheus TSDB.
Grafana dashboards are used to query Prometheus TSDB to
obtain compound metrics related to the FaaS VNFs execution.

F. Profiling

5G-MEDIA profiling tool supports load testing under var-
ious constraints on NSs which are deployed in the emulator
platform. During these tests, a variety of metrics can be mon-
itored and this can help service developers find bugs, detect
bottlenecks or investigate problems in their media applications.
Profiling tool aims to automate big parts of this workflow
and thus support service developers as much as possible. To
achieve this aim, 5G-MEDIA profiling tool creates a series of
service packages, each with a particular resource limitation and
defined functional tests. These packages can be automatically
deployed on the 5G-MEDIA emulator or the SVP where
the functional tests are executed while metrics are gathered.

Profiling
Experiment
Descriptor

Monitoring Visualization
Tool Results

T

Profiler

¢ ¢

Emulator SVP

Fig. 7. Profiler logical component diagram

The logical component diagram of 5G-Media Profiling tool is
presented in Fig. 7

As the profiler creates descriptors for experiment purposes
which results in instantiating VNFs under specific resource
allocations and measuring results, for FaaS, the developer
needs to keep the same sorts of metrics as for any other VNF.
As seen in Fig. 7, the user first creates a profiling experiment
descriptor (PED) which consists of all necessary information
for the profiling experiment. Especially, it includes a reference
for the NS that should be profiled, e.g., a service package or
service descriptor. Moreover, it also consists of descriptions
of all service configurations which should be tested, such as
different resource assignments for the VNFs that are used.
A profiling experiment based on a PED is considered to be
in active mode. On the other hand, profiling can also be
performed on pre-deployed services and in this case it is
considered in passive mode.

III. AN EXAMPLE WORKFLOW OF 5G-MEDIA SDK

Referring to Fig. 1, a typical SDK workflow dealing with a
media application can be presented. The workflow comprises
6 steps, starting the creation of the VNFDs and an NSD. Then
in the next step, the developer uses the validator to validate
the descriptors which are exported from the private catalogue.
If descriptors are validated, then the media applicatione is
instantiated by using 5SG-MEDIA editor with the help of a
configuration microservice. After instantiation of the media
application in the emulated environment completes, a traffic
simulator is run to test the action on the Lean OW of 5G-
MEDIA emulator. The monitoring tools support media appli-
cation developers to gather and centralize monitored metrics
into a local database, so developers can analyse them through
a web-based dashboard. As a result, they can optimize or
fine-tune performance of their applications. Furthermore, the
developer may want to do some load tests under different
resource constraints on NSs deployed on the emulation plat-
form before the live environment deployment. In this case,
the developer creates a series of service packages, each with
a specific resource limitation and defines functional tests over
the profiling tool. Such load tests are executed in the emulated
environment.

IV. CONCLUSIONS

In this paper, we have presented an overview of the pro-
gramming tools to efficiently develop NFV-based media appli-
cations in 5G networks. The parts of SG-MEDIA SDK have

been presented discussing the open-source frameworks and
libraries that are considered for the project. The architecture
and usage of the 5G-MEDIA SDK tools such as all-in-
one U, validator, editor, emulator and service monitoring
have been explained in detail. Application of the serverless
FaaS approach to NFV technology has been presented and
the development of the appropriate programming tools to
accommodate FaaS paradigm has been given.

ACKNOWLEDGMENT

This work has been realized in context of the 5G-MEDIA
project. This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 761699.

REFERENCES

[11 K. Poularakis et al., “Exploiting Caching and Multicast for 5G Wireless
Networks,” IEEE Transactions on Wireless Communications, vol. 15,
no. 4, pp. 2995-3007, April 2016. doi: 10.1109/TWC.2016.2514418.

[2] A. Tzanakaki et al., ”Wireless-Optical Network Convergence: Enabling
the 5G Architecture to Support Operational and End-User Services,” in
IEEE Communications Magazine, vol. 55, no. 10, pp. 184-192, October
2017. doi: 10.1109/MCOM.2017.1600643.

[3] S. Rizou et al., “A service platform architecture enabling programmable
edge-to-cloud virtualization for the 5G Media industry,” in EasyChair
Preprint no. 149, 2018 doi = 10.29007/bn68.

[4] D. Breitgand, “Towards Serverless NFV for 5G Media Applications,”
Proc. 11th ACM Int. Systems and Storage Conf. p: 118, 2018.

[5] 1. Baldini et al., “Serverless Computing: Current Trends and Open
Problems,” In: Chaudhary S.,Somani G., Buyya R. (eds) Research
Advances in Cloud Computing. Springer, Singapore, 2017.

[6] S. Rossem et al., “A Network Service Development Kit Supporting
the End-to-End Lifecycle of NFV-based Telecom Services,” Proc. of
IEEE Conf. on Network Function Virtualization and Software Defined
Networks, 2017.

[71 Open Source NFV Management and Orchestration: https://osm.etsi.org/,
Accessed on the 8th Aug, 2018.

[8] Lean Openwhisk: https://github.com/kpavel/incubator-
openwhisk/tree/lean, Accessed on the 8th Aug, 2018.

[9] Electron, Build cross platform desktop apps with JavaScript, HTML,
and CSS: https://electronjs.org/, Accessed on the 8th of August, 2018.

[10] React, A JavaScript library for building wuser interfaces:
https://reactjs.org/, Accessed on the 8th Aug, 2018.

[11] ETSI, “Network Functions Virtualisation (NFV) Release 2; Protocols
and Data Models; RESTful protocols specification for the Os-Ma-nfvo
Reference Point,” White Paper ETSI GS NFV-SOL 005 V2.4.1, 2018.

[12] Node js opt: https://www.npmjs.com/package/opt, Accessed on the 8th
Aug, 2018.

[13] S. Rizou et al. ”A service platform architecture enabling programmable
edge-to-cloud virtualization for the 5G Media industry.” 2018 IEEE
International Symposium on Broadband Multimedia Systems and Broad-
casting (BMSB). IEEE, 2018.

[14] T. Soenen et al., “Insights from SONATA: Implementing and inte-
grating a microservice-based NFV service platform with a DevOps
methodology,” Proc. of IEEE/IFIP Network Operations and Management
Symposium, pp:1 -6, 2018.

[15] M. Peuster, H. Karl, and S. v. Rossem: MeDICINE: Rapid Prototyping
of Production-Ready Network Services in Multi-PoP Environments.
IEEE Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN), Palo Alto, CA, USA, pp. 148-153. doi:
10.1109/NFV-SDN.2016.7919490. (2016).

[16] Mininet An Instant Virtual Network on your Laptop (or other PC):
http://mininet.org/, Accessed on the 14th Aug, 2018.

[17] Minikube: https://kubernetes.io/docs/getting-started-guides/minikube,
Accessed on the 8th Aug, 2018.

[18] S. Rossem et al., “Monitoring and debugging using an SDK for
NFV-powered telecom applications,” Proc. of IEEE Conf. on Network
Function Virtualization and Software Defined Networks, pp:1-5, 2016.

