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Abstract
Feature construction and selection are two key factors in the field of machine learning (ML). Usually, these are very time-
consuming and complex tasks because the features have to be manually crafted. The features are aggregated, combined or 
split to create features from raw data. In this paper, we propose a methodology that makes use of ontologies to automatically 
generate features for the ML algorithms. The features are generated by combining the concepts and relationships that are 
already in the knowledge base, expressed in form of ontology. The proposed methodology has been evaluated with three 
different activities of a popular dataset, showing its effectiveness in the recognition of activities of daily living (ADL). The 
obtained successful results indicate that the use of extended feature vectors provided by the use of ontologies offers a better 
accuracy, regarding the original feature vectors of the classic approach, where each feature corresponds to the activation of a 
sensor. Although the classic approach produces classifiers with accuracies above 92%, the proposed methodology improves 
those results by 1.9%, on average, without adding more information to the dataset.

Keywords  Machine learning · Ontology · Feature learning · Activity recognition · Activities of daily living · Smart 
environments · Data-driven approaches · Knowledge-driven approaches

1  Introduction

Supervised learning is a well-known task in the field of ML 
that consists on inferring a function from labeled training 
data. The training data are usually expressed in form of vec-
tors, where each of the components of the vector is a feature 
or attribute of the sample data.

Feature engineering is a key in the development of data 
mining applications. The success of many learning sche-
mata, in their attempts to construct models of data, hinges 
on the reliable identification of a set of highly predictive 

features (Hall and Holmes 2003). However, the task of fea-
ture construction and selection is tedious and non-scalable 
(Cheng et  al. 2011). Usually, the features are manually 
crafted from raw data. This often relies on the expert knowl-
edge and requires spending a lot of time thinking about how 
the underlying raw data is best exposed to predictive mod-
eling algorithms. This means that features need to be aggre-
gated, combined or split to create new features. While it is 
possible to identify correlation of particular features, the 
algorithms do not attempt to generate better features during 
model induction (Terziev 2016).

In this paper we propose the use of ontologies in order 
to improve ML algorithms. The structured knowledge con-
tained in such ontologies can be exploited to automatically 
extract features for general learning tasks. More precisely, 
we propose in this work a methodology that can be used to 
generate new concepts by combining those already present 
in the knowledge base. The new concepts can be used as 
new features for the ML algorithms, so the knowledge base 
can actually be seen as a vast feature store. While most of 
the new concepts might be useless, we can eventually find 
some of them to be relevant for the problem, which increases 
the prediction accuracy of the ML algorithms. Our proposal 
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is very useful when the data have some kind of underlying 
structure but there is no clear idea what the relevant features 
are or when the feature search space is so vast that they 
could not be generated manually. In those situations, the 
results show that our proposal improves the accuracy of the 
classifiers.

To evaluate our proposal, we have conducted multiple 
experiments in the field of sensor-based activity recogni-
tion in smart environments. This kind of activity recog-
nition is based on identifying the actions of one or more 
people within an intelligent environment, by using a stream 
of observed sensor events that depend only on the current 
activity (Espinilla and Nugent 2017; Alemdar and Ersoy 
2017). Common activities of interest are ADL such as 
“bathing”,“sleeping” or “dinning”, for instance (Ferrández-
Pastor et al. 2017; Shewell et al. 2017; Gutiérrez López de la 
Franca et al. 2017). Usually, objects or furniture can gener-
ate sensor events indicating, for example, the use of a faucet, 
the opening of a door, or the use of a light switch (Korhonen 
et al. 2003). We can even use much more complex sensors 
which give us information such as the posture of the people 
performing the activities (Gutiérrez López de la Franca et al. 
2017).

Approaches used for sensor-based activity recogni-
tion have been divided into two main kinds: data-driven 
approaches (DDA) and knowledge-driven approaches 
(KDA).DDA are based on machine learning techniques in 
which a preexistent dataset of user behaviors is required. 
A training process is carried out to build up an activity 
model, which is followed by a testing process to evalu-
ate the generalization of the model in classifying unseen 
activities (Li et al 2014). With KDA, an activity model is 
developed through the incorporation of rich prior domain 
knowledge obtained from the application domain, using 
knowledge engineering and knowledge management tech-
niques (Chen and Nugent 2009a). KDA has the advantages 
of being semantically clear, logically elegant, and easy to 
get started. In the context of KDA, ontologies for activity 
recognition have provided successful results. In this kind of 
approach, interpretable activity models are built in order to 
match different object names with a term in an ontology that 
is related to a particular activity. Some hybrid approaches 
have been developed (Chen et  al. 2014; Rafferty et  al. 
2015), which take advantage of the main benefits provided 
by DDA and the use of ontologies. Thereby, ontological 
ADL models capture and encode rich domain knowledge 
and heuristics in an understandable and processable way 
by the machine.

In this paper, we propose a hybrid approach for activity 
recognition. The use of an ontology is proposed in order to 
extend the feature vectors with asserted and inferred knowl-
edge from the ontology, improving the accuracy of classi-
fiers based on the DDA approach. An extensive evaluation is 

undertaken with a popular dataset to consider the effects of 
the extension of feature vectors, in terms of the overall accu-
racy for activity recognition based on sensor data obtained 
from different smart environments.

The remainder of the paper is structured as follows: next 
section provides a brief review of ontologies and some of 
the concepts needed to understand our proposal are revised; 
some of the related works found in the literature are revised 
in Section 3; Section 4 proposes the methodology to extend 
the feature vector by using ontologies; Sect. 5 presents an 
empirical study where our proposed methodology is applied 
to a popular ADL dataset; in Sect. 6, the results obtained are 
analyzed and discussed; finally, in Sect. 7, conclusions and 
future works are presented.

2 � Ontologies

In this section, some relevant concepts related to ontologies 
are reviewed in order to understand our proposed method-
ology. Ontologies are used to provide structured vocabu-
laries that explain the relations among terms, allowing an 
unambiguous interpretation of their meaning. Ontologies 
are formed by concepts (or classes) which are, usually, 
organized in hierarchies (Chandrasekaran et  al. 1999; 
Uschold and Gruninger 1996), being the ontologies more 
complex than taxonomies because they not only consider 
type-of relations, but they also consider other relations, 
including part-of or domain-specific relations (Knijff et al. 
2013).

The main advantage of ontologies is that they codify 
knowledge and make it reusable by people, databases, and 
applications that need to share information (Knijff et al. 
2013; Wei et al. 2015). Due to this, the construction, the 
integration and the evolution of ontologies have been criti-
cal for the Semantic Web (Horrocks 2008; Kohler et al. 
2006; Maedche and Staab 2001). However, obtaining a 
high quality ontology largely depends on the availability 
of well-defined semantics and powerful reasoning tools.

Regarding Semantic Web, a formal language is OWL 
(Horrocks et al. 2003; Sirin et al. 2007), which is devel-
oped by the World wide web consortium (W3C). Origi-
nally, OWL was designed to represent information about 
categories of objects and how they are related. OWL inher-
its characteristics from several representation languages 
families, including the description logic (DL) and Frames 
basically. OWL is built on top of the resource description 
framework (RDF) and (RDFS). (RDF) is a data-model for 
describing resources and relations between them. RDFS 
describes how to use RDF to describe application and 
domain specific vocabularies. It extends the definition for 
some of the elements of RDF to allow the typing of prop-
erties (domain and range) and the creation of subconcepts 
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and subproperties. The major extension over RDFS is that 
OWL has the ability to impose restrictions on properties 
for certain classes.

The design of OWL is greatly influenced by DL, particu-
larly in the formalism of semantics, the choice of language 
constructs and the integration of data types and data values. 
In fact, OWL DL and OWL Lite (subsets of OWL) are seen 
as expressive DL, offering a DL knowledge base equivalent 
ontology. They are in fact extensions of the DL “Attribu-
tive Concept Language with Complements” (  ). More 
formally, let NC , NR and NO be (respectively) sets of “con-
cept names”, “role names” (also known as “properties”) and 
“individual names”. The semantics of DL are defined by 
interpreting concepts as sets of individuals and roles as sets 
of ordered pairs of individuals.

A “terminological interpretation”  = (Δ , ⋅) over a 
“signature” (NC,NR,NO) for (  ) consists of the follow-
ing concepts:

•	 A non-empty set Δ called the “domain”.
•	 A “interpretation function” ⋅ that maps:

–	 every “individual” a to an element a ∈ Δ

–	 every “concept” to a subset of Δ

–	 every “role name” to a subset of Δ × Δ

such that semantics in Table 1 holds.
The third column in Table 1 shows the Manchester OWL 

Syntax equivalent expression of the corresponding DL 
expression, in the second column. This syntax is derived 
from the OWL Abstract Syntax, but is less verbose and mini-
mizes the use of brackets. This means that it is quicker and 
easier to read and write by humans than DL formal syntax 
(Horridge et al. 2006). The subsumption relation is usually 
expressed in DL syntax using the symbol A ⊑ B , meaning 
that the concept A is a subset of the concept B.

In 2009, the W3C proposed the OWL 2 recommendation 
in order to solve some usability problems detected in the 
previous version, keeping the base of OWL. OWL 2 adds 
several new features to OWL. Some of the new features are 
syntactic sugar (e.g., disjoint union of classes) while others 

offer new expressiveness, including: increased expressive 
power for properties, simple metamodeling capabilities, 
extended support for datatypes, extended annotation capa-
bilities, and other innovations and minor features (Zhang 
et al. 2015). One of the highlights of OWL 2 is the inclu-
sion of profiles. The profiles are subsets of OWL 2, which 
provide key advantages in certain situations by means of a 
set of restrictions. Following, the profiles are defined briefly 
below.

•	 OWL 2 EL The use of this profile is recommended when 
dealing with extensive ontologies in which relatively 
complex entities are used (with a large number of prop-
erties). In these cases, the fundamental problem lies in 
the efficiency at the time of carrying out the classifica-
tion and when propagating the properties associated with 
the entities. The solution to this problem is to reduce 
the expressiveness of the OWL 2 language. Therefore, 
in this profile, universal quantifiers, cardinality restric-
tions, the disjoint operator, the complement operator, or 
the enumerations for more than one individual, are not 
allowed. Additionally, it is not possible to define irre-
flexive, inverse, functional, symmetric or asymmetric 
properties.

•	 OWL 2 QL The use of this profile is indicated for those 
applications in which a high interoperability between 
OWL and the relational database systems is required. 
This situation occurs when working with relatively 
simple ontologies (thesauri and entity-relationship or 
UML schemes), but with a large number of individu-
als. OWL 2 QL is designed to facilitate access to these 
individuals through some languages, such as SQL. It is 
not possible to use the universal quantifier, cardinality 
restrictions or the disjoint operator. In the same way, 
defining subproperties, functional properties, inverse, 
transitive or connecting individuals with themselves 
are not allowed. Neither enumerations nor keys can be 
used.

•	 OWL 2 RL The OWL 2 RL profile is designed to facili-
tate the interoperability between the inference engines 
and the OWL language. It is based on the same idea 

Table 1   Semantic of OWL 
logical operators

DL syntax Manchester syntax Semantics

 C1 ⊓ C2 C1 and C2 (C1 ⊓ C2)
I = (CI

1
∩ CI

2
)

 C1 ⊔ C2 C1 or C2 (C1 ∪ C2)
I = (CI

1
∪ CI

2
)

 ¬C not C (¬C)I = ΔI⧵C
I

 ∃R.C R some C (∃R.C)I = {x ∣ ∃y.⟨x, y⟩ ∈ RI ∧ y ∈ CI}

 ∀R.C R only C (∀R.C)I = {x ∣ ∀y.⟨x, y⟩ ∈ RI
→ y ∈ CI}

 ≤ nR.C R max n C (≥ nR.C)I = {x ∣ card {y.⟨x, y⟩ ∈ RI ∧ y ∈ CI} ≤ n}

 ≥ nR.C R min n C (≤ nR.C)I = {x ∣ card {y.⟨x, y⟩ ∈ RI ∧ y ∈ CI} ≥ n}



	 A. G. Salguero et al.

1 3

with which the QL profile is developed, but in this 
case, the objective is to facilitate the access to the set 
of individuals in the form of RDF triplets, improving 
the efficiency when making inferences. Most OWL 2 
class constructions can be used in this profile under 
certain limitations, in terms of their syntactic position. 
This profile allows the use of any of the class axioms 
defined in the OWL 2 specification, except for the dis-
joint union of classes, the negative assertions and the 
reflexive properties.

3 � Related works

In the activity recognition process, identifying a suitable 
sensor-based representation for building feature vectors is a 
key factor (van Kasteren et al. 2011). Previous works have 
been focused on evaluating expert-defined representations 
of binary sensors, such as, raw activation, last activation 
or change point (Ordónez et al. 2013; Singh et al. 2017). 
In this section we review some works that use structured 
knowledge sources to generate new features for classify-
ing tasks.

If we consider all the information that can be inferred 
from an ontology as the input for a task of ML, the meth-
odology presented in this paper could be considered as an 
approach for the problem of feature learning. Feature learn-
ing involves a set of of techniques to learn features and dis-
cover representations from raw data (Bengio et al. 2013). 
More specifically, feature learning techniques consist on the 
transformation of raw data input to a representation that can 
be effectively exploited in ML tasks. The goal of feature 
learning is often to reduce the dimensionality of the dataset, 
selecting or aggregating features in order to produce low-
dimensional versions of the original datasets (Brown et al. 
2011; Espinilla et al. 2017). Unsupervised feature selection 
for activity recognition has been developed by Neural Net-
works under black-boxes approaches, where several weight-
ing techniques, such as, auto-encoders (Oukrich et al. 2017), 
back-propagation (Fang et al. 2014) and, more prominently, 
Convolutional Neural Networks (Singh et al. 2017) are pro-
posed. Feature selection has been demonstrated as a suitable 
method in activity recognition based on wearable-devices 
approaches (Gupta and Dallas 2014; Ordóñez and Roggen 
2016; Xu et al 2016).

Instead of reducing the number of features, in this paper 
we propose a methodology to generate new features by 
using the underlying structure of data. Although the auto-
matic generation of features can be applied to relational 
datasets (Kanter and Veeramachaneni 2015), most of the 
current works use Open Linked Data (Ristoski 2015). A 
framework that generates new features for a movie recom-
mendation dataset is proposed by Cheng et al. (2011). They 

use that framework to construct semantic features from 
YAGO, a general purpose knowledge base that was auto-
matically constructed from Wikipedia, WordNet and other 
semi-structured Web sources. Then, they manually define 
a set of the static queries in SPARQL language, which are 
used to add information to the original dataset, such as, 
budget, release date, cast, genres, box-office information, 
etc. A very similar approach is proposed by Ristoski et al. 
(2015), where an interactive system for adding new features 
to a multidimensional cube is described. The new features 
can be selected by the user from a set of related features 
that are automatically generated according to the features 
already in the cube. Although it allows the use of custom 
rules in SPARQL for the definition of rules that generate 
features, their authors also propose some basic rules for the 
automatic generation of features based on RDF annotations. 
In spite of being proposals similar to ours, it is important to 
underline that the high formalization of ontologies allows 
us to automatically generate relevant features, without the 
need for human interaction.

Terziev (2016) also proposes the use of ontologies to gen-
erate new features. He expands features from the origin fea-
ture in a breadth first search manner considering the rules for 
semantically correct paths. Only concepts on outgoing paths 
from the origin entity conforming to these patterns are con-
sidered as possible features in the further process. Although 
they plan to test their proposal with two ontologies, they are 
actually dealing with the underlying RDF graph of those 
ontologies. They do not make use of the inference mecha-
nisms of ontologies nor the formal logic behind them. They 
just use the user defined relationships between concepts in 
the RDF graph in order to relate the original concept with 
the concepts in its context.

Paulheim (2012) also proposes another technique that 
employs user defined relations between concepts in the RDF 
graph of ontologies for the automatic generation of features. 
Its main goal is the generation of possible interpretations for 
statistics using Linked Open Data. The prototype implemen-
tation can import arbitrary statistics files, and uses DBpedia 
for generating attributes in a fully automatic fashion. Fur-
thermore, the author argues that their approach works with 
any arbitrary SPARQL endpoint providing Linked Open 
Data. The use of the inference mechanisms of ontologies is 
also very limited in this work.

Another key difference of our proposal with respect to all 
these works is that they propose the use of external knowl-
edge to generate new features, whereas we only consider the 
information in the original dataset to do so.

In the field of ontology engineering, the algorithms for 
Class expression learning (CEL) have been extensively 
developed (Böhmann et al. 2016). CEL is the most similar 
technique to the approach presented in this paper. They can 
be used to suggest new class descriptions that are relevant 
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for the problem while the ontologies are being developed. 
The objective of CEL algorithms is to determine new class 
descriptions for concepts that may be used to classify indi-
viduals in an ontology according to some criterion. More 
formally, given a class C, the goal of CEL algorithms is to 
determine a class description A such that A ≡ C.

Let us suppose an ontology O with sufficient number of 
individuals. The set of individuals in Δ is the search space 
S. CEL algorithms search in S, trying to find a description 
for class A such that A contains the same individuals in C . 
The CEL problem may be defined as a supervised learning 
problem but unlike the usual supervised learning problems 
the number of features for each instance is not fixed. They 
are dynamically generated as the CEL algorithm moves 
along the search space S. To navigate through the space 
S the CEL algorithms usually apply a refinement operator 
to existing classes in the knowledge base (Lehmann et al. 
2011).

The main difference with respect to our proposal is that 
the result of CEL algorithms is always a DL class expres-
sion, whereas the result of the proposed methodology is a 
set of DL class expressions. The class expression produced 
by CEL algorithms is the final model for the classification 
of individuals. All individuals which meet the class expres-
sion are classified as positive. The rest of them are classified 
as negative. The expressivity of the classifier is thus, very 
limited, because only DL operators can be used to describe 
it. This restriction is necessary when we want to incorpo-
rate this knowledge to an ontology, which is usually the 
main purpose of CEL-based applications. The restriction 
is not necessary, however, when building a more general 
classification model which does not have to be expressed 
in form of DL class expression. We can use the set of class 
expressions as the input of a neural network and use the 
individuals in the ontology to train it, for example. The 
obtained classification model is a neural network where 
the class expressions are used as its features. The knowl-
edge in the classifier cannot be incorporated to an ontology 
because neural networks are black boxes. Nevertheless, it 
is expected to achieve a better classification performance 
as it has more flexibility to combine the class expressions 
given as input.

4 � Methodology

The purpose of our methodology is to generate feature vec-
tors by using the asserted and inferred knowledge in the 
ontology. In this section, we first describe how class descrip-
tions can be combined to produce new class descriptions. 
Afterwards, we explain the algorithms which we use to find 
the most relevant class descriptions, which will be used as 
features for the classifiers.

4.1 � Class expression expansion rules

In this section, the proposed rules for generating new Class 
Expressions are described. All new class expressions are 
developed from a given one. Depending on the DL operator 
chosen, the Expansion Function produces different kinds of 
class expressions as result.

Definition 1  Expansion function. An Expansion Function 
f d generates an Expansion Set of class expressions by apply-
ing a DL operator d to a given class expression.

In Table 2, the expansion functions proposed in this 
work to generate the new class expressions are shown. They 
correspond to the basic semantics of each of the operators 
defined in OWL, detailed in Table 1, but other expansion 
functions may be used. One could define, for example, an 
expansion function that generates class expressions by ran-
domly combining two other given class expressions, using 
the different operators of OWL as possible cut points. This 
expansion function would be very useful in case of using 
genetic algorithms, for example. In the functions: (1) C and 
R respectively represent the set of concepts and relations, 
which are defined in the ontology; (2) ⊗ represents the Car-
tesian product; and (3) (X) is the Power Set of X, that is, 
the set of all possible subsets of X.

The given functions f ⊓ and f ⊔ apply the logical opera-
tors ⊓ and ⊔ to the concept being expanded c and a given 
set of class expressions (C2) . The expansion function f ¬ 
applies the complement operator to produce a unique class 
expression as a result, where the original class expression 
is complemented.

Table 2   Expansion functions Expansion function Expansion set

f ⊓ ∶ C1 × (C2) → (C) {c ⊓ d ∣ ⟨c, d⟩ ∈ C1 ⊗ (C2)}
f ⊔ ∶ C1 × (C2) → (C) {c ⊔ d ∣ ⟨c, d⟩ ∈ C1 ⊗ (C2)}
f ¬ ∶ C1 → (C) {¬c ∣ c ∈ C1}
f ∃ ∶ C1 × (R) → (C) {∃r.c ∣ ⟨c, r⟩ ∈ C1 ⊗ (R)}
f ∀ ∶ C1 × (R) → (C) {∀r.c ∣ ⟨c, r⟩ ∈ C1 ⊗ (R)}
f ≤ ∶ C1 × (R) × (ℕ) → (C) {≤ n r.c ∣ ⟨c, r, n⟩ ∈ C1 ⊗ (R)⊗ (ℕ)}
f ≥ ∶ C1 × (R) × (ℕ) → (C) {≥ n r.c ∣ ⟨c, r, n⟩ ∈ C1 ⊗ (R)⊗ (ℕ)}
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In the case of quantifiers operators ( ∀,∃ ), the expansion 
functions produce as many class expressions as properties 
are received as argument. For each of them, a new class 
expression of the form o r.c is generated, where: (1) o is the 
given quantifier operator; (2) r represents a relation in (R) ; 
and (3) c is the class expression which is being expanded.

The expansion functions that use cardinality constraints 
also produce class expressions by combining the original 
concept with all relations in (R) . However, these expansion 
functions produce as many class expressions as cardinality 
values (ℕ) are set as the function argument.

Some examples for the expansion functions defined in 
this section are shown in Table 3. The second and third 

columns indicate the set of classes (C2) or relations (R) 
to be combined with the concept in the first column. The 
fourth column indicates the cardinality values to be used in 
the case of functions such as f ≤ or f ≥.

4.2 � Algorithm for the generation of features

In this section, we describe the algorithm for generating 
class expressions that will be used as features in the classifi-
ers. In this paper, the algorithm is described in pseudo-code, 
although it has been implemented using the Java language. 
The applications are freely available under the terms and 
conditions of the GNU General Public License.1

Table 3   Examples of expansion 
functions

C1 (C2) or (R) (ℕ) Generated expressions

f ⊓ Child {Person,∃hasParent.Person} Child ⊓ Person

Child ⊓ ∃hasParent.Person

f ¬ Child ¬Child

f ∀ Child ⊔ Parent {hasParent, hasChild} ∀hasParent.(Child ⊔ Parent)

∀hasChild.(Child ⊔ Parent)

f ≤ ¬Parent {hasParent, hasChild} {2,3} ≤ 2 hasParent.(¬Parent)

≤ 3 hasParent.(¬Parent)

≤ 2 hasChild.(¬Parent)

≤ 3 hasChild.(¬Parent)

1  https://sourceforge.net/p/owlmachinelearning/.

Algorithm 1 Expansion of features.
Require:
1: O is the set of DL operators that will be used to generate new class expressions.
2: C are the concepts in the ontology.
3: R are the relations in the ontology. c is the concept representing all the instances that

the classifier will take as input.
4: n is the number of features to be generated.
5: d is the maximum value for the cardinality constraints.

6: function Expand(O,C,R, c, n, d)
7: C ← C \ {k ∈ C | kI = ∅}
8: F ← ∅
9: while | F |< n do
10: B ← SelectBests(C)
11: B′ ← B
12: while B �= ∅ ∧ | F |< n do
13: b ← {k | ∀x, y ∈ B Score(x) < Score(y) ∧ x �= y}
14: B ← B \ b
15: E ← ExpandClassExpression(b,O,B′, R, d)
16: for all e ∈ E do
17: if Satisfiable(e) ∧ e /∈ C then
18: C ← C ∪ e
19: if e � c then
20: F ← F ∪ e

return F
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The Algorithm 1 is described as a Step-Form algo-
rithm. First, those concepts from the ontology which do 
not contain any individual instances, or cannot be iden-
tified by the reasoner, are eliminated. Next, it enters 
into the main loop of the algorithm, which only breaks 
after having generated a sufficient number of new class 
expressions. The desired number of class expressions is 
a parameter of the algorithm, which has to be specified 
by the user in the applications that have been developed. 
For each iteration of this main loop, a subset with the 
most relevant class expressions is created. The new class 
expressions will be generated by combining the expres-
sions in this set. The current implementation of the 
SelectBests function, which is responsible for perform-
ing this task, just returns the entire set of generated class 
expressions, without any sort of selection. The algorithm 
has been designed so that the selection and the combina-
tion strategies can be modified without changing the rest 
of the algorithm, because we plan to evaluate different 
bio-inspered approaches for this strategy, such as genetic 
algorithms and ants’ colonies.

Before proceeding to expand the selected class expres-
sions, a copy of them is made (see line 11). This copy is 
necessary, since the set of selected class expressions is 
modified in the 14 line of the algorithm. Next, each of the 
selected class expressions is expanded. The order in which 
these class expressions are expanded is really important, 
since the expansion process can generate a large number 
of class expressions and the process is stopped when suf-
ficient number of them are generated. The order in which 
class expressions are expanded depends on the Score 
function, which gives a score to each of them based on 
its relevance. In the current implementation of the algo-
rithm, this score is assigned according to the depth of the 
tree that represents the class expression. Class expres-
sions with smaller number of operators are prioritized, 
favoring the generation of simpler class expressions. This 
method, based on depth-first search (Hopcroft and Tar-
jan 1974), is widely recognized as a powerful technique 
for searching in graphs and trees (Even 2011). Moreover, 
the class expressions generated in the search describe a 
knowledge representation of a concept, so the pruning of 

solutions based on the depth of the tree is recommended 
to prioritize simpler and shorter expresions. This reduces 
the overfitting, improves the performance on test data, 
and increases the human interpretability (Mingers 1989). 
More complex evaluation functions are planned for future 
works, for a more accurate measure of the relevance of the 
class expressions. However, it is important to highlight 
that the efficiency of this function has a great impact on 
global efficiency of the algorithm, because it is called at 
least once for each expression.

The most relevant class expression is selected in the line 
13 of the algorithm and removed from the set of selected 
classes. The ExpandClassExpression function is responsible 
for generating all possible class expressions that are formed 
from the currently selected class expression. Again, the 
algorithm has been carefully designed to make this function 
easily modifiable, so we can test other expansion strategies 
without having to rewrite the entire algorithm. This function 
can generate unsatisfiable class expressions, that is, it can 
generate expressions with restrictions impossible to meet 
for any individual in the ontology. For example, given the 
concepts Cat and Dog, which are defined in a hypothetical 
ontology as disjoint concept, an example of unsatisfiable 
expression is Cat ⊓ Dog , because no individual instance in 
the ontology can be represented by such expression. Only 
satisfiable class expressions are added to the ontology (see 
line 18), previously checking that they have not been added 
before.

Finally, only those of the generated class expressions 
that successfully describe a type of the concept to be rec-
ognized are added to the set of features for the classifiers 
(see line 20). Following the previous example, in the case 
we are trying to recognize instances of animals, we only 
add to the feature set those class expressions that describe 
some king of animal, such as eats some Thing, avoiding 
individual instances that describe other types of concepts, 
such as Vehicle or hasIngredient some Vegetable. We have 
to realize that although these expressions are not included 
in the final set of features for the classifiers, they are 
added to the set of class expressions C, since they can 
result in relevant class expressions in combination with 
others.
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Algorithm 2 Generation of derived class expressions.
Require:
1: c is the concept being expanded.
2: O is the set of DL operators that will be used to generate new class expressions.
3: C are the concepts that may be combined with c to generate new class expressions.
4: R are the relations in the ontology.
5: n is the maximum value for the cardinality constraints.

6: function ExpandClassExpression(c,O,C,R, n)
7: E ← ∅
8: for all o ∈ O do
9: if o ∈ {¬} then
10: E ← E ∪ ¬c
11: if o ∈ {∀,∃} then
12: for all r ∈ R do
13: E ← E ∪ o r.c
14: if o ∈ {�,�} then
15: for all k ∈ C do
16: if c �= k then
17: E ← E ∪ k o c
18: if o ∈ {≤,≥} then
19: for all i ∈ {1..n} do
20: for all r ∈ R do
21: if SimpleProperty(r) then
22: E ← E ∪ o i r.c

return E

Algorithm  2 describes an implementation of the 
ExpandClassExpression function, which is responsible 
for producing new class expressions based on a given 
one. For each of the operators received as arguments, the 
algorithm applies the expansion rules detailed in Table 2. 
The complement operator produces a single class expres-
sion, where the original expression is complemented. 
Given the class expression hasChild some Man, for exam-
ple, the line 10 of the algorithm produces the expression 
not(hasChild some Man).

In the case of quantifier operators, the algorithm gener-
ates as many class expressions as properties are defined in 
the ontology. For each of them, an expression of the form 
o r.c is generated, where: (1) o is the given quantifier oper-
ator; (2) r represents a property defined in the ontology; 
and (3) c is the class expression being expanded. For the 
case of the previous example and the existential quanti-
fier, the statement in the line 13 of the algorithm gener-
ates expressions such as hasChild some(hasChild some 
Man), hasParent some(hasChild some Man), hasIgredi-
ent some(hasChild some Man), etc.

Logical operators construct class expressions by com-
bining the concept to be expanded with the other selected 
concepts. Since C ⊔ C ≡ C  and C ⊓ C ≡ C  , it only 
makes sense to combine different concepts with logi-
cal operators. The statement in the line of the algorithm 
produces class expressions such as Woman ⊔Man or 
Man ⊓ (hasChild some Woman).

The number of class expressions being generated by 
cardinality constraints is virtually infinite, so the user must 
determine the specific cardinality values to limit the genera-
tion of them. For each possible value of cardinality and prop-
erties in the ontology, the algorithm generates a new class 
expression. The algorithm generates in this case expressions 
of the form hasChild min 3 Woman or hasIngredient max 2  
(hasParent some Vegetable), for example. However, since 
only simple properties can be used in cardinality constraints 
(Motik et al. 2012), only the expressions that are formed by 
simple properties are actually considered.

Many of the class expressions generated by the last algo-
rithm do not make much sense, as it has been described in 
the examples in this section. For that, the algorithm checks 
in the line 17 if the generated class expression is satisfiable 
before adding it to the set of generated expressions. This 
substantially reduces the search space for the new features, 
since the expansion of class expressions stops when they are 
not satisfiable. The reasoning mechanisms represent in this 
case a clear advantage against a simple brute-force search.

Finally, it is noteworthy that the proposed methodology 
helps to improve the accuracy of classifiers in those situa-
tions where there is no clear idea about the relevant features 
for the problem or when the feature search space is so large 
that could not be generated manually. Obviously, the infor-
mation in the dataset must have some kind of structure and 
be able to be expressed as an ontology. The methodology 
can easily be applied to problems related to natural language 
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processing, for example. In a previous work we have applied 
CEL-based algorithms for the sentiment analysis of text 
documents (Salguero and Espinilla 2017). In that case, the 
ontology was formed by entities such as “Word”, “Sentence” 
or “Adjective”. The text document can be seen as a sequence 
of ordered words, just as it happens with the events gener-
ated by the sensors in ADL.

5 � Experiment

In order to evaluate the quality of the methodology proposed 
in this work an experiment has been carried out, in which the 
dataset proposed in Ordónez et al. (2013) has been used. The 
objective of the experiment is to determine whether or not 
a particular ADL has been performed based on the sensors 
that have been fired during a specific period of time.

In this section we first describe the dataset that has been 
used in the experiment and how the sensor data stream has 
been transformed into feature vectors. Then, the ontology 
derived from the dataset, which is needed to apply our meth-
odology, is also described. To conclude this section, the spe-
cific tasks that have been performed in the experiment are 
detailed.

5.1 � From sensor data stream to classic feature 
vectors. Smart environment datasets

In this paper, the activity recognition dataset of smart envi-
ronments developed by Ordónez et al. (2013) in the UC 
Irvine Machine Learning Repository, is used to evaluate our 
proposal. The dataset represents two participants performing 
ten ADL activities in their own homes. The activities were 
performed individually and this dataset is composed by two 
instances of data, each one corresponding to a different user 
and summing up to 35 days. Ten activities are classified: 
breakfast, dinner, leaving, lunch, showering, sleeping, snack, 
spare time TV and grooming. In this dataset, the number of 
sensors is 12, although two of them are never fired in the 
case of the second participant. In fact, the dataset can be 
actually considered as two different datasets. We decided 
to use the second set of activities because classifiers based 
on the classic approach produce perfect classifiers for most 

of the activities in the first dataset, so there is no room for 
improvement.

Usually, feature vectors generated by a smart environment 
are computed from the temporal sensor data stream that is 
discretized into a set of time windows, denoting each time 
window by Wk , which is limited by each activity. The set of 
activities are denoted by A = {a1,… , ai,… , aAN} , being AN 
the number of activities of the dataset.

Each feature vector is denoted by Fk and has NS + 1 
components, being NS the number of sensors in the dataset 
denoted by S = {s1,… , sj,… , sNS

} . Therefore, each com-
puted feature vector is defined by the following equation:

being f k
j
; j = {1,… ,NS} a binary value that indicates if the 

sensor sj was fired at least once, 1, or was not fired 0 in this 
time window Wk . The last component f k

NS+1
∈ A indicates 

the activity carried out in the time window Wk . An example 
of this process is shown in Fig. 1, which can be find in Que-
sada et al. (2015).

The classic feature vectors can be expanded through 
ontologies to improve the accuracy of the results. The 
ontology that has been specifically developed for this task 
is reviewed in the following subsection.

5.2 � An ontology for the description of ADL

This section presents a brief review of the ontology devel-
oped for the description of ADL. The aim of this ontology 
is to provide a basic set of primitives that allow the repre-
sentation of the information present in the dataset. The set 
of primitives should be comprehensive enough to be able 
to represent all the activities but should also be as brief as 
possible to facilitate the use of reasoners.

The ontology defines two basic disjoint concepts, Activ-
ity and Event, which respectively represent all the activi-
ties in the dataset and the activation of the sensors during 
these activities. In fact, the Event concept represents any 
situation reported by a sensor. It can also be used to rep-
resent the deactivation of a sensor. Each of the sensors in 
the dataset requires the creation of at least one subconcept 
of the Event concept to represent the events produced by 
that sensor. The application developed to convert the dataset 
into an ontology creates two subconcepts for all sensors. 
One of them represents the activation of the sensor and the 
other, which is optional, its deactivation. In the first case 
the suffix “_set” is appended to the end of the name of the 
concept, while the suffix “_clear” is appended in the second. 
The class Maindoor_set ⊑ Event , for example, represents 
the set of events corresponding to the activation of the sen-
sor in the main door. The ontology also includes a property 

Fk = {f k
1
,… , f k

j
,… , f k

NS
, f k
NS+1

}

Fig. 1   Partial sensor data stream of a dataset and its computed feature 
vector
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to associate literal values to sensor events (hasValue data-
type property). This property can be used to annotate all 
the changes in a sensor along time. However, this is often 
a bad idea for a sensor that is continually changing, since 
this would create a lot of individuals in the ontology and 
decrease the performance of reasoners. It is best to define 
some intervals (“Low”, “Medium” and “High”, for example) 
and register only the significant changes.

Only for this particular dataset, the type and location of 
the sensor has been added to the concept name because some 
of the sensors share the same name. For example, the class 
that represents the activation of the sensor of the main door 
is actually defined in the given ontology as Maindoor–Mag-
netic–Entrance_set ⊑ Event, although in the rest of examples 
of the work we will just use the name of the sensor for the 
sake of clarity. Actually, only the sensors of the three interior 
doors share the same name in the dataset. In any case, the 
information about the type and location of sensors is solely 
used to distinguish a sensor from another in the experiment.

Our proposal for representing activities is based on a list 
structure (see Fig. 2). hasNext is defined as a functional, 
asymmetric and irreflexive property, establishing the order 
of events in the activity. Because it has been defined as a 
functional property just one event could follow another 
event. The inverse property is also defined as functional, 
forcing an event to be directly preceded by a unique event. 
We defined a transitive property isFollowedBy as a super-
property of hasNext. Since this means that hasNext implies 
isFollowedBy, any sequence of entities linked by hasNext 
will be inferred to be a chain linked by isFollowedBy. has-
Next is used to express that an event B immediately follows 
another event A. There is no other event between them. So 
event A has B as the next event in the list (A hasNext B) or, in 
other words, event A is followed by event B (A isFollowedBy 
B). If another event C appears after event B, event A is also 
followed by event C (A isFollowedBy C), but event A has not 
C as the next event on the list (not A hasNext C).

The property hasItem establishes the membership of an 
event to the list. The class description hasItem some (Front-
door_set and isFollowedBy some Dishwasher_set) is a way 
of describing the activity #Activity24 of the example in 
Fig. 2.

The properties startsWith and endsWith are used to iden-
tify the first and last events in the activities. Due to open 
world assumption in OWL, reasoners cannot automatically 
infer the individuals that belong to these concepts. There-
fore, it is necessary to annotate these individuals when the 
activities are converted to the model proposed in this paper. 
The class description startsWith some (Frondoor_set and 
hasNext some (Fridge_set and hasNext some Dishwasher_
set)), for example, represents the activities that begin with 
the activation of the sensor of the front door, which is imme-
diately followed by the activation of the fridge sensor and 
then by the dishwasher sensor, immediately. The activity 
#Activity24 in Fig. 2 is an example of activity described by 
the above class description.

Figure 3 shows how the sensor data stream in Fig. 5.1 can 
be expressed in form of ontology by using all the properties 
defined above.

In OWL the same individual could be referred to in 
many different ways (i.e. with different URI references). 
Due to this, it is necessary to state that all the elements in 
the datasets are different individuals. For practical reasons, 
a functional property hasID is used to identify all of the 
individuals in the model with an unique code. In this way, 
the addition of new entities to the ontology is easier, without 
the need of asserting that all of them are different from the 
existing individuals.

When we want to refer to events that occur before another 
one we can make use of inverse properties, which have 
not been explicitly defined for efficiency reasons. #Activ-
ity24 may also be described by the class description 
endsWith hasNext− Fridge_set , which describes activities end-
ing with an event preceded by an activation of the fridge sensor.

There are others ADL ontologies available in the litera-
ture (Riboni and Bettini 2011; Chen and Nugent 2009b; Bae 
2014; Okeyo et al. 2014; Villalonga et al. 2016). However, 
most of them describe activities from a high level of abstrac-
tion. Few of them describe activities as sequences of events 
produced by sensors. The ontology proposed by Noor et al. 
(2018) is the most similar to the ontology described in this 
section and it is one of the few that is available for download. 
To show that the methodology proposed in this work is inde-
pendent of the ontology being used, part of the experiment 
consisted on describing the dataset by using the ontology 
proposed by Noor and comparing the results obtained by the 
ontology described in this section.

5.3 � Experiment design

The objective of the experiment is to determine whether 
or not a particular ADL has been performed by a single 
person based on the sensors that have been fired during a 

⊤ ⊑ ∀ hasID Datatype#long

Fig. 2   Ontology example
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specific period of time. To simplify the experiment, the time 
intervals always correspond to the labeled activities in the 
dataset.

The number of instances per activity is shown in Table 4. 
All the instances in the dataset have been taken as the input 
for all the classifiers. The instances corresponding to the 
activity being recognized are treated as positive individuals 
whereas the rest of the instances are treated as negative indi-
viduals. 10-fold cross-validations have been used to evaluate 
all the classifiers. The main advantage of this validation is 
that all the activities in the dataset are used for training and 
testing, avoiding the problem of considering how the dataset 
is divided.

For the development of the classifiers in the experiment, 
we have made use of six algorithms of the Weka data mining 
software (Witten et al. 2016). We have tried to select the most 
commons algorithms from most of the categories in Weka 
(“bayes”, “funcitons”, “rules” and “trees”). We discarded 
some algorithms, such as the Multilayer Perceptron, because 

they take much more time than the others to compute. The 
algorithms have always been run with defaults parameters.

•	 The Naive Bayes (NB) algorithm is a probabilistic induc-
tion algorithm that is based on the classic Bayesian clas-
sifier. It uses statistical methods for nonparametric den-
sity estimation for each predictive attribute instead of 
using a single Gaussian distribution, as Bayesian classi-
fiers usually do.

•	 The C4.52 is an algorithm used to generate decision trees. 
It is an extension of the basic ID3 algorithm that try to 
address some of its issues, such as the missing data, the 
handling of continuous attributes or the overfitting.

•	 Sequential Minimal Optimization (SMO) is an iterative 
algorithm for the training of Support Vector Machines 
(SVM). It requires much less time than all the previous 

Fig. 3   Relations for entities in 
Fig. 1

Table 4   Activities in the dataset Activity Instances

Breakfast 22
Dinner 11
Grooming 113
Leaving 38
Lunch 13
Showering 11
Sleeping 29
Snack 47
Spare time TV 116
Toileting 93
Total 493

Table 5   Activity recognition accuracy for classic approach

Best accuracies of selected activities are in bold

Activity C4.5 SMO VP DT

Breakfast 94.87 95.00 95.34 94.73
Dinner 97.77 97.77 97.77 97.77
Grooming 95.05 95.39 94.11 95.12
Leaving 99.19 99.53 99.12 98.92
Lunch 97.37 97.37 97.30 97.17
Showering 100.00 100.00 99.53 100.00
Sleeping 99.39 99.39 98.45 99.39
Snack 91.96 90.13 90.20 90.61
Spare time TV 95.74 95.74 95.53 95.74
Toileting 98.39 98.39 98.39 98.39

2  The Weka implementation of the C4.5 classifier is called J48.
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available methods. Given a p-dimensional vector, where 
p is the number of features, SVM try to find the hyper-
plane that represents the largest separation between two 
given classes.

•	 The Voted Perceptron (VP) algorithm is an improved 
version of the perceptron algorithm. As well as SVM, 
the VP algorithm uses a kernel function to separate 
data. However, it is considered a simpler method to 
implement, and much more efficient in terms of com-
putation time.

•	 The Decision Table (DT) algorithm builds decision tables 
with a default rule mapping to the majority class. Given 
an unlabeled instance, the classifier seeks for similar 
labelled instances. If no instances are found, the major-
ity class of the DT is returned. Otherwise, the majority 
class of the dataset is returned.

•	 The PART algorithm can be used to generate decision 
list. It builds a partial C4.5 decision tree in each iteration 
and makes the “best” leaf into a rule.

The results obtained by these classifiers when using a clas-
sic DDA approach to solve the problem have been taken 
as reference to measure the efficiency of our proposal. For 
this purpose an application that identifies the sensors that 
have been fired during each of the activities has been built. 
The application generates a file in Weka format, following 
the structure presented in Section 5.1. This file contains an 
instance for each activity and as many features as sensors 
in the dataset. All the features are binary and specify if the 
sensor has been fired during the activity or not. Finally, it 
includes a class attribute, also binary, that indicates if it is 
the activity that the classifier is learning to identify (posi-
tive) or not (negative). Each experiment consists, therefore, 
in determining which combination of sensors are fired for a 
particular activity, such as “Breakfast”, for example.

By using the Weka data mining software, we first have 
generated C4.5, SMO, VP and DT classifiers for all the 
activities in the datasets. A summary of the results obtained 
for all the activities of the different datasets is shown in 
Table 5. The three activities that are more difficult to be 
recognized have been taken as reference, so there is more 
room for improvement. More precisely, the activities chosen 

for the experiment have been “Breakfast”, “Grooming” and 
“Snack”, with best classification accuracies of 95.34, 95.39 
and 91.96%, respectively.

An ontology has been automatically generated for 
describing the activities in the dataset by using the primitives 
presented in Sect. 5.2. Then, the Algorithm 1 has been used 
to generate different sets of new class descriptions, which 
are then used as new features by the classifiers. Five differ-
ent subsets of DL operators have been used to generate five 
different sets of class descriptions. The specific DL operators 
for each subset are shown in Table 6. To relate activities to 
events, it is necessary to include one of the quantifiers, at 
least. The universal quantifier is very restrictive, because 
all related individuals have to meet the conditions. We have 
only include it in one of the sets for this reason. Cardinal-
ity restriction operators are expensive for by the reasoner, 
so they have only been included in some of the sets. The 
maximum cardinality operator is especially expensive. The 
intersection, union and complement operators cannot form 
class expressions that relate activities and sensors on their 
own, so they have been combined with the existential quanti-
fier. Versions with n = {10, 20,… , 90, 100, 200,… , 1000} 
class expressions have been generated for each of these sets 
of DL operators.

All the class descriptions are evaluated by another appli-
cation and new files in Weka format are generated for each 
of the versions of the different subsets of DL operators. We 
get a file for the version with n = 10 generated class expres-
sions for the  set, another file for the version with 
n = 20 class expressions and so on. Each class expression 
corresponds to a new feature for the classifier.

The results obtained through the methodology proposed 
in this work have also been compared with the results 
obtained with the application DL-Learner,3 which imple-
ments several algorithms for CEL. This application just 
needs the ontology and the sets of individual instances 
representing the positive and negative individuals. This 
information was generated when the original dataset was 
translated into an ontology. In this case, the concept to be 

Table 6   Subsets of DL 
operators used in the 
experiment

Operators Existential Universal Maximum Minimum
set name Intersection Union Complement quantifier quantifier cardinality cardinality

 ✓ ✓ ✓

 ✓ ✓ ✓ ✓ ✓ ✓ ✓

 ✓ ✓ ✓ ✓ ✓

 ✓

 ✓ ✓ ✓

 ✓ ✓

3  http://dl-learner.org.



Methodology for improving classification accuracy using ontologies: application in the…

1 3

recognized is a given activity and the result of the process 
is a class expression, which is composed by the instances 
of this activity, but not the instances of other activities. The 
DL-Learner application has been running for one hour for 
each of the three activities in search of the class expression 
that best matches them.

6 � Results

The accuracies obtained by all the different classifiers for 
the selected activities are analyzed in this section. As can be 
seen in Fig. 4, the classifiers based on our approach clearly 
improve the results obtained by those using the traditional 
approach. This is true for the three activities analyzed and 
for all supervised learning algorithms used to construct the 
classifiers. A detailed analysis of the results shows that the 
improvement obtained for the “Snack” activity is the big-
gest. The best accuracy obtained using the classic approach 
is 91.96%, corresponding to the PART algorithm, while 
the algorithm SMO gets an accuracy of 95.12% when the 
methodology presented in this paper is applied. This is an 
increase of 3.16%, being 8.04% the best possible improve-
ment. Improvements are also obtained for the two other 
activities, but the difference is not so evident. This mainly is 
because the algorithms using the traditional approach obtain 
very high accuracies (95.95 and 96.54% for the “Breakfast” 
and “Grooming” activities, respectively).

Regarding the learning algorithms used in the experi-
ment, we can observe that SMO provides the best perfor-
mance in the three cases, obtaining the best absolute results 
for the three activities. In addition, it is also the learning 
algorithm with the greater differences between the proposed 
and the traditional approaches. The algorithms that get worse 
results are Naive Bayes and VP, but they always improve the 
results of the traditional approach.

Table  7 shows the most relevant class descriptions 
found for the “Grooming” activity by the SMO algorithm. 
These class expressions have been found after generating 
six hundreds of them by using the  operator set. This 
is the class expressions set that results in better prediction 
accuracy, as shown in Fig. 6. The first column indicates the 
weight assigned to each feature by the algorithm. Each of the 
six hundred class expressions have an associated weight, but 
only the expressions with higher absolute values have been 
included in Table 7. As can be seen on the table, there are 
four main class expressions that can be used to identify the 
“Grooming” activity. All these expressions describe activi-
ties in which the sensor of the basin in the bathroom has 
been activated, which makes sense. The second expression 
does not provide more relevant information, because all 
activities have to start with some sensor event. It describes 
the same activities as the previous class description does. 
On the contrary, the third and the fourth class expressions 
does provide more relevant information. They describe class 
expressions in which the basin sensor has been activated but 
the sensors located at the bed and the door of the bedroom 
have not, respectively. This makes sense because the “Sleep-
ing” activity often includes the activation of that sensors.

Fig. 4   Classifiers performance
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There are also some class expressions that can be used 
to discard negative instances, that is, other activities than 
“Grooming”. In this example, activities in which both the 
sensor of the door in the bedroom and the sensor in the 
toilet have been activated have many possibilities to not be 
classified as “Grooming” activities. These kind of activities 
are described by the last two class descriptions in Table 7. 
The rest of the class expressions can also be used to identify 
negative instances, but their meaning are not so obvious. 
Class descriptions in fifth, sixth and seventh rows describe 
activities having two or more sensors activations. This 
also makes sense because there are many instances of the 
“Grooming” activity in the dataset in which the sensor of 
the basin is the unique sensor that has been activated, and 
just once for the entire activity. Therefore, an activity having 
multiple activations of sensors is less likely to be classified 
as a “Grooming” activity.

As can be seen, our proposal also takes into account 
the class expressions that serve to identify the negative 
instances. This is the main reason why our proposal achieves 
better results than CEL-based applications. However, and 
depending on the supervised learning algorithm used, with 
the proposal presented in this paper it will not always be 
possible to extract knowledge from the class expressions 

generated. In the case of using a black box algorithm, such 
as VP, it is not possible to determine the relevance of the 
different class expressions or their structures.

With respect to the set of DL operators that are used to 
generate the class expressions, there is not a clearly winner, 
as shown in Fig. 5. In fact, the results obtained are slightly 
different for each of the activities being analyzed. When the 
number of operators used to generate the set of class expres-
sions is high the results are better for the activities “Snack” 

Table 7   Most relevant class 
expressions found for the 
activity “Grooming” by the 
SMO algorithm

Weight Expression

0.4036 hasItem some Basin_set
0.4036 (hasItem some Basin_set) and (startsWith some Event)
0.4036 (not (Door-Bedroom_set)) and (hasItem some Basin_set)
0.4036 (not (Bed_set)) and (hasItem some Basin_set)
− 0.4999 hasItem some (hasNext some Event)
− 0.4999 startsWith some (isFollowedBy some Event)
− 0.4999 startsWith some (hasNext some Event)
− 0.4686 (hasItem some Toilet_set) and (startsWith some Door-Bedroom_set)
− 0.9349 (hasItem some Door-Bedroom_set) and (hasItem some Toilet_set)

Fig. 5   DL operators performance Fig. 6   SMO performance for “Grooming”

Fig. 7   PART performance for “Snack”



Methodology for improving classification accuracy using ontologies: application in the…

1 3

and “Breakfast”. For those activities, the best performance 
is obtained for the  ,  and  sets 
of operators. Good results are also obtained for the activ-
ity “Breakfast” when the set that only uses the existential 
quantifier to generate the class expressions is used. On the 
contrary, the set of operators  obtains the best results for 
the activity “Grooming”, although the other sets of operators 
also obtain very good results. It should also be outlined that 
the improvement over the classical approach is the lower 
among the three activities, probably due to the inherent high 
precision obtained using this approach. Therefore, there is 
not an optimal set of operators to generate the class expres-
sions, although the sets  ,  and  
provide good results in all three cases.

We also have to realize that not all class expressions 
require the same amount of time to be evaluated by reason-
ers. The class expressions containing cardinality constraints 
are the ones that require most computing time, followed by 
the expressions containing universal quantifiers. For exam-
ple, the evaluation4 of the set with thousand classes gen-
erated with the set of operators  requires about one 
hour of processing in one of the nodes of the computer 
cluster of the University of Cadiz5. This is because it is the 
set of DL operators that generates most class expressions 
containing cardinality constraints. In contrast, the version 
with thousand classes generated with only the existential 
operator just requires ten seconds to be completely evalu-
ated with the same system configuration. This makes the 
existential quantifier operator a very interesting option to 
consider, because the results obtained with just this operator 
are relatively good, specially in the activities “Grooming” 
and “Breakfast”.

The developed application is actually composed by two 
separate applications. The first one is responsible for gener-
ating the number of class expressions specified by the user. 
We call this the expansion process, and it has to be executed 
only once for each DL operator set. The other application 
processes the list of generated class expressions to determine 
which of the activities in the ontology are described by each 
of those class expressions. We call this the vectorization pro-
cess because it produces the set of feature vectors. Because 
the latter may be a high time-consuming task, we have used 
a multi-threaded approach. The list of class expressions is 
divided in blocks and they are processed in parallel by each 
core of the processor. The vectorization process has to be 
also applied to any other forthcoming activity that has to be 
classified according to the final classifier generated, so it has 
to be as much as efficient as possible.

The number of characteristics used in the classification 
clearly influences the accuracy obtained by the different 
learning algorithms. In Fig. 6, we show a very significant 
example of the behavior of these algorithms where the num-
ber of features generated vary from ten to one thousand. As 
can be observed, when the number of features generated is 
low, the results are worse than those obtained by the classic 
approach. This is because the class expressions generated 
do not provide enough information to the classifier. As the 
number of features available for the classifier increases, the 
result improves significantly. However, the results do not 
improve significantly from a given number of features. The 
results may even worsen if the number of generated class 
expressions is excessive, as can be observed in Fig. 7. This 
is due to the inclusion of irrelevant, redundant and noisy 
features, which result in a poorer predictive performance 
(Hall and Holmes 2003).

In Fig. 7, we highlight a behavior that is repeated with 
some frequency in the different experiments of this work: 
the results improve faster in the case of the sets of operators 
that include cardinality restrictions, while in the other sets 
of operators more class expressions are needed to achieve 
the same results.

In view of the results obtained, an adequate strategy for 
using the methodology proposed in this paper would be to 
only use the existential quantifier for the generation of class 
expressions at the beginning. This operator produces class 
expressions that can be evaluated very quickly by the rea-
soner, which allows us to perform a first exploratory analy-
sis and validate the design of the ontology. Only from then 
on is it convenient to test the rest of the DL operators for 
generating class expressions. The complement, union and 
intersection operators should be the next to be tested, since 
the class expressions they generate are also relatively quick 
to evaluate. The universal quantifier and the maximum car-
dinality operator are the last ones that should be added to 
the analysis, since the time required to evaluate the class 

Fig. 8   Performance comparison with Noor et al. (2018) for “Snack”

4  The application developed makes use of the HermiT OWL Rea-
soner (http://www.hermi​t-reaso​ner.com).
5  2×Intel Xeon E5 2670, 2.6 GHz with 128 GB of RAM.

http://www.hermit-reasoner.com
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expressions generated with them requires an extremely high 
amount of time compared to the former.

As we discussed in Sect. 5.2, we have also carried out 
an experiment to evaluate the results obtained by using 
an ontology different from the one proposed in this paper. 
The applications developed have been modified to gener-
ate the ontologies following the scheme proposed by Noor. 
In this scheme, the activities are composed of smaller time 
intervals. These time intervals are those which are really 

reasoning procedure for Fast Instance Checks which par-
tially follows a closed world assumption. This means that 
the results produced by the DL-Learner application are not 
the same as those provided by reasoners that complies with 
the OWL standard, so the produced class expressions only 
have sense in the context of the DL-Learner application. 
As an example, the following class expression is the one 
that DL-Learner found to be the best description for the 
“Breakfast” activity.

hasItem min 4 (Fridge_set or Microwave_set or (Door_Kitchen_set and

(isFollowedBy only (not (Door_Living_set)))))

associated with the events generated by the sensors, in such 
a way that we can characterize an interval according to the 
sensors that are activated during it. The activities are then 
defined as sequences of intervals in which certain sensors 
are fired. More than forty thousand intervals of thirty sec-
onds lengths are required to represent all the activities in the 
dataset, which makes it impossible for a reasoner to handle 
them. Instead, we divided each instance of each activity into 
three different intervals, which produces a reasonable num-
ber of individuals in the ontology.

The results obtained for the “Snack” activity, using the 
ontology proposed by Noor, are shown in Fig. 8. The experi-
ment has been carried out with three subsets of DL operators 
and four supervised learning algorithms (C4.5, SMO, Deci-
sion Table and Voted Perceptron). As can be seen, excellent 
results have been also obtained when applying our method-
ology using Noor’s Ontology. However, they are far from the 
results obtained when using our proposed ontology, since 
it has been defined ad hoc for machine learning purposes.

Moreover, the main lack of Noor ontology is related to 
its low efficiency. Only one hundred features have been gen-
erated for each set of DL operators. In the case of the set 
 it was only possible to generate eighty features. The 
version with ninety features was rejected after ten hours of 
execution. Only one hour is necessary to generate the same 
number of features with the ontology proposed in this work. 
Seven minutes are needed to generate ten class expressions 
when only the existential quantifier is used, while ten sec-
onds are required to generate a hundred of class expressions 
with the ontology we propose.

The prediction accuracies reported by the DL-Learner 
application, have been 95.74, 97.57 and 95.54% for the 
“Snack”, “Breakfast” and “Grooming” activities, respec-
tively. Apparently, the CEL approach produces slightly 
better results than the one proposed in this paper for two 
of the three activities. However, it should be noted that 
DL-Learner makes use of its own approximate incomplete 

However, when the expression is evaluated by the HermiT 
reasoner, only four instances are found for the activity, being 
two of them incorrectly classified.

7 � Conclusions and future works

In this work, an ontology-based methodology to improve 
the accuracy of supervised learning algorithms has been 
proposed.

To do so, the feature vectors for the datasets are extended 
with asserted and inferred knowledge from the ontology that 
describes the dataset itself. An evaluation in the field of sen-
sor-based activity recognition with Data-Driven Approaches 
has been carried out with the following six popular classi-
fiers: C4.5, Sequential Minimal Optimization, Voted Percep-
tron, Naive Bayes, PART and Decision Table. Results from 
the evaluation demonstrated the ability of the ontology to 
extend the feature vectors.

More precisely, our approach has achieved an improve-
ment of 3.16, 1.48 and 1.03% for the “Snack”, “Breakfast” 
and “Grooming” activities of the dataset (Ordónez et al. 
2013), respectively. Despite not being very high values, we 
consider that this is a significant improvement because the 
classic approach achieves high performance by itself. Fol-
lowing a classic approach, where each feature represents the 
activation of the sensors, maximum precisions of 91.96, 95.95 
and 96.54% are obtained, respectively, so the maximum pos-
sible improvement are 8.04, 4.05 and 3.56%. In addition, these 
improvements have been obtained without considering any 
other additional information than the available in the dataset.

The results show that the best absolute results are 
achieved by the algorithm based on Sequential Minimal 
Optimization, obtaining this algorithm the most evident 
improvements with respect to the classic approach. On the 
other hand, we can also conclude that the algorithms Naive 
Bayes and Voted Perceptron provide worse results.
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Regarding the set of DL operators used to generate the 
expressions, which configure the features in classifiers, we 
cannot conclude that there are significant differences among 
them. The set that uses the universal quantifier, the com-
plement and the intersection of operators obtained worse 
results for the “Snack” and “Breakfast” activities. However, 
it achieved the best performance for the “Grooming” activ-
ity. In general, we can conclude that the sets of operators that 
include cardinality restrictions obtain better results and with 
less quantity of generated class expressions. Nevertheless, 
when this type of operators are used, the necessary time to 
evaluate the set of class expressions is very high. The set of 
expressions generated just using the existential quantifier 
requires much less time and the obtained results are good 
in general.

The main problems with the methodology often come 
from an inadequate design of the ontologies. Usually, they 
contain a lot of concepts and properties, with the aim of 
increasing their expressiveness. However, this causes sev-
eral problems in the methodology proposed in this work. 
On the one hand, the performance of the reasoners worsens 
as the complexity of the ontology increases. On the other 
hand, it makes necessary to generate a greater number of 
class descriptions to obtain some that are relevant, since the 
number of class expressions in the search space grows expo-
nentially for each concept or property that are included in the 
ontology. It is also important to keep in mind that reasoners 
usually work with an open-world assumption. It is necessary 
to give them the tools so that they can demonstrate, under 
this assumption, some axioms that people habitually give 
for certain, especially when working with the complement 
operator or the universal quantifier.

However, there is still room for the improvement in the 
proposal presented in this paper. On the one hand, the num-
ber of features to consider grows exponentially with every 
expansion process. This degrades the performance of the 
methodology. To overcome this situation, an heuristics that 
can restrict the number of features generated may be useful. 
This is the solution proposed by Terziev (2016), in which 
we are working to adapt to our proposal. On the other hand, 
we are currently using a naive approach for selecting the 
class expressions to be expanded. We are just selecting the 
less complex expressions. We consider that a more elabo-
rate strategy for selecting and combining class expressions 
would improve the efficiency of the methodology. We plan 
to implement some bio-inspired approaches for this, such as 
genetic algorithms or ants’ colonies.

Many of the related works employ external knowledge in 
order to generate new features. However, only the informa-
tion presented in the dataset has been taken in consideration 
in this work. Thanks to the modular design of OWL, which 
greatly facilitates the interconnection among ontologies, it 
is not difficult to integrate information coming from external 

data sources into the dataset, once expressed in form of 
ontology. Our future work is also addressed to develop an 
ontology that describes the environments of the ADL experi-
ments and helps us to interconnect the datasets with general 
purpose knowledge bases.

Finally, it is important to realize that the methodology 
proposed in this work can be used in many other domains. 
Although the experiment has been focused on the recogni-
tion of ADL, the proposed methodology and the applications 
developed can be used in many other areas without modifica-
tions. In this case, the features represent different combina-
tions of terms or grammatical structures. We are currently 
applying our proposal in a research project funded by the 
Spanish Government which tries to predict the health prob-
lems in the labor of pregnant women, based on the changes 
in the values of dozen of biomarkers measured during their 
pregnancy. Using white-box supervised learning algorithms, 
we intend to find patterns in biomarkers or relations among 
them to predict problems in childbirth.
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