
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing
https://doi.org/10.1007/s12652-018-0769-4

ORIGINAL RESEARCH

Methodology for improving classification accuracy using ontologies:
application in the recognition of activities of daily living

A. G. Salguero1  · J. Medina2 · P. Delatorre1 · M. Espinilla2

Received: 30 October 2017 / Accepted: 16 March 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Feature construction and selection are two key factors in the field of machine learning (ML). Usually, these are very time-
consuming and complex tasks because the features have to be manually crafted. The features are aggregated, combined or
split to create features from raw data. In this paper, we propose a methodology that makes use of ontologies to automatically
generate features for the ML algorithms. The features are generated by combining the concepts and relationships that are
already in the knowledge base, expressed in form of ontology. The proposed methodology has been evaluated with three
different activities of a popular dataset, showing its effectiveness in the recognition of activities of daily living (ADL). The
obtained successful results indicate that the use of extended feature vectors provided by the use of ontologies offers a better
accuracy, regarding the original feature vectors of the classic approach, where each feature corresponds to the activation of a
sensor. Although the classic approach produces classifiers with accuracies above 92%, the proposed methodology improves
those results by 1.9%, on average, without adding more information to the dataset.

Keywords  Machine learning · Ontology · Feature learning · Activity recognition · Activities of daily living · Smart
environments · Data-driven approaches · Knowledge-driven approaches

1  Introduction

Supervised learning is a well-known task in the field of ML
that consists on inferring a function from labeled training
data. The training data are usually expressed in form of vec-
tors, where each of the components of the vector is a feature
or attribute of the sample data.

Feature engineering is a key in the development of data
mining applications. The success of many learning sche-
mata, in their attempts to construct models of data, hinges
on the reliable identification of a set of highly predictive

features (Hall and Holmes 2003). However, the task of fea-
ture construction and selection is tedious and non-scalable
(Cheng et al. 2011). Usually, the features are manually
crafted from raw data. This often relies on the expert knowl-
edge and requires spending a lot of time thinking about how
the underlying raw data is best exposed to predictive mod-
eling algorithms. This means that features need to be aggre-
gated, combined or split to create new features. While it is
possible to identify correlation of particular features, the
algorithms do not attempt to generate better features during
model induction (Terziev 2016).

In this paper we propose the use of ontologies in order
to improve ML algorithms. The structured knowledge con-
tained in such ontologies can be exploited to automatically
extract features for general learning tasks. More precisely,
we propose in this work a methodology that can be used to
generate new concepts by combining those already present
in the knowledge base. The new concepts can be used as
new features for the ML algorithms, so the knowledge base
can actually be seen as a vast feature store. While most of
the new concepts might be useless, we can eventually find
some of them to be relevant for the problem, which increases
the prediction accuracy of the ML algorithms. Our proposal

 *	 A. G. Salguero
	 alberto.salguero@uca.es

	 J. Medina
	 jmquero@ujaen.es

	 P. Delatorre
	 pablo.delatorre@uca.es

	 M. Espinilla
	 mestevez@ujaen.es

1	 Universidad de Cádiz, Cádiz, Spain
2	 Universidad de Jaén, Jaén, Spain

http://orcid.org/0000-0001-9221-7351
http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-018-0769-4&domain=pdf

	 A. G. Salguero et al.

1 3

is very useful when the data have some kind of underlying
structure but there is no clear idea what the relevant features
are or when the feature search space is so vast that they
could not be generated manually. In those situations, the
results show that our proposal improves the accuracy of the
classifiers.

To evaluate our proposal, we have conducted multiple
experiments in the field of sensor-based activity recogni-
tion in smart environments. This kind of activity recog-
nition is based on identifying the actions of one or more
people within an intelligent environment, by using a stream
of observed sensor events that depend only on the current
activity (Espinilla and Nugent 2017; Alemdar and Ersoy
2017). Common activities of interest are ADL such as
“bathing”,“sleeping” or “dinning”, for instance (Ferrández-
Pastor et al. 2017; Shewell et al. 2017; Gutiérrez López de la
Franca et al. 2017). Usually, objects or furniture can gener-
ate sensor events indicating, for example, the use of a faucet,
the opening of a door, or the use of a light switch (Korhonen
et al. 2003). We can even use much more complex sensors
which give us information such as the posture of the people
performing the activities (Gutiérrez López de la Franca et al.
2017).

Approaches used for sensor-based activity recogni-
tion have been divided into two main kinds: data-driven
approaches (DDA) and knowledge-driven approaches
(KDA).DDA are based on machine learning techniques in
which a preexistent dataset of user behaviors is required.
A training process is carried out to build up an activity
model, which is followed by a testing process to evalu-
ate the generalization of the model in classifying unseen
activities (Li et al 2014). With KDA, an activity model is
developed through the incorporation of rich prior domain
knowledge obtained from the application domain, using
knowledge engineering and knowledge management tech-
niques (Chen and Nugent 2009a). KDA has the advantages
of being semantically clear, logically elegant, and easy to
get started. In the context of KDA, ontologies for activity
recognition have provided successful results. In this kind of
approach, interpretable activity models are built in order to
match different object names with a term in an ontology that
is related to a particular activity. Some hybrid approaches
have been developed (Chen et al. 2014; Rafferty et al.
2015), which take advantage of the main benefits provided
by DDA and the use of ontologies. Thereby, ontological
ADL models capture and encode rich domain knowledge
and heuristics in an understandable and processable way
by the machine.

In this paper, we propose a hybrid approach for activity
recognition. The use of an ontology is proposed in order to
extend the feature vectors with asserted and inferred knowl-
edge from the ontology, improving the accuracy of classi-
fiers based on the DDA approach. An extensive evaluation is

undertaken with a popular dataset to consider the effects of
the extension of feature vectors, in terms of the overall accu-
racy for activity recognition based on sensor data obtained
from different smart environments.

The remainder of the paper is structured as follows: next
section provides a brief review of ontologies and some of
the concepts needed to understand our proposal are revised;
some of the related works found in the literature are revised
in Section 3; Section 4 proposes the methodology to extend
the feature vector by using ontologies; Sect. 5 presents an
empirical study where our proposed methodology is applied
to a popular ADL dataset; in Sect. 6, the results obtained are
analyzed and discussed; finally, in Sect. 7, conclusions and
future works are presented.

2 � Ontologies

In this section, some relevant concepts related to ontologies
are reviewed in order to understand our proposed method-
ology. Ontologies are used to provide structured vocabu-
laries that explain the relations among terms, allowing an
unambiguous interpretation of their meaning. Ontologies
are formed by concepts (or classes) which are, usually,
organized in hierarchies (Chandrasekaran et al. 1999;
Uschold and Gruninger 1996), being the ontologies more
complex than taxonomies because they not only consider
type-of relations, but they also consider other relations,
including part-of or domain-specific relations (Knijff et al.
2013).

The main advantage of ontologies is that they codify
knowledge and make it reusable by people, databases, and
applications that need to share information (Knijff et al.
2013; Wei et al. 2015). Due to this, the construction, the
integration and the evolution of ontologies have been criti-
cal for the Semantic Web (Horrocks 2008; Kohler et al.
2006; Maedche and Staab 2001). However, obtaining a
high quality ontology largely depends on the availability
of well-defined semantics and powerful reasoning tools.

Regarding Semantic Web, a formal language is OWL
(Horrocks et al. 2003; Sirin et al. 2007), which is devel-
oped by the World wide web consortium (W3C). Origi-
nally, OWL was designed to represent information about
categories of objects and how they are related. OWL inher-
its characteristics from several representation languages
families, including the description logic (DL) and Frames
basically. OWL is built on top of the resource description
framework (RDF) and (RDFS). (RDF) is a data-model for
describing resources and relations between them. RDFS
describes how to use RDF to describe application and
domain specific vocabularies. It extends the definition for
some of the elements of RDF to allow the typing of prop-
erties (domain and range) and the creation of subconcepts

Methodology for improving classification accuracy using ontologies: application in the…

1 3

and subproperties. The major extension over RDFS is that
OWL has the ability to impose restrictions on properties
for certain classes.

The design of OWL is greatly influenced by DL, particu-
larly in the formalism of semantics, the choice of language
constructs and the integration of data types and data values.
In fact, OWL DL and OWL Lite (subsets of OWL) are seen
as expressive DL, offering a DL knowledge base equivalent
ontology. They are in fact extensions of the DL “Attribu-
tive Concept Language with Complements” (  ). More
formally, let NC , NR and NO be (respectively) sets of “con-
cept names”, “role names” (also known as “properties”) and
“individual names”. The semantics of DL are defined by
interpreting concepts as sets of individuals and roles as sets
of ordered pairs of individuals.

A “terminological interpretation”  = (Δ , ⋅) over a
“signature” (NC,NR,NO) for (  ) consists of the follow-
ing concepts:

•	 A non-empty set Δ called the “domain”.
•	 A “interpretation function” ⋅ that maps:

–	 every “individual” a to an element a ∈ Δ

–	 every “concept” to a subset of Δ

–	 every “role name” to a subset of Δ × Δ

such that semantics in Table 1 holds.
The third column in Table 1 shows the Manchester OWL

Syntax equivalent expression of the corresponding DL
expression, in the second column. This syntax is derived
from the OWL Abstract Syntax, but is less verbose and mini-
mizes the use of brackets. This means that it is quicker and
easier to read and write by humans than DL formal syntax
(Horridge et al. 2006). The subsumption relation is usually
expressed in DL syntax using the symbol A ⊑ B , meaning
that the concept A is a subset of the concept B.

In 2009, the W3C proposed the OWL 2 recommendation
in order to solve some usability problems detected in the
previous version, keeping the base of OWL. OWL 2 adds
several new features to OWL. Some of the new features are
syntactic sugar (e.g., disjoint union of classes) while others

offer new expressiveness, including: increased expressive
power for properties, simple metamodeling capabilities,
extended support for datatypes, extended annotation capa-
bilities, and other innovations and minor features (Zhang
et al. 2015). One of the highlights of OWL 2 is the inclu-
sion of profiles. The profiles are subsets of OWL 2, which
provide key advantages in certain situations by means of a
set of restrictions. Following, the profiles are defined briefly
below.

•	 OWL 2 EL The use of this profile is recommended when
dealing with extensive ontologies in which relatively
complex entities are used (with a large number of prop-
erties). In these cases, the fundamental problem lies in
the efficiency at the time of carrying out the classifica-
tion and when propagating the properties associated with
the entities. The solution to this problem is to reduce
the expressiveness of the OWL 2 language. Therefore,
in this profile, universal quantifiers, cardinality restric-
tions, the disjoint operator, the complement operator, or
the enumerations for more than one individual, are not
allowed. Additionally, it is not possible to define irre-
flexive, inverse, functional, symmetric or asymmetric
properties.

•	 OWL 2 QL The use of this profile is indicated for those
applications in which a high interoperability between
OWL and the relational database systems is required.
This situation occurs when working with relatively
simple ontologies (thesauri and entity-relationship or
UML schemes), but with a large number of individu-
als. OWL 2 QL is designed to facilitate access to these
individuals through some languages, such as SQL. It is
not possible to use the universal quantifier, cardinality
restrictions or the disjoint operator. In the same way,
defining subproperties, functional properties, inverse,
transitive or connecting individuals with themselves
are not allowed. Neither enumerations nor keys can be
used.

•	 OWL 2 RL The OWL 2 RL profile is designed to facili-
tate the interoperability between the inference engines
and the OWL language. It is based on the same idea

Table 1   Semantic of OWL
logical operators

DL syntax Manchester syntax Semantics

 C1 ⊓ C2 C1 and C2 (C1 ⊓ C2)
I = (CI

1
∩ CI

2
)

 C1 ⊔ C2 C1 or C2 (C1 ∪ C2)
I = (CI

1
∪ CI

2
)

 ¬C not C (¬C)I = ΔI⧵C
I

 ∃R.C R some C (∃R.C)I = {x ∣ ∃y.⟨x, y⟩ ∈ RI ∧ y ∈ CI}

 ∀R.C R only C (∀R.C)I = {x ∣ ∀y.⟨x, y⟩ ∈ RI
→ y ∈ CI}

 ≤ nR.C R max n C (≥ nR.C)I = {x ∣ card {y.⟨x, y⟩ ∈ RI ∧ y ∈ CI} ≤ n}

 ≥ nR.C R min n C (≤ nR.C)I = {x ∣ card {y.⟨x, y⟩ ∈ RI ∧ y ∈ CI} ≥ n}

	 A. G. Salguero et al.

1 3

with which the QL profile is developed, but in this
case, the objective is to facilitate the access to the set
of individuals in the form of RDF triplets, improving
the efficiency when making inferences. Most OWL 2
class constructions can be used in this profile under
certain limitations, in terms of their syntactic position.
This profile allows the use of any of the class axioms
defined in the OWL 2 specification, except for the dis-
joint union of classes, the negative assertions and the
reflexive properties.

3 � Related works

In the activity recognition process, identifying a suitable
sensor-based representation for building feature vectors is a
key factor (van Kasteren et al. 2011). Previous works have
been focused on evaluating expert-defined representations
of binary sensors, such as, raw activation, last activation
or change point (Ordónez et al. 2013; Singh et al. 2017).
In this section we review some works that use structured
knowledge sources to generate new features for classify-
ing tasks.

If we consider all the information that can be inferred
from an ontology as the input for a task of ML, the meth-
odology presented in this paper could be considered as an
approach for the problem of feature learning. Feature learn-
ing involves a set of of techniques to learn features and dis-
cover representations from raw data (Bengio et al. 2013).
More specifically, feature learning techniques consist on the
transformation of raw data input to a representation that can
be effectively exploited in ML tasks. The goal of feature
learning is often to reduce the dimensionality of the dataset,
selecting or aggregating features in order to produce low-
dimensional versions of the original datasets (Brown et al.
2011; Espinilla et al. 2017). Unsupervised feature selection
for activity recognition has been developed by Neural Net-
works under black-boxes approaches, where several weight-
ing techniques, such as, auto-encoders (Oukrich et al. 2017),
back-propagation (Fang et al. 2014) and, more prominently,
Convolutional Neural Networks (Singh et al. 2017) are pro-
posed. Feature selection has been demonstrated as a suitable
method in activity recognition based on wearable-devices
approaches (Gupta and Dallas 2014; Ordóñez and Roggen
2016; Xu et al 2016).

Instead of reducing the number of features, in this paper
we propose a methodology to generate new features by
using the underlying structure of data. Although the auto-
matic generation of features can be applied to relational
datasets (Kanter and Veeramachaneni 2015), most of the
current works use Open Linked Data (Ristoski 2015). A
framework that generates new features for a movie recom-
mendation dataset is proposed by Cheng et al. (2011). They

use that framework to construct semantic features from
YAGO, a general purpose knowledge base that was auto-
matically constructed from Wikipedia, WordNet and other
semi-structured Web sources. Then, they manually define
a set of the static queries in SPARQL language, which are
used to add information to the original dataset, such as,
budget, release date, cast, genres, box-office information,
etc. A very similar approach is proposed by Ristoski et al.
(2015), where an interactive system for adding new features
to a multidimensional cube is described. The new features
can be selected by the user from a set of related features
that are automatically generated according to the features
already in the cube. Although it allows the use of custom
rules in SPARQL for the definition of rules that generate
features, their authors also propose some basic rules for the
automatic generation of features based on RDF annotations.
In spite of being proposals similar to ours, it is important to
underline that the high formalization of ontologies allows
us to automatically generate relevant features, without the
need for human interaction.

Terziev (2016) also proposes the use of ontologies to gen-
erate new features. He expands features from the origin fea-
ture in a breadth first search manner considering the rules for
semantically correct paths. Only concepts on outgoing paths
from the origin entity conforming to these patterns are con-
sidered as possible features in the further process. Although
they plan to test their proposal with two ontologies, they are
actually dealing with the underlying RDF graph of those
ontologies. They do not make use of the inference mecha-
nisms of ontologies nor the formal logic behind them. They
just use the user defined relationships between concepts in
the RDF graph in order to relate the original concept with
the concepts in its context.

Paulheim (2012) also proposes another technique that
employs user defined relations between concepts in the RDF
graph of ontologies for the automatic generation of features.
Its main goal is the generation of possible interpretations for
statistics using Linked Open Data. The prototype implemen-
tation can import arbitrary statistics files, and uses DBpedia
for generating attributes in a fully automatic fashion. Fur-
thermore, the author argues that their approach works with
any arbitrary SPARQL endpoint providing Linked Open
Data. The use of the inference mechanisms of ontologies is
also very limited in this work.

Another key difference of our proposal with respect to all
these works is that they propose the use of external knowl-
edge to generate new features, whereas we only consider the
information in the original dataset to do so.

In the field of ontology engineering, the algorithms for
Class expression learning (CEL) have been extensively
developed (Böhmann et al. 2016). CEL is the most similar
technique to the approach presented in this paper. They can
be used to suggest new class descriptions that are relevant

Methodology for improving classification accuracy using ontologies: application in the…

1 3

for the problem while the ontologies are being developed.
The objective of CEL algorithms is to determine new class
descriptions for concepts that may be used to classify indi-
viduals in an ontology according to some criterion. More
formally, given a class C, the goal of CEL algorithms is to
determine a class description A such that A ≡ C.

Let us suppose an ontology O with sufficient number of
individuals. The set of individuals in Δ is the search space
S. CEL algorithms search in S, trying to find a description
for class A such that A contains the same individuals in C .
The CEL problem may be defined as a supervised learning
problem but unlike the usual supervised learning problems
the number of features for each instance is not fixed. They
are dynamically generated as the CEL algorithm moves
along the search space S. To navigate through the space
S the CEL algorithms usually apply a refinement operator
to existing classes in the knowledge base (Lehmann et al.
2011).

The main difference with respect to our proposal is that
the result of CEL algorithms is always a DL class expres-
sion, whereas the result of the proposed methodology is a
set of DL class expressions. The class expression produced
by CEL algorithms is the final model for the classification
of individuals. All individuals which meet the class expres-
sion are classified as positive. The rest of them are classified
as negative. The expressivity of the classifier is thus, very
limited, because only DL operators can be used to describe
it. This restriction is necessary when we want to incorpo-
rate this knowledge to an ontology, which is usually the
main purpose of CEL-based applications. The restriction
is not necessary, however, when building a more general
classification model which does not have to be expressed
in form of DL class expression. We can use the set of class
expressions as the input of a neural network and use the
individuals in the ontology to train it, for example. The
obtained classification model is a neural network where
the class expressions are used as its features. The knowl-
edge in the classifier cannot be incorporated to an ontology
because neural networks are black boxes. Nevertheless, it
is expected to achieve a better classification performance
as it has more flexibility to combine the class expressions
given as input.

4 � Methodology

The purpose of our methodology is to generate feature vec-
tors by using the asserted and inferred knowledge in the
ontology. In this section, we first describe how class descrip-
tions can be combined to produce new class descriptions.
Afterwards, we explain the algorithms which we use to find
the most relevant class descriptions, which will be used as
features for the classifiers.

4.1 � Class expression expansion rules

In this section, the proposed rules for generating new Class
Expressions are described. All new class expressions are
developed from a given one. Depending on the DL operator
chosen, the Expansion Function produces different kinds of
class expressions as result.

Definition 1  Expansion function. An Expansion Function
f d generates an Expansion Set of class expressions by apply-
ing a DL operator d to a given class expression.

In Table 2, the expansion functions proposed in this
work to generate the new class expressions are shown. They
correspond to the basic semantics of each of the operators
defined in OWL, detailed in Table 1, but other expansion
functions may be used. One could define, for example, an
expansion function that generates class expressions by ran-
domly combining two other given class expressions, using
the different operators of OWL as possible cut points. This
expansion function would be very useful in case of using
genetic algorithms, for example. In the functions: (1) C and
R respectively represent the set of concepts and relations,
which are defined in the ontology; (2) ⊗ represents the Car-
tesian product; and (3) (X) is the Power Set of X, that is,
the set of all possible subsets of X.

The given functions f ⊓ and f ⊔ apply the logical opera-
tors ⊓ and ⊔ to the concept being expanded c and a given
set of class expressions (C2) . The expansion function f ¬
applies the complement operator to produce a unique class
expression as a result, where the original class expression
is complemented.

Table 2   Expansion functions Expansion function Expansion set

f ⊓ ∶ C1 × (C2) → (C) {c ⊓ d ∣ ⟨c, d⟩ ∈ C1 ⊗ (C2)}
f ⊔ ∶ C1 × (C2) → (C) {c ⊔ d ∣ ⟨c, d⟩ ∈ C1 ⊗ (C2)}
f ¬ ∶ C1 → (C) {¬c ∣ c ∈ C1}
f ∃ ∶ C1 × (R) → (C) {∃r.c ∣ ⟨c, r⟩ ∈ C1 ⊗ (R)}
f ∀ ∶ C1 × (R) → (C) {∀r.c ∣ ⟨c, r⟩ ∈ C1 ⊗ (R)}
f ≤ ∶ C1 × (R) × (ℕ) → (C) {≤ n r.c ∣ ⟨c, r, n⟩ ∈ C1 ⊗ (R)⊗ (ℕ)}
f ≥ ∶ C1 × (R) × (ℕ) → (C) {≥ n r.c ∣ ⟨c, r, n⟩ ∈ C1 ⊗ (R)⊗ (ℕ)}

	 A. G. Salguero et al.

1 3

In the case of quantifiers operators ( ∀,∃ ), the expansion
functions produce as many class expressions as properties
are received as argument. For each of them, a new class
expression of the form o r.c is generated, where: (1) o is the
given quantifier operator; (2) r represents a relation in (R) ;
and (3) c is the class expression which is being expanded.

The expansion functions that use cardinality constraints
also produce class expressions by combining the original
concept with all relations in (R) . However, these expansion
functions produce as many class expressions as cardinality
values (ℕ) are set as the function argument.

Some examples for the expansion functions defined in
this section are shown in Table 3. The second and third

columns indicate the set of classes (C2) or relations (R)
to be combined with the concept in the first column. The
fourth column indicates the cardinality values to be used in
the case of functions such as f ≤ or f ≥.

4.2 � Algorithm for the generation of features

In this section, we describe the algorithm for generating
class expressions that will be used as features in the classifi-
ers. In this paper, the algorithm is described in pseudo-code,
although it has been implemented using the Java language.
The applications are freely available under the terms and
conditions of the GNU General Public License.1

Table 3   Examples of expansion
functions

C1 (C2) or (R) (ℕ) Generated expressions

f ⊓ Child {Person,∃hasParent.Person} Child ⊓ Person

Child ⊓ ∃hasParent.Person

f ¬ Child ¬Child

f ∀ Child ⊔ Parent {hasParent, hasChild} ∀hasParent.(Child ⊔ Parent)

∀hasChild.(Child ⊔ Parent)

f ≤ ¬Parent {hasParent, hasChild} {2,3} ≤ 2 hasParent.(¬Parent)

≤ 3 hasParent.(¬Parent)

≤ 2 hasChild.(¬Parent)

≤ 3 hasChild.(¬Parent)

1  https://sourceforge.net/p/owlmachinelearning/.

Algorithm 1 Expansion of features.
Require:
1: O is the set of DL operators that will be used to generate new class expressions.
2: C are the concepts in the ontology.
3: R are the relations in the ontology. c is the concept representing all the instances that

the classifier will take as input.
4: n is the number of features to be generated.
5: d is the maximum value for the cardinality constraints.

6: function Expand(O,C,R, c, n, d)
7: C ← C \ {k ∈ C | kI = ∅}
8: F ← ∅
9: while | F |< n do
10: B ← SelectBests(C)
11: B′ ← B
12: while B �= ∅ ∧ | F |< n do
13: b ← {k | ∀x, y ∈ B Score(x) < Score(y) ∧ x �= y}
14: B ← B \ b
15: E ← ExpandClassExpression(b,O,B′, R, d)
16: for all e ∈ E do
17: if Satisfiable(e) ∧ e /∈ C then
18: C ← C ∪ e
19: if e � c then
20: F ← F ∪ e

return F

Methodology for improving classification accuracy using ontologies: application in the…

1 3

The Algorithm 1 is described as a Step-Form algo-
rithm. First, those concepts from the ontology which do
not contain any individual instances, or cannot be iden-
tified by the reasoner, are eliminated. Next, it enters
into the main loop of the algorithm, which only breaks
after having generated a sufficient number of new class
expressions. The desired number of class expressions is
a parameter of the algorithm, which has to be specified
by the user in the applications that have been developed.
For each iteration of this main loop, a subset with the
most relevant class expressions is created. The new class
expressions will be generated by combining the expres-
sions in this set. The current implementation of the
SelectBests function, which is responsible for perform-
ing this task, just returns the entire set of generated class
expressions, without any sort of selection. The algorithm
has been designed so that the selection and the combina-
tion strategies can be modified without changing the rest
of the algorithm, because we plan to evaluate different
bio-inspered approaches for this strategy, such as genetic
algorithms and ants’ colonies.

Before proceeding to expand the selected class expres-
sions, a copy of them is made (see line 11). This copy is
necessary, since the set of selected class expressions is
modified in the 14 line of the algorithm. Next, each of the
selected class expressions is expanded. The order in which
these class expressions are expanded is really important,
since the expansion process can generate a large number
of class expressions and the process is stopped when suf-
ficient number of them are generated. The order in which
class expressions are expanded depends on the Score
function, which gives a score to each of them based on
its relevance. In the current implementation of the algo-
rithm, this score is assigned according to the depth of the
tree that represents the class expression. Class expres-
sions with smaller number of operators are prioritized,
favoring the generation of simpler class expressions. This
method, based on depth-first search (Hopcroft and Tar-
jan 1974), is widely recognized as a powerful technique
for searching in graphs and trees (Even 2011). Moreover,
the class expressions generated in the search describe a
knowledge representation of a concept, so the pruning of

solutions based on the depth of the tree is recommended
to prioritize simpler and shorter expresions. This reduces
the overfitting, improves the performance on test data,
and increases the human interpretability (Mingers 1989).
More complex evaluation functions are planned for future
works, for a more accurate measure of the relevance of the
class expressions. However, it is important to highlight
that the efficiency of this function has a great impact on
global efficiency of the algorithm, because it is called at
least once for each expression.

The most relevant class expression is selected in the line
13 of the algorithm and removed from the set of selected
classes. The ExpandClassExpression function is responsible
for generating all possible class expressions that are formed
from the currently selected class expression. Again, the
algorithm has been carefully designed to make this function
easily modifiable, so we can test other expansion strategies
without having to rewrite the entire algorithm. This function
can generate unsatisfiable class expressions, that is, it can
generate expressions with restrictions impossible to meet
for any individual in the ontology. For example, given the
concepts Cat and Dog, which are defined in a hypothetical
ontology as disjoint concept, an example of unsatisfiable
expression is Cat ⊓ Dog , because no individual instance in
the ontology can be represented by such expression. Only
satisfiable class expressions are added to the ontology (see
line 18), previously checking that they have not been added
before.

Finally, only those of the generated class expressions
that successfully describe a type of the concept to be rec-
ognized are added to the set of features for the classifiers
(see line 20). Following the previous example, in the case
we are trying to recognize instances of animals, we only
add to the feature set those class expressions that describe
some king of animal, such as eats some Thing, avoiding
individual instances that describe other types of concepts,
such as Vehicle or hasIngredient some Vegetable. We have
to realize that although these expressions are not included
in the final set of features for the classifiers, they are
added to the set of class expressions C, since they can
result in relevant class expressions in combination with
others.

	 A. G. Salguero et al.

1 3

Algorithm 2 Generation of derived class expressions.
Require:
1: c is the concept being expanded.
2: O is the set of DL operators that will be used to generate new class expressions.
3: C are the concepts that may be combined with c to generate new class expressions.
4: R are the relations in the ontology.
5: n is the maximum value for the cardinality constraints.

6: function ExpandClassExpression(c,O,C,R, n)
7: E ← ∅
8: for all o ∈ O do
9: if o ∈ {¬} then
10: E ← E ∪ ¬c
11: if o ∈ {∀,∃} then
12: for all r ∈ R do
13: E ← E ∪ o r.c
14: if o ∈ {�,�} then
15: for all k ∈ C do
16: if c �= k then
17: E ← E ∪ k o c
18: if o ∈ {≤,≥} then
19: for all i ∈ {1..n} do
20: for all r ∈ R do
21: if SimpleProperty(r) then
22: E ← E ∪ o i r.c

return E

Algorithm 2 describes an implementation of the
ExpandClassExpression function, which is responsible
for producing new class expressions based on a given
one. For each of the operators received as arguments, the
algorithm applies the expansion rules detailed in Table 2.
The complement operator produces a single class expres-
sion, where the original expression is complemented.
Given the class expression hasChild some Man, for exam-
ple, the line 10 of the algorithm produces the expression
not(hasChild some Man).

In the case of quantifier operators, the algorithm gener-
ates as many class expressions as properties are defined in
the ontology. For each of them, an expression of the form
o r.c is generated, where: (1) o is the given quantifier oper-
ator; (2) r represents a property defined in the ontology;
and (3) c is the class expression being expanded. For the
case of the previous example and the existential quanti-
fier, the statement in the line 13 of the algorithm gener-
ates expressions such as hasChild some(hasChild some
Man), hasParent some(hasChild some Man), hasIgredi-
ent some(hasChild some Man), etc.

Logical operators construct class expressions by com-
bining the concept to be expanded with the other selected
concepts. Since C ⊔ C ≡ C and C ⊓ C ≡ C  , it only
makes sense to combine different concepts with logi-
cal operators. The statement in the line of the algorithm
produces class expressions such as Woman ⊔Man or
Man ⊓ (hasChild some Woman).

The number of class expressions being generated by
cardinality constraints is virtually infinite, so the user must
determine the specific cardinality values to limit the genera-
tion of them. For each possible value of cardinality and prop-
erties in the ontology, the algorithm generates a new class
expression. The algorithm generates in this case expressions
of the form hasChild min 3 Woman or hasIngredient max 2
(hasParent some Vegetable), for example. However, since
only simple properties can be used in cardinality constraints
(Motik et al. 2012), only the expressions that are formed by
simple properties are actually considered.

Many of the class expressions generated by the last algo-
rithm do not make much sense, as it has been described in
the examples in this section. For that, the algorithm checks
in the line 17 if the generated class expression is satisfiable
before adding it to the set of generated expressions. This
substantially reduces the search space for the new features,
since the expansion of class expressions stops when they are
not satisfiable. The reasoning mechanisms represent in this
case a clear advantage against a simple brute-force search.

Finally, it is noteworthy that the proposed methodology
helps to improve the accuracy of classifiers in those situa-
tions where there is no clear idea about the relevant features
for the problem or when the feature search space is so large
that could not be generated manually. Obviously, the infor-
mation in the dataset must have some kind of structure and
be able to be expressed as an ontology. The methodology
can easily be applied to problems related to natural language

Methodology for improving classification accuracy using ontologies: application in the…

1 3

processing, for example. In a previous work we have applied
CEL-based algorithms for the sentiment analysis of text
documents (Salguero and Espinilla 2017). In that case, the
ontology was formed by entities such as “Word”, “Sentence”
or “Adjective”. The text document can be seen as a sequence
of ordered words, just as it happens with the events gener-
ated by the sensors in ADL.

5 � Experiment

In order to evaluate the quality of the methodology proposed
in this work an experiment has been carried out, in which the
dataset proposed in Ordónez et al. (2013) has been used. The
objective of the experiment is to determine whether or not
a particular ADL has been performed based on the sensors
that have been fired during a specific period of time.

In this section we first describe the dataset that has been
used in the experiment and how the sensor data stream has
been transformed into feature vectors. Then, the ontology
derived from the dataset, which is needed to apply our meth-
odology, is also described. To conclude this section, the spe-
cific tasks that have been performed in the experiment are
detailed.

5.1 � From sensor data stream to classic feature
vectors. Smart environment datasets

In this paper, the activity recognition dataset of smart envi-
ronments developed by Ordónez et al. (2013) in the UC
Irvine Machine Learning Repository, is used to evaluate our
proposal. The dataset represents two participants performing
ten ADL activities in their own homes. The activities were
performed individually and this dataset is composed by two
instances of data, each one corresponding to a different user
and summing up to 35 days. Ten activities are classified:
breakfast, dinner, leaving, lunch, showering, sleeping, snack,
spare time TV and grooming. In this dataset, the number of
sensors is 12, although two of them are never fired in the
case of the second participant. In fact, the dataset can be
actually considered as two different datasets. We decided
to use the second set of activities because classifiers based
on the classic approach produce perfect classifiers for most

of the activities in the first dataset, so there is no room for
improvement.

Usually, feature vectors generated by a smart environment
are computed from the temporal sensor data stream that is
discretized into a set of time windows, denoting each time
window by Wk , which is limited by each activity. The set of
activities are denoted by A = {a1,… , ai,… , aAN} , being AN
the number of activities of the dataset.

Each feature vector is denoted by Fk and has NS + 1
components, being NS the number of sensors in the dataset
denoted by S = {s1,… , sj,… , sNS

} . Therefore, each com-
puted feature vector is defined by the following equation:

being f k
j
; j = {1,… ,NS} a binary value that indicates if the

sensor sj was fired at least once, 1, or was not fired 0 in this
time window Wk . The last component f k

NS+1
∈ A indicates

the activity carried out in the time window Wk . An example
of this process is shown in Fig. 1, which can be find in Que-
sada et al. (2015).

The classic feature vectors can be expanded through
ontologies to improve the accuracy of the results. The
ontology that has been specifically developed for this task
is reviewed in the following subsection.

5.2 � An ontology for the description of ADL

This section presents a brief review of the ontology devel-
oped for the description of ADL. The aim of this ontology
is to provide a basic set of primitives that allow the repre-
sentation of the information present in the dataset. The set
of primitives should be comprehensive enough to be able
to represent all the activities but should also be as brief as
possible to facilitate the use of reasoners.

The ontology defines two basic disjoint concepts, Activ-
ity and Event, which respectively represent all the activi-
ties in the dataset and the activation of the sensors during
these activities. In fact, the Event concept represents any
situation reported by a sensor. It can also be used to rep-
resent the deactivation of a sensor. Each of the sensors in
the dataset requires the creation of at least one subconcept
of the Event concept to represent the events produced by
that sensor. The application developed to convert the dataset
into an ontology creates two subconcepts for all sensors.
One of them represents the activation of the sensor and the
other, which is optional, its deactivation. In the first case
the suffix “_set” is appended to the end of the name of the
concept, while the suffix “_clear” is appended in the second.
The class Maindoor_set ⊑ Event , for example, represents
the set of events corresponding to the activation of the sen-
sor in the main door. The ontology also includes a property

Fk = {f k
1
,… , f k

j
,… , f k

NS
, f k
NS+1

}

Fig. 1   Partial sensor data stream of a dataset and its computed feature
vector

	 A. G. Salguero et al.

1 3

to associate literal values to sensor events (hasValue data-
type property). This property can be used to annotate all
the changes in a sensor along time. However, this is often
a bad idea for a sensor that is continually changing, since
this would create a lot of individuals in the ontology and
decrease the performance of reasoners. It is best to define
some intervals (“Low”, “Medium” and “High”, for example)
and register only the significant changes.

Only for this particular dataset, the type and location of
the sensor has been added to the concept name because some
of the sensors share the same name. For example, the class
that represents the activation of the sensor of the main door
is actually defined in the given ontology as Maindoor–Mag-
netic–Entrance_set ⊑ Event, although in the rest of examples
of the work we will just use the name of the sensor for the
sake of clarity. Actually, only the sensors of the three interior
doors share the same name in the dataset. In any case, the
information about the type and location of sensors is solely
used to distinguish a sensor from another in the experiment.

Our proposal for representing activities is based on a list
structure (see Fig. 2). hasNext is defined as a functional,
asymmetric and irreflexive property, establishing the order
of events in the activity. Because it has been defined as a
functional property just one event could follow another
event. The inverse property is also defined as functional,
forcing an event to be directly preceded by a unique event.
We defined a transitive property isFollowedBy as a super-
property of hasNext. Since this means that hasNext implies
isFollowedBy, any sequence of entities linked by hasNext
will be inferred to be a chain linked by isFollowedBy. has-
Next is used to express that an event B immediately follows
another event A. There is no other event between them. So
event A has B as the next event in the list (A hasNext B) or, in
other words, event A is followed by event B (A isFollowedBy
B). If another event C appears after event B, event A is also
followed by event C (A isFollowedBy C), but event A has not
C as the next event on the list (not A hasNext C).

The property hasItem establishes the membership of an
event to the list. The class description hasItem some (Front-
door_set and isFollowedBy some Dishwasher_set) is a way
of describing the activity #Activity24 of the example in
Fig. 2.

The properties startsWith and endsWith are used to iden-
tify the first and last events in the activities. Due to open
world assumption in OWL, reasoners cannot automatically
infer the individuals that belong to these concepts. There-
fore, it is necessary to annotate these individuals when the
activities are converted to the model proposed in this paper.
The class description startsWith some (Frondoor_set and
hasNext some (Fridge_set and hasNext some Dishwasher_
set)), for example, represents the activities that begin with
the activation of the sensor of the front door, which is imme-
diately followed by the activation of the fridge sensor and
then by the dishwasher sensor, immediately. The activity
#Activity24 in Fig. 2 is an example of activity described by
the above class description.

Figure 3 shows how the sensor data stream in Fig. 5.1 can
be expressed in form of ontology by using all the properties
defined above.

In OWL the same individual could be referred to in
many different ways (i.e. with different URI references).
Due to this, it is necessary to state that all the elements in
the datasets are different individuals. For practical reasons,
a functional property hasID is used to identify all of the
individuals in the model with an unique code. In this way,
the addition of new entities to the ontology is easier, without
the need of asserting that all of them are different from the
existing individuals.

When we want to refer to events that occur before another
one we can make use of inverse properties, which have
not been explicitly defined for efficiency reasons. #Activ-
ity24 may also be described by the class description
endsWith hasNext− Fridge_set , which describes activities end-
ing with an event preceded by an activation of the fridge sensor.

There are others ADL ontologies available in the litera-
ture (Riboni and Bettini 2011; Chen and Nugent 2009b; Bae
2014; Okeyo et al. 2014; Villalonga et al. 2016). However,
most of them describe activities from a high level of abstrac-
tion. Few of them describe activities as sequences of events
produced by sensors. The ontology proposed by Noor et al.
(2018) is the most similar to the ontology described in this
section and it is one of the few that is available for download.
To show that the methodology proposed in this work is inde-
pendent of the ontology being used, part of the experiment
consisted on describing the dataset by using the ontology
proposed by Noor and comparing the results obtained by the
ontology described in this section.

5.3 � Experiment design

The objective of the experiment is to determine whether
or not a particular ADL has been performed by a single
person based on the sensors that have been fired during a

⊤ ⊑ ∀ hasID Datatype#long

Fig. 2   Ontology example

Methodology for improving classification accuracy using ontologies: application in the…

1 3

specific period of time. To simplify the experiment, the time
intervals always correspond to the labeled activities in the
dataset.

The number of instances per activity is shown in Table 4.
All the instances in the dataset have been taken as the input
for all the classifiers. The instances corresponding to the
activity being recognized are treated as positive individuals
whereas the rest of the instances are treated as negative indi-
viduals. 10-fold cross-validations have been used to evaluate
all the classifiers. The main advantage of this validation is
that all the activities in the dataset are used for training and
testing, avoiding the problem of considering how the dataset
is divided.

For the development of the classifiers in the experiment,
we have made use of six algorithms of the Weka data mining
software (Witten et al. 2016). We have tried to select the most
commons algorithms from most of the categories in Weka
(“bayes”, “funcitons”, “rules” and “trees”). We discarded
some algorithms, such as the Multilayer Perceptron, because

they take much more time than the others to compute. The
algorithms have always been run with defaults parameters.

•	 The Naive Bayes (NB) algorithm is a probabilistic induc-
tion algorithm that is based on the classic Bayesian clas-
sifier. It uses statistical methods for nonparametric den-
sity estimation for each predictive attribute instead of
using a single Gaussian distribution, as Bayesian classi-
fiers usually do.

•	 The C4.52 is an algorithm used to generate decision trees.
It is an extension of the basic ID3 algorithm that try to
address some of its issues, such as the missing data, the
handling of continuous attributes or the overfitting.

•	 Sequential Minimal Optimization (SMO) is an iterative
algorithm for the training of Support Vector Machines
(SVM). It requires much less time than all the previous

Fig. 3   Relations for entities in
Fig. 1

Table 4   Activities in the dataset Activity Instances

Breakfast 22
Dinner 11
Grooming 113
Leaving 38
Lunch 13
Showering 11
Sleeping 29
Snack 47
Spare time TV 116
Toileting 93
Total 493

Table 5   Activity recognition accuracy for classic approach

Best accuracies of selected activities are in bold

Activity C4.5 SMO VP DT

Breakfast 94.87 95.00 95.34 94.73
Dinner 97.77 97.77 97.77 97.77
Grooming 95.05 95.39 94.11 95.12
Leaving 99.19 99.53 99.12 98.92
Lunch 97.37 97.37 97.30 97.17
Showering 100.00 100.00 99.53 100.00
Sleeping 99.39 99.39 98.45 99.39
Snack 91.96 90.13 90.20 90.61
Spare time TV 95.74 95.74 95.53 95.74
Toileting 98.39 98.39 98.39 98.39

2  The Weka implementation of the C4.5 classifier is called J48.

	 A. G. Salguero et al.

1 3

available methods. Given a p-dimensional vector, where
p is the number of features, SVM try to find the hyper-
plane that represents the largest separation between two
given classes.

•	 The Voted Perceptron (VP) algorithm is an improved
version of the perceptron algorithm. As well as SVM,
the VP algorithm uses a kernel function to separate
data. However, it is considered a simpler method to
implement, and much more efficient in terms of com-
putation time.

•	 The Decision Table (DT) algorithm builds decision tables
with a default rule mapping to the majority class. Given
an unlabeled instance, the classifier seeks for similar
labelled instances. If no instances are found, the major-
ity class of the DT is returned. Otherwise, the majority
class of the dataset is returned.

•	 The PART algorithm can be used to generate decision
list. It builds a partial C4.5 decision tree in each iteration
and makes the “best” leaf into a rule.

The results obtained by these classifiers when using a clas-
sic DDA approach to solve the problem have been taken
as reference to measure the efficiency of our proposal. For
this purpose an application that identifies the sensors that
have been fired during each of the activities has been built.
The application generates a file in Weka format, following
the structure presented in Section 5.1. This file contains an
instance for each activity and as many features as sensors
in the dataset. All the features are binary and specify if the
sensor has been fired during the activity or not. Finally, it
includes a class attribute, also binary, that indicates if it is
the activity that the classifier is learning to identify (posi-
tive) or not (negative). Each experiment consists, therefore,
in determining which combination of sensors are fired for a
particular activity, such as “Breakfast”, for example.

By using the Weka data mining software, we first have
generated C4.5, SMO, VP and DT classifiers for all the
activities in the datasets. A summary of the results obtained
for all the activities of the different datasets is shown in
Table 5. The three activities that are more difficult to be
recognized have been taken as reference, so there is more
room for improvement. More precisely, the activities chosen

for the experiment have been “Breakfast”, “Grooming” and
“Snack”, with best classification accuracies of 95.34, 95.39
and 91.96%, respectively.

An ontology has been automatically generated for
describing the activities in the dataset by using the primitives
presented in Sect. 5.2. Then, the Algorithm 1 has been used
to generate different sets of new class descriptions, which
are then used as new features by the classifiers. Five differ-
ent subsets of DL operators have been used to generate five
different sets of class descriptions. The specific DL operators
for each subset are shown in Table 6. To relate activities to
events, it is necessary to include one of the quantifiers, at
least. The universal quantifier is very restrictive, because
all related individuals have to meet the conditions. We have
only include it in one of the sets for this reason. Cardinal-
ity restriction operators are expensive for by the reasoner,
so they have only been included in some of the sets. The
maximum cardinality operator is especially expensive. The
intersection, union and complement operators cannot form
class expressions that relate activities and sensors on their
own, so they have been combined with the existential quanti-
fier. Versions with n = {10, 20,… , 90, 100, 200,… , 1000}
class expressions have been generated for each of these sets
of DL operators.

All the class descriptions are evaluated by another appli-
cation and new files in Weka format are generated for each
of the versions of the different subsets of DL operators. We
get a file for the version with n = 10 generated class expres-
sions for the  set, another file for the version with
n = 20 class expressions and so on. Each class expression
corresponds to a new feature for the classifier.

The results obtained through the methodology proposed
in this work have also been compared with the results
obtained with the application DL-Learner,3 which imple-
ments several algorithms for CEL. This application just
needs the ontology and the sets of individual instances
representing the positive and negative individuals. This
information was generated when the original dataset was
translated into an ontology. In this case, the concept to be

Table 6   Subsets of DL
operators used in the
experiment

Operators Existential Universal Maximum Minimum
set name Intersection Union Complement quantifier quantifier cardinality cardinality

 ✓ ✓ ✓

 ✓ ✓ ✓ ✓ ✓ ✓ ✓

 ✓ ✓ ✓ ✓ ✓

 ✓

 ✓ ✓ ✓

 ✓ ✓

3  http://dl-learner.org.

Methodology for improving classification accuracy using ontologies: application in the…

1 3

recognized is a given activity and the result of the process
is a class expression, which is composed by the instances
of this activity, but not the instances of other activities. The
DL-Learner application has been running for one hour for
each of the three activities in search of the class expression
that best matches them.

6 � Results

The accuracies obtained by all the different classifiers for
the selected activities are analyzed in this section. As can be
seen in Fig. 4, the classifiers based on our approach clearly
improve the results obtained by those using the traditional
approach. This is true for the three activities analyzed and
for all supervised learning algorithms used to construct the
classifiers. A detailed analysis of the results shows that the
improvement obtained for the “Snack” activity is the big-
gest. The best accuracy obtained using the classic approach
is 91.96%, corresponding to the PART algorithm, while
the algorithm SMO gets an accuracy of 95.12% when the
methodology presented in this paper is applied. This is an
increase of 3.16%, being 8.04% the best possible improve-
ment. Improvements are also obtained for the two other
activities, but the difference is not so evident. This mainly is
because the algorithms using the traditional approach obtain
very high accuracies (95.95 and 96.54% for the “Breakfast”
and “Grooming” activities, respectively).

Regarding the learning algorithms used in the experi-
ment, we can observe that SMO provides the best perfor-
mance in the three cases, obtaining the best absolute results
for the three activities. In addition, it is also the learning
algorithm with the greater differences between the proposed
and the traditional approaches. The algorithms that get worse
results are Naive Bayes and VP, but they always improve the
results of the traditional approach.

Table 7 shows the most relevant class descriptions
found for the “Grooming” activity by the SMO algorithm.
These class expressions have been found after generating
six hundreds of them by using the  operator set. This
is the class expressions set that results in better prediction
accuracy, as shown in Fig. 6. The first column indicates the
weight assigned to each feature by the algorithm. Each of the
six hundred class expressions have an associated weight, but
only the expressions with higher absolute values have been
included in Table 7. As can be seen on the table, there are
four main class expressions that can be used to identify the
“Grooming” activity. All these expressions describe activi-
ties in which the sensor of the basin in the bathroom has
been activated, which makes sense. The second expression
does not provide more relevant information, because all
activities have to start with some sensor event. It describes
the same activities as the previous class description does.
On the contrary, the third and the fourth class expressions
does provide more relevant information. They describe class
expressions in which the basin sensor has been activated but
the sensors located at the bed and the door of the bedroom
have not, respectively. This makes sense because the “Sleep-
ing” activity often includes the activation of that sensors.

Fig. 4   Classifiers performance

	 A. G. Salguero et al.

1 3

There are also some class expressions that can be used
to discard negative instances, that is, other activities than
“Grooming”. In this example, activities in which both the
sensor of the door in the bedroom and the sensor in the
toilet have been activated have many possibilities to not be
classified as “Grooming” activities. These kind of activities
are described by the last two class descriptions in Table 7.
The rest of the class expressions can also be used to identify
negative instances, but their meaning are not so obvious.
Class descriptions in fifth, sixth and seventh rows describe
activities having two or more sensors activations. This
also makes sense because there are many instances of the
“Grooming” activity in the dataset in which the sensor of
the basin is the unique sensor that has been activated, and
just once for the entire activity. Therefore, an activity having
multiple activations of sensors is less likely to be classified
as a “Grooming” activity.

As can be seen, our proposal also takes into account
the class expressions that serve to identify the negative
instances. This is the main reason why our proposal achieves
better results than CEL-based applications. However, and
depending on the supervised learning algorithm used, with
the proposal presented in this paper it will not always be
possible to extract knowledge from the class expressions

generated. In the case of using a black box algorithm, such
as VP, it is not possible to determine the relevance of the
different class expressions or their structures.

With respect to the set of DL operators that are used to
generate the class expressions, there is not a clearly winner,
as shown in Fig. 5. In fact, the results obtained are slightly
different for each of the activities being analyzed. When the
number of operators used to generate the set of class expres-
sions is high the results are better for the activities “Snack”

Table 7   Most relevant class
expressions found for the
activity “Grooming” by the
SMO algorithm

Weight Expression

0.4036 hasItem some Basin_set
0.4036 (hasItem some Basin_set) and (startsWith some Event)
0.4036 (not (Door-Bedroom_set)) and (hasItem some Basin_set)
0.4036 (not (Bed_set)) and (hasItem some Basin_set)
− 0.4999 hasItem some (hasNext some Event)
− 0.4999 startsWith some (isFollowedBy some Event)
− 0.4999 startsWith some (hasNext some Event)
− 0.4686 (hasItem some Toilet_set) and (startsWith some Door-Bedroom_set)
− 0.9349 (hasItem some Door-Bedroom_set) and (hasItem some Toilet_set)

Fig. 5   DL operators performance Fig. 6   SMO performance for “Grooming”

Fig. 7   PART performance for “Snack”

Methodology for improving classification accuracy using ontologies: application in the…

1 3

and “Breakfast”. For those activities, the best performance
is obtained for the  ,  and  sets
of operators. Good results are also obtained for the activ-
ity “Breakfast” when the set that only uses the existential
quantifier to generate the class expressions is used. On the
contrary, the set of operators  obtains the best results for
the activity “Grooming”, although the other sets of operators
also obtain very good results. It should also be outlined that
the improvement over the classical approach is the lower
among the three activities, probably due to the inherent high
precision obtained using this approach. Therefore, there is
not an optimal set of operators to generate the class expres-
sions, although the sets  ,  and 
provide good results in all three cases.

We also have to realize that not all class expressions
require the same amount of time to be evaluated by reason-
ers. The class expressions containing cardinality constraints
are the ones that require most computing time, followed by
the expressions containing universal quantifiers. For exam-
ple, the evaluation4 of the set with thousand classes gen-
erated with the set of operators  requires about one
hour of processing in one of the nodes of the computer
cluster of the University of Cadiz5. This is because it is the
set of DL operators that generates most class expressions
containing cardinality constraints. In contrast, the version
with thousand classes generated with only the existential
operator just requires ten seconds to be completely evalu-
ated with the same system configuration. This makes the
existential quantifier operator a very interesting option to
consider, because the results obtained with just this operator
are relatively good, specially in the activities “Grooming”
and “Breakfast”.

The developed application is actually composed by two
separate applications. The first one is responsible for gener-
ating the number of class expressions specified by the user.
We call this the expansion process, and it has to be executed
only once for each DL operator set. The other application
processes the list of generated class expressions to determine
which of the activities in the ontology are described by each
of those class expressions. We call this the vectorization pro-
cess because it produces the set of feature vectors. Because
the latter may be a high time-consuming task, we have used
a multi-threaded approach. The list of class expressions is
divided in blocks and they are processed in parallel by each
core of the processor. The vectorization process has to be
also applied to any other forthcoming activity that has to be
classified according to the final classifier generated, so it has
to be as much as efficient as possible.

The number of characteristics used in the classification
clearly influences the accuracy obtained by the different
learning algorithms. In Fig. 6, we show a very significant
example of the behavior of these algorithms where the num-
ber of features generated vary from ten to one thousand. As
can be observed, when the number of features generated is
low, the results are worse than those obtained by the classic
approach. This is because the class expressions generated
do not provide enough information to the classifier. As the
number of features available for the classifier increases, the
result improves significantly. However, the results do not
improve significantly from a given number of features. The
results may even worsen if the number of generated class
expressions is excessive, as can be observed in Fig. 7. This
is due to the inclusion of irrelevant, redundant and noisy
features, which result in a poorer predictive performance
(Hall and Holmes 2003).

In Fig. 7, we highlight a behavior that is repeated with
some frequency in the different experiments of this work:
the results improve faster in the case of the sets of operators
that include cardinality restrictions, while in the other sets
of operators more class expressions are needed to achieve
the same results.

In view of the results obtained, an adequate strategy for
using the methodology proposed in this paper would be to
only use the existential quantifier for the generation of class
expressions at the beginning. This operator produces class
expressions that can be evaluated very quickly by the rea-
soner, which allows us to perform a first exploratory analy-
sis and validate the design of the ontology. Only from then
on is it convenient to test the rest of the DL operators for
generating class expressions. The complement, union and
intersection operators should be the next to be tested, since
the class expressions they generate are also relatively quick
to evaluate. The universal quantifier and the maximum car-
dinality operator are the last ones that should be added to
the analysis, since the time required to evaluate the class

Fig. 8   Performance comparison with Noor et al. (2018) for “Snack”

4  The application developed makes use of the HermiT OWL Rea-
soner (http://www.hermi​t-reaso​ner.com).
5  2×Intel Xeon E5 2670, 2.6 GHz with 128 GB of RAM.

http://www.hermit-reasoner.com

	 A. G. Salguero et al.

1 3

expressions generated with them requires an extremely high
amount of time compared to the former.

As we discussed in Sect. 5.2, we have also carried out
an experiment to evaluate the results obtained by using
an ontology different from the one proposed in this paper.
The applications developed have been modified to gener-
ate the ontologies following the scheme proposed by Noor.
In this scheme, the activities are composed of smaller time
intervals. These time intervals are those which are really

reasoning procedure for Fast Instance Checks which par-
tially follows a closed world assumption. This means that
the results produced by the DL-Learner application are not
the same as those provided by reasoners that complies with
the OWL standard, so the produced class expressions only
have sense in the context of the DL-Learner application.
As an example, the following class expression is the one
that DL-Learner found to be the best description for the
“Breakfast” activity.

hasItem min 4 (Fridge_set or Microwave_set or (Door_Kitchen_set and

(isFollowedBy only (not (Door_Living_set)))))

associated with the events generated by the sensors, in such
a way that we can characterize an interval according to the
sensors that are activated during it. The activities are then
defined as sequences of intervals in which certain sensors
are fired. More than forty thousand intervals of thirty sec-
onds lengths are required to represent all the activities in the
dataset, which makes it impossible for a reasoner to handle
them. Instead, we divided each instance of each activity into
three different intervals, which produces a reasonable num-
ber of individuals in the ontology.

The results obtained for the “Snack” activity, using the
ontology proposed by Noor, are shown in Fig. 8. The experi-
ment has been carried out with three subsets of DL operators
and four supervised learning algorithms (C4.5, SMO, Deci-
sion Table and Voted Perceptron). As can be seen, excellent
results have been also obtained when applying our method-
ology using Noor’s Ontology. However, they are far from the
results obtained when using our proposed ontology, since
it has been defined ad hoc for machine learning purposes.

Moreover, the main lack of Noor ontology is related to
its low efficiency. Only one hundred features have been gen-
erated for each set of DL operators. In the case of the set
 it was only possible to generate eighty features. The
version with ninety features was rejected after ten hours of
execution. Only one hour is necessary to generate the same
number of features with the ontology proposed in this work.
Seven minutes are needed to generate ten class expressions
when only the existential quantifier is used, while ten sec-
onds are required to generate a hundred of class expressions
with the ontology we propose.

The prediction accuracies reported by the DL-Learner
application, have been 95.74, 97.57 and 95.54% for the
“Snack”, “Breakfast” and “Grooming” activities, respec-
tively. Apparently, the CEL approach produces slightly
better results than the one proposed in this paper for two
of the three activities. However, it should be noted that
DL-Learner makes use of its own approximate incomplete

However, when the expression is evaluated by the HermiT
reasoner, only four instances are found for the activity, being
two of them incorrectly classified.

7 � Conclusions and future works

In this work, an ontology-based methodology to improve
the accuracy of supervised learning algorithms has been
proposed.

To do so, the feature vectors for the datasets are extended
with asserted and inferred knowledge from the ontology that
describes the dataset itself. An evaluation in the field of sen-
sor-based activity recognition with Data-Driven Approaches
has been carried out with the following six popular classi-
fiers: C4.5, Sequential Minimal Optimization, Voted Percep-
tron, Naive Bayes, PART and Decision Table. Results from
the evaluation demonstrated the ability of the ontology to
extend the feature vectors.

More precisely, our approach has achieved an improve-
ment of 3.16, 1.48 and 1.03% for the “Snack”, “Breakfast”
and “Grooming” activities of the dataset (Ordónez et al.
2013), respectively. Despite not being very high values, we
consider that this is a significant improvement because the
classic approach achieves high performance by itself. Fol-
lowing a classic approach, where each feature represents the
activation of the sensors, maximum precisions of 91.96, 95.95
and 96.54% are obtained, respectively, so the maximum pos-
sible improvement are 8.04, 4.05 and 3.56%. In addition, these
improvements have been obtained without considering any
other additional information than the available in the dataset.

The results show that the best absolute results are
achieved by the algorithm based on Sequential Minimal
Optimization, obtaining this algorithm the most evident
improvements with respect to the classic approach. On the
other hand, we can also conclude that the algorithms Naive
Bayes and Voted Perceptron provide worse results.

Methodology for improving classification accuracy using ontologies: application in the…

1 3

Regarding the set of DL operators used to generate the
expressions, which configure the features in classifiers, we
cannot conclude that there are significant differences among
them. The set that uses the universal quantifier, the com-
plement and the intersection of operators obtained worse
results for the “Snack” and “Breakfast” activities. However,
it achieved the best performance for the “Grooming” activ-
ity. In general, we can conclude that the sets of operators that
include cardinality restrictions obtain better results and with
less quantity of generated class expressions. Nevertheless,
when this type of operators are used, the necessary time to
evaluate the set of class expressions is very high. The set of
expressions generated just using the existential quantifier
requires much less time and the obtained results are good
in general.

The main problems with the methodology often come
from an inadequate design of the ontologies. Usually, they
contain a lot of concepts and properties, with the aim of
increasing their expressiveness. However, this causes sev-
eral problems in the methodology proposed in this work.
On the one hand, the performance of the reasoners worsens
as the complexity of the ontology increases. On the other
hand, it makes necessary to generate a greater number of
class descriptions to obtain some that are relevant, since the
number of class expressions in the search space grows expo-
nentially for each concept or property that are included in the
ontology. It is also important to keep in mind that reasoners
usually work with an open-world assumption. It is necessary
to give them the tools so that they can demonstrate, under
this assumption, some axioms that people habitually give
for certain, especially when working with the complement
operator or the universal quantifier.

However, there is still room for the improvement in the
proposal presented in this paper. On the one hand, the num-
ber of features to consider grows exponentially with every
expansion process. This degrades the performance of the
methodology. To overcome this situation, an heuristics that
can restrict the number of features generated may be useful.
This is the solution proposed by Terziev (2016), in which
we are working to adapt to our proposal. On the other hand,
we are currently using a naive approach for selecting the
class expressions to be expanded. We are just selecting the
less complex expressions. We consider that a more elabo-
rate strategy for selecting and combining class expressions
would improve the efficiency of the methodology. We plan
to implement some bio-inspired approaches for this, such as
genetic algorithms or ants’ colonies.

Many of the related works employ external knowledge in
order to generate new features. However, only the informa-
tion presented in the dataset has been taken in consideration
in this work. Thanks to the modular design of OWL, which
greatly facilitates the interconnection among ontologies, it
is not difficult to integrate information coming from external

data sources into the dataset, once expressed in form of
ontology. Our future work is also addressed to develop an
ontology that describes the environments of the ADL experi-
ments and helps us to interconnect the datasets with general
purpose knowledge bases.

Finally, it is important to realize that the methodology
proposed in this work can be used in many other domains.
Although the experiment has been focused on the recogni-
tion of ADL, the proposed methodology and the applications
developed can be used in many other areas without modifica-
tions. In this case, the features represent different combina-
tions of terms or grammatical structures. We are currently
applying our proposal in a research project funded by the
Spanish Government which tries to predict the health prob-
lems in the labor of pregnant women, based on the changes
in the values of dozen of biomarkers measured during their
pregnancy. Using white-box supervised learning algorithms,
we intend to find patterns in biomarkers or relations among
them to predict problems in childbirth.

Acknowledgements  This project has received partial support from the
REMIND Project from the European Union’s Horizon 2020 research
and innovation programme under the Marie Skłodowska-Curie grant
agreement no 734355 as well as from the Spanish government by
research project TIN2015-66524-P.

References

Alemdar H, Ersoy C (2017) Multi-resident activity tracking and rec-
ognition in smart environments. J Ambient Intell Hum Comput
8(4):513–529. https​://doi.org/10.1007/s1265​2-016-0440-x

Bae IH (2014) An ontology-based approach to adl recognition in smart
homes. Future Gener Comput Syst 33:32–41

Bengio Y, Courville A, Vincent P (2013) Representation learning:
a review and new perspectives. IEEE Trans Pattern Anal Mach
Intell 35(8):1798–1828

Böhmann L, Lehmann J, Westphal P (2016) Dl-learner-a framework
for inductive learning on the semantic web. Web Semant Sci Serv
Agents World Wide Web 39(Supplement C):15–24. https​://doi.
org/10.1016/j.webse​m.2016.06.001

Brown M, Hua G, Winder S (2011) Discriminative learning of
local image descriptors. IEEE Trans Pattern Anal Mach Intell
33(1):43–57

Chandrasekaran B, Josephson J, Benjamins V (1999) What are
ontologies, and why do we need them? IEEE Intell Syst Appl
14(1):20–26

Chen L, Nugent C (2009a) Ontology-based activity recognition in intel-
ligent pervasive environments. Int J Web Inf Syst 5(4):410–430

Chen L, Nugent C (2009b) Ontology-based activity recognition in intel-
ligent pervasive environments. Int J Web Inf Syst 5(4):410–430

Chen L, Nugent C, Okeyo G (2014) An ontology-based hybrid approach
to activity modeling for smart homes. IEEE Trans Hum Mach Syst
44(1):92–105. https​://doi.org/10.1109/THMS.2013.22937​14

Cheng W, Kasneci G, Graepel T, Stern D, Herbrich R (2011) Auto-
mated feature generation from structured knowledge. In: Proceed-
ings of the 20th ACM international conference on Information and
knowledge management, ACM, pp 1395–1404

Espinilla M, Nugent C (2017) Computational intelligence for smart
environments. Int J Comput Intell Syst 10(1):1250–1251

https://doi.org/10.1007/s12652-016-0440-x
https://doi.org/10.1016/j.websem.2016.06.001
https://doi.org/10.1016/j.websem.2016.06.001
https://doi.org/10.1109/THMS.2013.2293714

	 A. G. Salguero et al.

1 3

Espinilla M, Medina J, Calzada A, Liu J, Martinez L, Nugent C (2017)
Optimizing the configuration of an heterogeneous architecture of
sensors for activity recognition, using the extended belief rule-
based inference methodology. Microprocess Microsyst 52(Supple-
ment C):381–390. https​://doi.org/10.1016/j.micpr​o.2016.10.007

Even S (2011) Graph algorithms. Cambridge University Press,
Cambridge

Fang H, He L, Si H, Liu P, Xie X (2014) Human activity recognition
based on feature selection in smart home using back-propagation
algorithm. ISA Trans 53(5):1629–1638

Ferrández-Pastor FJ, Mora-Mora H, Sánchez-Romero JL, Nieto-
Hidalgo M, García-Chamizo JM (2017) Interpreting human
activity from electrical consumption data using reconfigurable
hardware and hidden markov models. J Ambient Intell Hum Com-
put 8(4):469–483

Gupta P, Dallas T (2014) Feature selection and activity recognition
system using a single triaxial accelerometer. IEEE Trans Biomed
Eng 61(6):1780–1786

Hall MA, Holmes G (2003) Benchmarking attribute selection tech-
niques for discrete class data mining. IEEE Trans Knowl Data
Eng 15(6):1437–1447

Hopcroft J, Tarjan R (1974) Efficient planarity testing. JACM
21(4):549–568

Horridge M, Drummond N, Goodwin J, Rector A, Wang HH (2006)
The manchester owl syntax. In: Proc. of the 2006 OWL experi-
ences and directions workshop (OWL-ED2006

Horrocks I (2008) Ontologies and the semantic web. Commun ACM
51(12):58–67

Horrocks I, Patel-Schneider P, Van Harmelen F (2003) From SHIQ
and RDF to OWL: the making of a web ontology language. Web
Semant 1(1):7–26

Kanter JM, Veeramachaneni K (2015) Deep feature synthesis: towards
automating data science endeavors. In: Data science and advanced
analytics (DSAA), 2015. 36678 2015. IEEE international confer-
ence on, IEEE, pp 1–10

Knijff J, Frasincar F, Hogenboom F (2013) Domain taxonomy learning
from text: The subsumption method versus hierarchical cluster-
ing. Data Knowl Eng 83:54–69. https​://doi.org/10.1016/j.datak​
.2012.10.002

Kohler J, Philippi S, Specht M, Ruegg A (2006) Ontology based text
indexing and querying for the semantic web. Knowl Based Syst
19(8):744–754

Korhonen I, Parkka J, Van Gils M (2003) Health monitoring in the
home of the future. IEEE Eng Med Biol Mag 22(3):66–73

Lehmann J, Auer S, Bëhmann L, Tramp S (2011) Class expression
learning for ontology engineering. Web Semant Sci Serv Agents
World Wide Web 9(1):71–81. https​://doi.org/10.1016/j.webse​
m.2011.01.001

Li C, Lin M, Yang L, Ding C (2014) Integrating the enriched feature
with machine learning algorithms for human movement and fall
detection. J Supercomput 67(3):854–865

López Gutiérrez, de la Franca C, Hervás R, Johnson E, Mondéjar
T, Bravo J (2017) Extended body-angles algorithm to recog-
nize activities within intelligent environments. J Ambient Intell
Hum Comput 8(4):531–549. https​://doi.org/10.1007/s1265​
2-017-0463-y

Maedche A, Staab S (2001) Ontology learning for the semantic web.
IEEE Intell Syst Appl 16(2):72–79

Mingers J (1989) An empirical comparison of pruning methods for
decision tree induction. Mach Learn 4(2):227–243

Motik B, Patel-Schneider PF, Parsia B (2012) Owl 2 web ontology lan-
guage. structural specification and functional–style syntax (second
edition). https​://www.w3.org/TR/owl2-synta​x/. Accessed 30 Oct 2017

Noor MHM, Salcic Z, Kevin I, Wang K (2018) Ontology-based sensor
fusion activity recognition. J Ambient Intell Hum Comput 1–15.
https​://doi.org/10.1007/s1265​2-017-0668-0

Okeyo G, Chen L, Wang H, Sterritt R (2014) Dynamic sensor data
segmentation for real-time knowledge-driven activity recognition.
Pervas Mob Comput 10:155–172

Ordóñez FJ, Roggen D (2016) Deep convolutional and lstm recurrent
neural networks for multimodal wearable activity recognition.
Sensors 16(1):115

Ordónez FJ, de Toledo P, Sanchis A (2013) Activity recognition using
hybrid generative/discriminative models on home environments
using binary sensors. Sensors 13(5):5460–5477

Oukrich N, El Bouazzaoui C, Maach A, Driss E (2017) Human activi-
ties recognition based on autoencoder pre-training and back-prop-
agation algorithm. J Theor Appl Inf Technol 95(19):5194–5202

Paulheim H (2012) Generating possible interpretations for statistics
from linked open data. Research and applications, the semantic
web, pp 560–574

Quesada FJ, Moya F, Medina J, Martínez L, Nugent C, Espinilla M
(2015) Generation of a partitioned dataset with single, interleave
and multioccupancy daily living activities, vol 9454. Springer,
Cham, pp 60–71

Rafferty J, Chen L, Nugent C, Liu J (2015) Goal lifecycles and onto-
logical models for intention based assistive living within smart
environments. Comput Syst Sci Eng 30(1):7–18

Riboni D, Bettini C (2011) Owl 2 modeling and reasoning with com-
plex human activities. Pervas Mob Comput 7(3):379–395

Ristoski P (2015) Towards linked open data enabled data mining. In:
European semantic web conference, Springer, pp 772–782

Ristoski P, Bizer C, Paulheim H (2015) Mining the web of linked
data with rapidminer. Web Semant Sci Serv Agents World
Wide Web 35(Part 3):142–151. https​://doi.org/10.1016/j.webse​
m.2015.06.004 (semantic Web Challenge 2014)

Salguero A, Espinilla M (2017) A flexible text analyzer based on ontol-
ogies: an application for detecting discriminatory language. Lang
Resour Eval. https​://doi.org/10.1007/s1057​9-017-9387-6

Shewell C, Medina-Quero J, Espinilla M, Nugent C, Donnelly M,
Wang H (2017) Comparison of fiducial marker detection and
object interaction in activities of daily living utilising a wear-
able vision sensor. Int J Commun Syst 30(5):e3223. https​://doi.
org/10.1002/dac.3223

Singh D, Merdivan E, Hanke S, Kropf J, Geist M, Holzinger A (2017)
Convolutional and recurrent neural networks for activity recogni-
tion in smart environment. In: Towards integrative machine learn-
ing and knowledge extraction, Springer, pp 194–205

Sirin E, Parsia B, Grau B, Kalyanpur A, Katz Y (2007) Pellet: a practi-
cal owl-dl reasoner. Web Semant 5(2):51–53

Terziev Y (2016) Feature generation using ontologies during induc-
tion of decision trees on linked data. In: ISWC PhD Symposium

Uschold M, Gruninger M (1996) Ontologies: principles, methods and
applications. Knowl Eng Rev 11(2):93–136

van Kasteren TLM et al (2011) Activity recognition for health monitor-
ing elderly using temporal probabilistic models. ASCI

Villalonga C, Razzaq MA, Khan WA, Pomares H, Rojas I, Lee S,
Banos O (2016) Ontology-based high-level context inference for
human behavior identification. Sensors. https​://doi.org/10.3390/
s1610​1617

Wei T, Lu Y, Chang H, Zhou Q, Bao X (2015) A semantic approach for
text clustering using wordnet and lexical chains. Expert Syst Appl
42(4):2264–2275. https​://doi.org/10.1016/j.eswa.2014.10.023

Witten IH, Frank E, Hall MA, Pal CJ (2016) Data Mining: practi-
cal machine learning tools and techniques. Morgan Kaufmann,
Cambridge

Xu C, Zhang X, He J (2016) Human activity recognition based on
quantization on feature’s classification capability (preprints)

Zhang F, Ma Z, Li W (2015) Storing owl ontologies in object-ori-
ented databases. Knowl Based Syst 76:240–255. https​://doi.
org/10.1016/j.knosy​s.2014.12.020

https://doi.org/10.1016/j.micpro.2016.10.007
https://doi.org/10.1016/j.datak.2012.10.002
https://doi.org/10.1016/j.datak.2012.10.002
https://doi.org/10.1016/j.websem.2011.01.001
https://doi.org/10.1016/j.websem.2011.01.001
https://doi.org/10.1007/s12652-017-0463-y
https://doi.org/10.1007/s12652-017-0463-y
https://www.w3.org/TR/owl2-syntax/
https://doi.org/10.1007/s12652-017-0668-0
https://doi.org/10.1016/j.websem.2015.06.004
https://doi.org/10.1016/j.websem.2015.06.004
https://doi.org/10.1007/s10579-017-9387-6
https://doi.org/10.1002/dac.3223
https://doi.org/10.1002/dac.3223
https://doi.org/10.3390/s16101617
https://doi.org/10.3390/s16101617
https://doi.org/10.1016/j.eswa.2014.10.023
https://doi.org/10.1016/j.knosys.2014.12.020
https://doi.org/10.1016/j.knosys.2014.12.020

	Methodology for improving classification accuracy using ontologies: application in the recognition of activities of daily living
	Abstract
	1 Introduction
	2 Ontologies
	3 Related works
	4 Methodology
	4.1 Class expression expansion rules
	4.2 Algorithm for the generation of features

	5 Experiment
	5.1 From sensor data stream to classic feature vectors. Smart environment datasets
	5.2 An ontology for the description of ADL
	5.3 Experiment design

	6 Results
	7 Conclusions and future works
	Acknowledgements
	References

