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SUMMARY

Because of the deployment of heterogeneous sensors in intelligent environments, the fusion and information
processing means an arduous and complex process. The data fusion of sensors and the design of processing
information in real time are key aspects in order to generate feasible solutions. In order to shed light on this
context, we present an approach for distributing and processing heterogeneous data based on a representation
with fuzzy linguistic terms. In this way, the heterogeneous data from sensor streams are computed and
summarized based on fuzzy temporal aggregations ubiquitously within mobile and ambient devices. This
innovative approach provides an intuitive linguistic representation of mobile and ambient sensors as well
as implies a drastic reduction of the communication burden. In order to provide high scalability in network
communication, the information from sensor is spread under the publication-subscription paradigm, where
subscribers receive asynchronous events when the aggregation degree of the linguistic terms overcomes a
threshold (alpha-cut). Finally, in order to illustrate the usefulness and effectiveness of our proposal, we
present the results of the fuzzy temporal aggregation of sensor streams with alpha-cut subscriptions in a
case study where an inhabitants performs an daily activities in an intelligent environment. Copyright © 2016
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Intelligent environments are interactive spaces where technological devices are adapted to solve
everyday problems of the people. They are developed under networks of physical objects, so
Internet of Things (IoT) [1] has awhile arisen as a new paradigm where ambient intelligence [2]
and ubiquitous computing [3] converge [4] to provide connected smart things within intelligent
environments.

These recent paradigms properly locate the information processing in the everyday objects, but
new challenges are needed in order to develop systems for expediting the communication between
humans and devices. Following, the paradigms, which have been developed significant advances in
different areas of knowledge in this context, are discussed.

A first drawback, whose intelligent environments deal with, is the data fusion from heteroge-
neous sensors [5]. Currently, a wide range of heterogeneous sensors are deployed in intelligent
environments to collect multiple and heterogeneous data from mobile, wearables, and ambient
devices [6]. The mobile devices integrate user-interaction data (movement, location, etc.) by means
of multiple sensors and mobile communication protocols (bluetooth, NFC, Wi-Fi, etc.). Mean-
while, ambient devices are collecting information from our environment using low-power protocols
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(Z-Wave, ZigBee, and bluetooth) in light sensors, or WLAN (6LoWPAN) protocols in vision or
audio sensors.

Because of this diversity, a second key aspect is the models and structures of knowledge represen-
tation. They are required by information processing of sensors to generate richer and higher-level
information [7]. Several approaches have been proposed to manage these issues, in which the efforts
have been focused on providing general or ad hoc models. In respect of the standard structural
models, it is noteworthy SensorML [8], developed by Open Geospatial Consortium that includes
geolocation or discovering by means of XML schema. Concerning the semantic annotating for sen-
sors, it is relevant the W3C Semantic Sensor Networks specifications [9, 10]. On data modeling, the
development of ontologies have been adapted to (i) requirements of a particular domains [11–15]
and (ii) general models to provide scientist interoperability [16] and enterprise interoperability [17].

Furthermore, it is essential to consider a third key aspect that is the distributed information pro-
cessing of sensors. The adequate distribution of services in ambient environments is crucial to
provide sensitivity to real time [18] when the information processing is distributed in different cen-
tral processing units [19, 20]. In this area, the middleware highlights as an infrastructure, in which
the sensor streams from ambient and mobile devices are connected by remote services in distributed
environments. Specifically, the Publish-Subscribe paradigm has been demonstrated to be adequate
for IoT [21], where subscribers receive asynchronous messages from publisher, highlighting the
implementations in the standards: (i) Data Distribution Service for Real-time Systems by Object
Management Group‡, (ii) MQ Telemetry Transport [22], a lightweight messaging protocol for sen-
sors and devices formalized recently as ISO standard§, or (iii) Constrained Application Protocol
[23], a request/response transfer protocol for constrained sensors and networks over HTTP.

There are several relevant open middlewares that provide sturdy solutions to ubiquitous and
ambient contexts. Among them, it is noteworthy ZeroC Ice [24], an object-oriented distributed com-
puting tool with support for several languages and platforms, Global Sensor Network (GSN) that
applies sliding window management [25] in changing data stream [26] and, finally, OpenIot, which
increases the characteristics of GSN adding top-k subscriptions over sliding windows (top-k/w
subscriptions) [27] and semantic open-linked data techniques.

In the context of this state of the art, the aim of this paper is to provide a straightforward approach
that processes heterogeneous sensor streams using linguistic terms in real-time intelligent environ-
ments. The proposed data modeling is based on the fuzzy linguistic approach and fuzzy logic [28]
because it has provided successful results in developing intelligent systems using the data provided
by the sensors [11, 29–33] highlighting the development of renewable energy and energy-saving
systems [34–37].

The managing of uncertainty and vagueness is key in intelligent systems, such as activity recogni-
tion [38], to obtain high performance and results [39]. In this way, sensor-based activity recognition
is a relevant research topic that integrates pervasive and mobile computing [40, 41], context-aware
computing [42–44], and ambient assisted living [45, 46].

In order to illustrate the usefulness and effectiveness of our proposal, we present the results in
terms of reduction of the communication burden of the fuzzy temporal aggregation of sensor streams
with alpha-cut subscriptions in a case study where an inhabitants performs an daily activities in
an intelligent environment. This case study has been chosen because they generate much interest in
recent years within the research community, which aims to recognize the actions and goals of one
or more people within the environment based on the changes in the environment that are collected
by the sensors [47].

The remainder of the paper is structured as follows: in Section 2, the proposed approach for
distributing and processing of data based on a representation with fuzzy linguistic terms is presented;
in Section 3, a case study of daily living activities in a intelligent environment is described where the
proposal of fuzzy processing and distributing of data is evaluated. Finally, in Section 4, conclusions
and future works are pointed out.

‡http://www.omg.org/spec/DDS/1.2/.
§http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.pdf.
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2. APPROACH FOR DISTRIBUTING AND PROCESSING OF HETEROGENOUS DATA
BASED ON A REPRESENTATION WITH FUZZY LINGUISTIC TERMS

In this section, a light scalable approach in which the heterogeneous sensors are modeled by linguis-
tic terms to dynamic subscribers in real-time is presented. To do so, the main features and advantages
of our proposal are indicated, where the fuzzy linguistic term and fuzzy aggregation operations for
processing sensor streams are presented in detail. Finally, the proposed fuzzy model is focused on
defining a ˛-subscription of linguistic terms in distributed environments.

The architecture for distributing and processing of heterogeneous data based on a representation
with fuzzy linguistic terms are illustrated in Figure 1. We show how the raw data streams are trans-
lated to linguistic terms and the degree is used to filter relevant messages to subscribers based on
˛-cuts. In this way, each subscriber is able to obtain expressive summaries of sensor stream and
to reduce the communication burden dynamically using ˛-subscription. Following, the proposed
architecture is described with its main features.

Our linguistic approach is proposed to facilitate the fusion and description of heterogeneous data
from sensors, using linguistic terms that provides an intuitive and interpretable representation with-
out structures or ontologies. Specifically, fuzzy linguistic terms describe the state of sensor stream,
such as movement is high or inhabitant is close to kitchen together with fuzzy linguistic temporal
terms, such as, awhile, just now, or just now.

The proposed structure of linguistic terms are related to protoforms, which were proposed by
Zadeh [48] as useful knowledge model for reasoning [49], summarization [50], and fusion [51] of
data under uncertainty. We have started from the classical protoform in the form of X is A to include
a linguistic temporal term generating protoform instances in the shape of: motion is just now low.
We note the relevance of temporal processing, integrated in this contribution by means of fuzzy
logic, which has offered an intuitive and flexible representation of temporal knowledge in several
contexts [52–54]. This issue will be further discussed in Section 2.1.

On middleware layer, previous solutions deal with data using heavy computing techniques in
desktop computers, delegating light devices to wrappers of raw data. For example, GSN uses
MySQL to manage and store the data streams or OpenIot provides subscription services just in
server side [55]. Moreover, there are some problems to integrate GSN in light devices within other
platforms or languages [56]. Our approach aims to focus the initial information processing in mobile
and ambient computers, providing more scalable solutions without persistence of databases.

Figure 1. Fuzzy linguistic processing and ˛-subscriptions.

Copyright © 2016 John Wiley & Sons, Ltd.
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On subscription services, streaming sensor data under subscription paradigm and temporal win-
dows has become an active research area related to ubiquitous and ambient environments because it
enables the real time capabilities in intelligent systems. In these contexts, the processing of data from
ambient, mobile, and wearable sensors has been focused on statistical and spectral features [57, 58],
which are calculated in short window sizes, such as fixed static window size [59] and dynamic
window size [60].

In this work, we propose an approach focused on the flexibility in defining subscriptions to
sensors through linguistic terms. Specifically, clients subscribe to sensors defining a protoform by
means of one linguistic and one temporal a term, for example, movement is just now high or kitchen
door has been awhile opened together with an alpha-cut threshold and a minimal time interval
to notify subscriptors. Each sensor calculates the fuzzy degrees, which represent a fuzzy aggregate
value of the matching of these linguistic terms with the data stream of the sensor, sending a real-
time response to subscribers when the degree overcomes the alpha-cut. In this way, each sensor
processes and distributed information from the data streams in real time using a similar model to
top-k/w subscriptions [27] under a fuzzy approach. The ˛-subscription of linguistic terms is detailed
in Section 2.2.

2.1. Fuzzy linguistic terms and fuzzy aggregation of sensor streams

In this section, we describe the use of linguistic terms to describe sensor streams in the proposed
approach that uses fuzzy logic to provides the capability for fusion heterogeneous sensor data to
achieve high-level inferences about objects and situations [29, 61].

The aim of the fuzzy linguistic processing of this work is relating mobile and ambient sensors
to linguistic variables, which are defined by a set of linguistic terms. In the fuzzy logic context,
the semantic of the linguistic terms is given by fuzzy sets described by membership functions [28].
Formally, the membership function � QA.x/ describes the membership degree of the elements x of
the base set X in the fuzzy set A, � QA W X ! Œ0; 1�.

A common representation to define a membership function in continuous domains is the trape-
zoidal function, whose representation is achieved by a 4-tuple TS(a,b,c,d) where b and c indicate
the point in which the membership value is 1, with a and d indicating the left and right limits of
the definition domain of the membership function outside where its value is 0. A linear function
that changes smoothly from 0 to 1 is associated with domain values between .a; b� and .b; d �. The
trapezoidal membership functions are defined formally as follows:

� QA.x/ D

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

0 if x 6 a
x�a
b�a

si x 2 .a; b�

1 if x 2 .b; d �
c�x
c�d

si x 2 .d; c/

0 if x > d

(1)

In our approach, each sensor data stream sj is represented as a set of measures sj D ¹mji º,
where each measure is represented by mji D ¹v

j
i ; t

j
i º; v

j
i represents a value that depends on each

sensor, for example, temperature and heart rate; and tji represents the timestamp, the time at which
this value, vji , was provided by the device. So, the superscript is related to a given sensor j and the
subscript i is related a given term for this sensor sj .

So, we propose to model data stream from each sensor by means of linguistic terms. To achieve
this, we define a self-dependent processing of each component vji and tji and a subsequent method
to fuse both linguistic terms.

Firstly, for each sensor data stream sj , we define a fuzzy linguistic variable, the number of terms,
their linguistic terms, and their membership functions, which are all based uniquely on the nature
of the sensor. The general process is described as translating the measures to a new fuzzy set V D
¹Vr I r D 1; : : : ; nº, which represents the linguistic terms. Vr is characterized by a membership
function � QVr .v

j
i /, which is interpreted as the degree of membership of an value vji in the fuzzy set

Vr for each vji 2 m
i
j 2 s

j . For sake of simplicity, we write Vr instead of � QVr .v
j
i /.
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In Figure 2, an example is illustrated by the linguistic variable movement from a mobile
accelerometer sensor with two linguistic terms: V D ¹V1; V2º={low, high} with two trapezoidal
membership functions.

Secondly, we associate fuzzy linguistic terms T D ¹TkI k D 1; : : : ; mº with the temporal com-
ponent of the data stream. The degree of this temporal linguistic term is obtained by the temporal
membership function and the temporal period that is defined by the distance�tji D t0� t

j
i ; t0 > t

j
i

from a reference point of time t0 to the timestamp of the measurement ti . Each temporal linguistic
term Tk relates the timestamp of the measurement tji to a fuzzy set Tk , which is characterized by a
membership function � QTk .t0� t

j
i /. For a given temporal linguistic term, we can write Tk instead of

� QTk
.�t

j
i /;�t

j
i D t0 � t

j
i .

In Figure 3, an example of temporal linguistic terms, where the universe of discourse is measured
as seconds since the current time, is illustrated with two linguistic temporal terms: T D ¹T1; T2º
={just now, awhile}, which represent a fuzzy time interval up to 5 and 20 s respectively between
current time and the timestamp of the measure.

Once, the linguistic information for each sensor has been defined, it is necessary aggregating the
sensor streams in a time period. To do so, we propose to compute the relevance of a linguistic value
term Vk.v/ in a fuzzy temporal term Tk.t/ in two steps:

Figure 2. Example of membership functions for the linguistic variable movement and the linguistic terms
V D ¹V1; V2º D{ low, high} by means of accelerometer data from a mobile sensor measure in m/s2.

Figure 3. Example of temporal linguistic terms T D ¹T1; T2º={just now, awhile}.

Copyright © 2016 John Wiley & Sons, Ltd.
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� Firstly, for each sensor measurement, we define an t -norm operation [62] to fuse both fuzzy
sets, jointly relating the value and temporal components:

Vr \ Tk.m
j
i / D Vr

�
v
j
i

�
\ Tk

�
�t

j
i

�
2 Œ0; 1�;m

j
i D

°
v
j
i ; �t

j
i

±
: (2)

In Eq. (2), the independent terms Vr and Tk are applied to each measure mji in the sensor
data stream providing transformation from ¹vji ; �t

j
i º to the membership degree of linguistic

term Vr \ Tk , for example, m D ¹0:2 m/s; 5 sº ! is awhile low (0.8).
� Secondly, the degree of membership of all measures in the sensor data stream are aggregated

using the t -conorm operator in order to obtain a single degree of fuzzy sets Vr \ Tk for the
given sensor data stream over a period of time:

Vr [ Tk.s
j / D

[

m
j

i
2sj

Vr \ Tk

�
m
j
i

�
2 Œ0; 1� (3)

The linguistic terms Tk and Vk , which are instanced in the sensor stream sj , represent a protoform
in the shape of: sj is Tk Vr . For example, the protoform instance: inhabitant motion is awhile low.
Each protoform instances is measured with the degree of fuzzy aggregation from sensor data in
accordance with Eq. (3).

In this way, we highlight that protoforms require an accurate assessment to express properly their
semantic and granularity. Basically, in sensor streams, we propose aggregate measures depend-
ing on the nature of the sensor stream. So, we propose two models of solving Eq. (3) in order to
compute the aggregation degree of data streams based on the variable and terms included in the
protoform instances:

� Min-max. In this first case, the aggregation degree is evaluated in Eq. (3) using the maximal
and minimal operators, being

S
D max;\ D min, which calculated the higher degree with

co-operator=max of each measured evaluated with the t-operator=min. If we replace Eq. (3)
with operators

S
D max;\ D min, we obtain:

It represents the best value of the measures in the time term:

Vr [ Tk.s
j /;
[
D max;\ D min) (4)

Vr [ Tk.s
j / D max

m
j

i
2sj

�
min

�
Vr

�
v
j
i

�
; Tk

�
�t

j
i

���
2 Œ0; 1� (5)

The semantic of this aggregation is useful to aggregate binary open sensors or the best ref-
erences to other objects, for example, the next protoform instances: the door is awhile open,
inhabitant location is awhile close to microwave, where if a door is opened, or the user has
been closed at least once, the degree of linguistic term is raised.
� Fuzzy weighted average. In this second case, the aggregation degree is evaluated in Eq. (3)

using
S
D
P
;\ D �. We note that the t -norm operator of this models is related to \ D �

and the conorm operator to
S
D
P

being necessary a degree normalization between [0,1],
which is introduced by the following expression:

1P
Tk.�t

j
i /

(6)

If we replace Eq. (3) with operators
S
D 1P

Tk.�t
j

i
/

P
;\ D �, we obtain:

Vr [ Tk.s
j /;
[
D

1P
Tk.�t

j
i /

X
;\ D � ) (7)

Vr [ Tk.s
j / D

1
P
Tk

�
�t

j
i

� X

m
j

i
2sj

Vr

�
v
j
i

�
� Tk

�
�t

j
i

�
2 Œ0; 1� (8)
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This semantic is related to fuzzy weighted average [63], whose range 2 Œ0; 1� represents the
frequency degree of the linguist term Vr weighted by the term Tk in the sensor stream.

This fuzzy aggregation operations are suitable to aggregate measures of high sample rates, for
example, wearable or mobile sensors, where the degree is related to the presence of relevant measure
in the temporal term, as the next protoform instances: the movement is just now high or the heart
rate is awhile low.

In this section, we have provide two aggregation operators: min-max or fuzzy weighted average
but other operators could be considered according to the needs.

2.2. ˛-subscription of linguistic terms

In this section, we detail the proposed approach based on the Real-time Publish-Subscribe model
with M2M [64] communication, in which the degrees of aggregation of protoforms from sensors
are distributed under subscriptions.

This paradigm focuses the information processing of linguistic terms on mobile or ambient
devices where the sensors are integrated. To do so, we propose that each sensor will be represented
as a publisher to which clients subscribe to a linguistic terms which configure a protoform and an
˛ � cut threshold to be notified asynchronously.

The proposed approach provides the following three advantages:

� The information processing is distributed in several central processing units, such as mobile
and ambient computers. In this way, each device (i) describes the linguistic terms related to
their sensors, (ii) computes the aggregation of protoform defined by subscribers, and (iii) pub-
lishes degrees to their subscribers using a M2M connection. For example, the mobile devices
calculate the degrees of aggregation of protoforms related to each accelerometer sensor noti-
fying in real time to several mobile, desktop, or ambient subscribers. In the same way, each
ambient sensor is evaluated by means of remote services that can be deployed in distributed
ambient computers.
� The subscription parameters are intuitive, because subscribers merely choose a relevant lin-

guistic terms. In addition, subscribers can defined a fuzzy threshold called ˛ � cut , in order to
receive just the degree of protoforms that overcomes the ˛�cut . It enables subscribers optimiz-
ing the asynchronous events received and reducing sending irrelevant degrees of protoforms in
an individual way.
� The subscribers obtain an understanding output; it is a fuzzy degree of aggregation of the

linguistic terms relevant to subscribers, facilitating the fusion of interpretable information from
heterogeneous sensors.

Following, we present the parameters of the remote services defined by the publisher side and the
subscriber side.

Publisher side

� sj that is a label to represent the sensor stream, such as movement or temperature. Based
on the nature of the sensor stream sj , an \�[ aggregation operator is related, min-max or
fuzzy weighted average, in order to calculate the degree of the Eq. (3).
� V j D ¹V

j
1 ; : : : ; V

j
n º that is a set of linguist terms, such as is high or is normal

� T j D ¹T
j
1 ; : : : ; T

j
n º that is a set of temporal linguist terms, such as, awhile or just now.

� \�[ aggregation operator. Subscribers specify the operators to aggregate the date: (i) fuzzy
weighted average or (ii) min-max.

Subscriber side The parameters of the service to be subscribed to sensor publisher are

� sj that is the label of the sensor to subscribe.
� V

j
r 2 V that is the linguist term from the set V j .

� T
j

k
A temporal linguist terms from the set T j .

� ˛� cut that is a threshold which have to overcome the degree of aggregation of the linguist
terms V jr and T j

k
related to Eq. (3).

Copyright © 2016 John Wiley & Sons, Ltd.
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Figure 4. Flow of data in sensors, from raw stream data to publishing to subscribers degrees of linguistic
terms in real time.

� ˇt that is the minimal time interval in milliseconds that the publisher wait to process and to
notify again to the subscriber.

In this way, the information processing of the sensor streams is developed in each publisher by
means of four modules responsible, which are illustrated in Figure 4, of collecting and synchronizing
the data stream and publishing the fuzzy linguistic processing to subscribers.

� Dynamic collection module. A dynamic collection of data from the sensor stream using circular
buffer [65], being the size of its buffer enough to represents the fuzzy temporal terms, allocating
a minimal time of data �tmax D max.�t

j
i /;8Tk 2 T; Tk.�t

j
i / ¤ 0.

� Timer task scheduler module. In order to handle the notification time for their subscribers,
notifying to them by means of asynchronous events when the interval time between the last
sent event and the current time overcomes ˇt .
� Dynamic list module. This module can be dynamically subscribed and unsubscribed to using a

M2M service.
� Fuzzy controller module. In this module, the aggregating membership degree of the fuzzy

linguistic and temporal terms is calculated according to Eq. (3) and the \ � [ aggregation
operator of the subscriber.

3. CASE STUDY

Intelligent systems for smart environments require a proper uncertainty treatment to obtain a high
performance and accurate results [39] in relevant topics, such as activity recognition [38, 66], which
provides a key successful solution to the aging population [67] helping elderly people to stay with
the best quality of life as long as possible in their homes. So, the fuzzy linguistic processing of this
work has been focused on describing daily activities from heterogeneous sensor of a complex scene
to provide an interpretable, intuitive, and flexible representation that can be analyzed by humans and
intelligent computer systems.

In this section, a description of a daily activity in an intelligent environment is presented, which
is modeled under our proposed approach for fuzzy linguistic processing and the subscription model.

Firstly, the smart lab and the set of deployed sensors are presented, then the features of the mid-
dleware that has been developed to this case study is described. Following, the fuzzy linguistic terms
of the set of sensor are indicated and, finally, the results in terms of reduction of the communication
burden of the fuzzy temporal aggregation of sensor streams are provided and discussed.

Copyright © 2016 John Wiley & Sons, Ltd.
DOI: 10.1002/dac
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Figure 5. Sensors deployed in the smart lab: accelerometer (BQ Aquarius E5), BLE proximity (iBeacon),
vision (PTZ D-link), open/close (Tynetec), lights ( Philips Hue), and marked shirts.

The presented scene shows two inhabitant in a smart lab provided by mobile and ambient sensors.

3.1. Smart lab and deployed sensors

The case study was carried out in the smart lab of the Center for Advanced Studies in Information
Technology and Communication of University of Jaén¶.

At the scene, an inhabitant A is resting on the living room while another inhabitant B enters into
the lab. Inhabitant B turns the hall lights on and then, he cooks in the dinner using the kitchenware
and microwave. Inhabitants A and B meet in the kitchen when inhabitant B goes to drink water and
afterwards inhabitant B backs into the room. Finally, the inhabitant B eats his dinner in the living
room beside the inhabitant A.

To carry out the aforementioned scene, we have included several ambient and mobile sensors
whose objective is describing the activities of users from different perspectives. The aim is receiv-
ing a homogeneous linguistic descriptions from a wide heterogeneous range of sensor. To do this,
we have included the following sensors from ambient and mobile devices, which are illustrated in
Figure 5:

� Vision sensors. Two vision sensors in order to capture the user localization by means of ambient
vision devices. To do so, we have integrated a proposal where inhabitants dress shirts with four
markers that allow vision sensors to recognize who and where the inhabitants are located, using
the open-source project: Minimal library for Augmented Reality applications (Aruco) [68] to
detect markers in the shirts of inhabitants.
� Mobile sensors. Inhabitants A and B hand a mobile device that collects several data streams

from the next sensor:

ı Accelerometer sensor, which describes the inhabitant motions in the scene.
ı Bluetooth location sensor, combined with the iBeacons, provides closeness to rooms and

objects using the Bluetooth Low Energy (BLE) protocol [69].

� Open/close sensors, which are located at the doors of some home appliances (microwave,
fridge, etc.) as well as at the doors of kitchen furniture.
� Z-Wave lights. The smart lab integrate remote control of lights by means of Z-Wave protocol

[70], which can be turned on/off from the mobile devices of inhabitants.

The plane of the smart lab and the locations of set of sensors are illustrated in Figure 6.

3.2. Middleware deployment

Because each sensor depends on each manufacturer platform, a metalanguage middleware is
required in order to deploy the subscription services.

In this case study, we have implemented the model of fuzzy linguistic terms to describe sensor
streams, detailed in Section 2.1, in Java code language as well as the ˛-subscription of linguis-
tic terms described in Section 2.2 using ZeroC Ice. This implementation has been integrated into:
(i) Android devices, which monitorize the mobile sensors and (ii) an ambient computer, which
monitorizes the ambient sensors.

¶http://ceatic.ujaen.es/.

Copyright © 2016 John Wiley & Sons, Ltd.
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Figure 6. Location of the sensors in the smart lab.

The distribution of real-time data has been implemented from a previous work by the authors [71].
This proposal uses an object-oriented middleware, ZeroC Ice [24], providing the spread of data
in real time under the paradigm Data Distribution Service, using subscriptions and sending data
through channels of real-time events. It also supports transparent communication for several lan-
guages (C++, .NET, Java, Python, Objective-C, Ruby, PHP, and JavaScript) and protocols (TCP,
UPD, and SSL).

3.3. Fuzzy linguistic terms of sensors

In this section, we detail the fuzzy linguistic terms related to temporal terms and the mobile and
ambient sensor of the smart lab.

In this case study, we propose the use of protoforms that are specified by means of variables and
linguistic terms. As we have detailed previously, we have started from the classical protoform in
the form of X is A, which represents possibilities constraints. Based on this prototypical form, other
extensions result useful, for example, in quantification [72] or in time series [73].

In this work, we propose the use of protoform sj is T j
k
Vr to represent the linguistic terms V j

k

and the temporal terms T j
k

that describe the sensor stream sj , for example, the protoform instance:
inhabitant motion is awhile low. The degree of the protoform instances are computed as the degree
of fuzzy aggregation of sensor data related in Eq. (3).

To instance the protoforms, it is necessary to define the variables and linguistic terms related to
each sensor stream, following this information is provided for each sensor.

� Accelerometer mobile sensor that measures linear acceleration in m/s2 and represents the (A/B)
inhabitant motion, with two linguistic terms: low and high, whose membership functions are
illustrated in Figure 7.

Copyright © 2016 John Wiley & Sons, Ltd.
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Figure 7. Linguistic terms and membership functions of the accelerometer mobile sensor.

Figure 8. Linguistic terms and membership function of the proximity mobile sensor.

Figure 9. Linguistic terms and membership function of the vision sensor.

� BLE proximity sensor that measures the distance from mobile to a beacon sensor in meters,
m, and represents close to (microwave/sofa) with the linguistic term close, whose membership
function is illustrated in Figure 8. We note the same linguistic term can be used for the rooms
kitchen and living room because of their similar sizes.

Copyright © 2016 John Wiley & Sons, Ltd.
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� Vision sensor to detect the t-shirt mark of (A/B) inhabitant t rue that represent that (A/B)
inhabitant location in (kitchen/living room), whose membership function is illustrated in
Figure 9.
� Switch sensor to detect of open/close of the (microwave/ cupboard) status with the linguistic

term open, whose membership function is illustrated in Figure 10.

Figure 10. Linguistic terms and membership function of switch sensor.

Figure 11. Linguistic terms and membership function of light sensor.

Table I. Variables, terms, and aggregation operator.

Variable sj Term Vr Terms Tk \ � [

A inhabitant motion high awhile fuzzy weighted average
B inhabitant motion low awhile fuzzy weighted average
A inhabitant location close to microwave awhile fuzzy weighted average
B inhabitant location close to sofa awhile fuzzy weighted average
A inhabitant location in kitchen awhile min-max
B inhabitant location in kitchen awhile min-max
A inhabitant location in livingroom awhile min-max
B inhabitant location in livingroom awhile min-max
hall light on just now w min-max
cupboard open just now min-max
microwave open just now min-max

Copyright © 2016 John Wiley & Sons, Ltd.
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Figure 12. Degree of linguistic terms in protoforms provided by fuzzy processing of sensor streams in real
time. (a) Protoforms related to ambient sensors, (b) protoforms related to inhabitant A, and (c) protoforms

related to inhabitant B.

� Light (Z-Wave) to detect the status of lights, with the linguistic term on, whose membership
function is illustrated in Figure 11.

In this case study, two temporal linguistic terms ={just now, awhile} has been defined to obtain a
flexible representation of fuzzy temporal intervals where the sensor streams are relevant (Figure 3).

3.4. Results and discussion

In this section, the results on fuzzy linguistic processing of protoforms and the events generated by
sensor streams in the case scene are exposed and discussed.

Copyright © 2016 John Wiley & Sons, Ltd.
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Firstly, we have subscribed to several protoforms structured by fuzzy linguistic terms using a
subscriptor of one-second time interval ˇt D 1000 and ˛ � cut D 0. The linguist terms and the
\ � [ aggregation operators related to the fuzzy linguistic processing are shown in Table I.

Based on the value of sensor streams, the subscriptors received the in real-time evolution of
membership degrees related to fuzzy aggregation operation of the linguistic terms. The degrees are
represented in a baseline in Figure 12.

On the sensor data, we highlight the sturdiness of integrating two location systems: BLE and
vision tracking. Vision tracking provides a prompt response but with losing tracking in some inter
frames because of non-frontal captures of shirt markers. Meanwhile, BLE provides a consistent
stream locations even thought it presents a delay in adapting the closeness to beacons. Both are
complementary to obtain a robust accuracy of the location of inhabitants in real time. In Figure 12C,
due to the inhabitant B is opening the door of the smart lab in the hall and he is going to the kitchen
between the time interval of [0,10] seconds, we show a delay of presence detection in kitchen, but
we receie high movement because he is walking before entering.

The accelerometer sensor by means of linear acceleration of mobile devices present fluctuating
data, which are need to be integrated with other sensor data to be useful in human activity descrip-
tions. Ultimately, the ambient binary sensors (Z-Wave light and open/door) provide no-latency
reliable data of smart objects. We note how the linguistic transformation binary sensor, where each
Vr represents a crisp state such as hall light is on, shapes a fuzzy evolution when they are aggregated
with temporal terms hall light is just now on.

On the fuzzy information processing, we note the relevance of the fuzzy aggregation to soft the
degrees of the linguist terms in the time scene. In this way, the fuzzy processing provides (i) the
temporal persistence of the crisp binary sensor by means of a temporal linguistic term, such as
ambient sensor, (ii) the smoothing of noise or sawtooth values related to high-frequency sample of
data, such as motion or BLE closeness, and (iii) the decreasing in the communication burden using
time interval subscriptions without losing relevant information.

In addition, the decreasing in the communication burden can be tuned depending on context by
adjusting the value of the minimal time interval ˇt or the threshold ˛-cut. In Table II, we compare
the number of raw data developed by each sensor with regard to the generated events by computing
linguistic protoforms when their degree overcomes the ˛-cut. In this way, these data represent the
ratio reduction over the data/event stream, which we obtain when distributing raw data of sensor
versus events of degree of linguistic proforms. In addition, we have included different values of
˛-cut of subscribers (˛ D 0, 0:5, and 0:9) in order to show its influence in the ratio reduction.

We highlight the reduction in sensor with high sample rate, where the fuzzy aggregation process
with ˛-subscriptions is very significant. However, in binary sensors, the temporal persistence of
fuzzy linguistic terms increase the numbers of received events, but they provides a membership
degree aggregation of linguist terms richer than a single sample.

Table II. Sensor, raw data from sensor, and ratio reduction of ˛-subscribers.

Sensor Raw data ˛ D 0:0 ˛ D 0:5 ˛ D 0:9

Vision sensor Frames = 860 Events = 200, Events = 101, Events = 93,
for inhabitant
(A/B) in (kitchen/ ratio reduction = 4.3 ratio reduction = 8.51 ratio reduction = 9.2
livingroom)

Motion sensor for Samples = 2013 Events = 100, Events = 60, Events = 40,
inhabitant (A/B) ratio reduction = 20.13 ratio reduction = 33.55 ratio reduction = 50.33

BLT sensor for Samples = 100 Events = 100, Events = 65, Events = 45,
inhabitant (A/B) ratio reduction = 1 ratio reduction = 1.53 ratio reduction = 2.22

Binary sensors Samples = 5 Events = 50, Events = 10, Events = 5,
(microwave/ ratio reduction = 0.1 ratio reduction= 0.5 ratio reduction= 1
cupboard/light)
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4. CONCLUSIONS AND FUTURE WORK

In this work, we propose the use of variables and linguistic terms to represent and process the
stream data from heterogeneous sensors. We relate the linguistic terms to protoforms where temporal
representation is highlighted. These linguistic expression provide the advantage of interpretability
and understanding close to human knowledge over data or semantic structures focused on processing
of computers. At the same time, we propose two models of computing the aggregation degree of
data stream based on the variable and terms included in the protoform instances.

In addition, the proposed model has been deployed under Real-time Publish-Subscribe model
enabling subscriptors define the protoforms, aggregation operators, the alpha-cut, and minimal
time interval ˇt to be notified. In the case study, it provides an encouraged stream reduction from
raw data to high rate asynchronous events of ˇt=1 s. The data reduction overcomes up to 1/50 ratio
in function of the alpha-cut.

The fuzzy linguistic approach presented in this work develop descriptions closed to the language
used by human user, but in other contexts, they could need to be complemented with structured
data or statical summaries. For example, a heart rate monitoring system could include as input the
aggregation degree of the protoform instance heart rate is awhile high, but it is naive that the aver-
age, maximal or standard deviation of heart rate must not be required in higher layer of information
processing.

A useful future approach of this work is developing fusion subscribers to integrate heterogeneous
linguistic terms from different sensor that match the assessment of fuzzy IF-THEN rules. This kind
of subscribers would generate new high-level knowledge or activate alert processes focusing on the
inference of expert knowledge, for example, IF heart rate is awhile low AND oxygen level is a while
scarce THEN send supervisor sms.
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