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a b s t r a c t 

Smart environments are heterogeneous architectures with a broad range of heterogeneous electronic de- 

vices that are with high in processing capabilities for computing, considering low power consumption. 

They have the ability to record information about the behavior of the people by means of their inter- 

actions with the objects within an environment. This kind of environments are providing solutions to 

address some of the problems associated with the growing size and ageing of the population by means 

of the recognition of activities that can offer monitoring activities of daily living and adapting the envi- 

ronment. In order to deploy low-cost smart environments and reduce the computational complexity for 

activity recognition, it is a key issue to know the subset of sensors which are relevant for activity recogni- 

tion. By using feature selection methods to optimize the subset of initial sensors in a smart environment, 

this paper proposes the adaption of the extended belief rule-based inference methodology (RIMER + ) to 

handle data binary sensors and its use as the suitable classifier for activity recognition that keeps the 

accuracy of results even in situations where an essential sensor fails. A case study is presented in which 

a smart environment dataset for activity recognition with 14 sensors is set. Two optimizations with 7 

and 10 sensors are obtained with two feature selection methods in which the adaptation of RIMER + for 

smart environment provides an encouraged performance against the most popular classifiers in terms of 

robustness. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

The number of elderly will reach 2 billion by the year 2050

nd a key issue for this people is to stay as long as possible in

heir own homes in order to have a healthy ageing and wellbeing

44,45] . One of the most common diseases in this group is related

o cognitive processes such as dementia. These illnesses are cur-

ently incurable; hence effort s are f ocused towards delaying their

rogression. In the early stages of dementia, it is useful to pro-

ide support in the form of prompting through the completion

f activities of daily living (ADL) in addition to offering a series

f reminders for tasks such as medication management, eating or

rooming [12,19,25] . 
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Smart environments are built heterogeneous architectures with

 broad range of multiples and different electronic devices that are

ith high in processing capabilities for computing, considering low

ower consumption. These environments have the ability to record

nformation about the behavior of the person by means of his/her

nteraction with the objects within an environment [8] . So, smart

nvironments are residences with a heterogeneous architecture of

ensor in which sensors are connected to a range of objects or lo-

ations and networked and used to identify people in the environ-

ent and their actions [5] . This kind of environments are adapted

o perceive the user contexts in order to help people in their ADL

roviding a smart solutions to address some of the problems asso-

iated with the growing size of the population. 

The sensor-based activity recognition [1,5,31,35,48] is at the

ore of smart environments. So, the process of activity recognition

ims to recognize the actions and goals of one or more person

ithin the environment based on a series of observations of ac-

ions and environmental conditions. It can, therefore, be deemed as

 complex process that involves the following steps: (i) to choose

nd deploy the appropriate sensors to objects within the smart
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environment; (ii) to collect, store and process information and, fi-

nally, (iii) to classify activities from sensor data through the use of

computational activity models. 

Traditionally, approaches used for sensor-based activity recog-

nition have been divided into two main categories: Data-Driven

(DDA) and Knowledge-Driven (KDA) Approaches [5] . 

The former, DDA, are based on machine learning techniques in

which a pre existent dataset of user behaviors is required. A train-

ing process is carried out, usually, to build an activity model which

is followed by testing processes to evaluate the generalization of

the model in classifying unseen activities [21,41] . The advantages of

the DDA are the capabilities of handling uncertainty and temporal

information. However, these approaches require large datasets for

training and learning, and suffer from the data scarcity or the cold

start problem [5] . 

Regarding KDA, an activity model is built through the incorpo-

ration of rich prior knowledge gleaned from the application do-

main, using knowledge engineering and knowledge management

techniques [5,7] . KDA has the advantages of being semantically

clear, logically elegant, and easy to get started. Nonetheless, they

are weak to deal with uncertainty and temporal information as

well as the activity models can be considered as static and incom-

plete. 

In order to the take advantage of the main benefits provided

by DDAs and KDAs and to avoid some of their common disad-

vantages, some hybrid approaches have been developed such as

the extended belief rule-based inference methodology (RIMER + )

that was proposed in [34] . Knowledge Base of RIMER + is based

on Extended Belief Rule-Bases (E-BRB), which are able to capture

(i) sample data and expert knowledge in a homogeneous way; (ii)

nonlinear and causal relationships; and (iii) several types of uncer-

tainty related to expert knowledge and data. 

In the literature, we can find multiple smart environments with

different heterogeneous architectures that are equipped with a

large set of multiple and different sensors in order to carry out

an activity recognition process. For example in the smart environ-

ment presented in [9] are involved 39 sensors and in the smart en-

vironment shown in [47] are involved 52 sensors. Although there

has been significant progress in sensor-based activity recognition

with promising results, which offer im provements with the prob-

lems associated with the growing size of the population, it still

remains expensive to deploy a full set of sensors within a smart

environment [36,50] . 

Therefore, the selection of an appropriate set of the sensors in

the heterogeneous architecture, which are placed in objects within

the environment, is an important issue in order to effectively mon-

itor and capture the user’s behavior along with the state change of

the environment. This selection has a direct influence on the sen-

sor data that will be used in the activity classification process. So,

the current challenge is to know what configuration of initial sen-

sors is the essential for activity recognition, i.e., the optimization of

sensors in the heterogeneous architecture on a smart environment.

This optimization process should imply the selection of a subset of

the original sensors without loss of accuracy for activity recogni-

tion, even if one of the essential sensors fails because there are

any technical failure or any sensor are deactivated, subsequently

returning wrong values. 

Feature selection methods [13] provide a way to select a sub-

set of relevant features to generate a classifier or a model from

a dataset obtained from a real process. Thus, these methods can

identify which of the features are relevant or if there are inter-

dependency relations between them. The use of feature selection

methods in smart environments has been conducted in some stud-

ies [17,18,20] . However, none of them has shed light on the clas-

sifier which should be used in conjunction with feature selection

methods in order to keep the accuracy, providing robustness. 
In this paper, we focus on the use of feature selection meth-

ds to optimize the subset of initial sensors for activity recogni-

ion in a smart environment with binary sensor in order to reduce

osts from a technology perspective, maintaining accuracy for ac-

ivity recognition as well as reducing the computational complex-

ty. Furthermore, this paper suggests the adaptation of RIMER + [34]

ike an approach for activity recognition, which is called R + DRAH.

his new adaptation is focused on handle binary sensor data due

o the fact the traditional RIMER + works with values between 0

nd 1. So, this new version offers accuracy in a smart environment

or activity recognition with binary sensor optimization, being also

obust in situations in which a relevant sensor fails. A case study

or activity recognition, in which two optimizations of sensors are

btained using feature selection, is carried out. An evaluation of

 + DRAH against the most popular DDA classifiers is performed,

onsidering the situation when a sensor failure in order to provide

obustness. 

The remainder of the paper is structured as follows: Section

 presents related works in the activity recognition area. Section

 reviews RIMER + that will be used in our proposal. Section 4 dis-

usses how RIMER + is adapted in R + DRAH to focus specifically on

orks in smart environments. Section 5 discusses the feature se-

ection methods in order to optimize the set of sensors within a

mart environment. Section 6 presents an empirical study which

nalyzes two feature selection methods for the purpose of sensors

ptimization for activity recognition with R + DRAH, considering the

ituation when a sensor failure in order to evaluate and analyze

he robustness. 

. Background 

In this section, the basic notions to understand our proposal are

eviewed. 

.1. Sensor-based activity recognition 

Advances in sensors technology developments have encouraged

esearch on the problem of activity recognition based on process-

ng data obtained by sensors [5] . In order to interpret the sensor

ata to infer activities, it is necessary to build activity models. In

his section, we review the approaches to build activity models. 

Activity models can be built by means of DDA or KDA. Both ap-

roaches are reviewed in the following subsections: 

.1.1. Data-driven approaches 

The DDA learn activity models from preexistent large-scale

atasets of users’ behaviors using data mining and machine learn-

ng techniques. These approaches imply the generation of prob-

bilistic or statistical activity models by means of training and

earning processes. So, the activity inference is based on a prob-

bilistic or statistical classification. 

Some of the most popular classifiers based on DDA approaches

re briefly reviewed below: 

• Naive Bayes classifier (NB) [16] . The basic idea in NB classi-

fier is to use the joint probabilities of sensors and activities to

estimate the category probabilities given a new activity. This

method is based on the assumption of sensor independence,

i.e. the conditional probability of a sensor given an activity is

assumed to be independent of the conditional probabilities of

other sensors given that activity. 

• Nearest Neighbor (NN) [11] . This classifier is based on the con-

cept of similarity [7] and the fact that patterns which are sim-

ilar, usually, have the same class label. An unlabeled sample is

classified with the activity label corresponding to the most fre-

quent label among the k nearest training samples. 
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Fig. 1. R + DRA process (taken from [2] ). 
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• Decision Table (DT) [28] . This classifier is based on a table

of rules and classes. Given an unlabeled sample, this classifier

searches for the exact match in the table and returns the ma-

jority class label among all matching samples, or informs no

matching is found. 

• Support Vector Machines (SVMs) [10] . This method focused on

a nonlinear mapping to transform the original training data into

a higher dimension. Within this new dimension, it searches for

the linear optimal separating hyper plane. A hyperplane is a de-

cision boundary which separates the tuples of one activity from

another. 

.1.2. Knowledge-driven approaches 

The KDA build activity models by using the rich domain knowl-

dge and heuristics for activity modeling and pattern recognition.

his approach, usually, involves knowledge acquisition, formal

odeling, and representation. Activity models generated in this

ethod are normally used for activity recognition or prediction

hrough formal logical reasoning, e.g., deduction, induction, or

bduction. 

Depending on the way to capture, represent and use the knowl-

dge, the knowledge driven approaches to activity modeling and

ecognition can be classified into two main categories: 

• Logical modeling based approach [6] . Activity modeling is

equivalent to knowledge modeling and representation. Knowl-

edge representation formalisms or languages are used to rep-

resent these knowledge models and concrete knowledge in-

stances, enabling inference and reasoning. 

• Evidential theory based approach [36] . In this approach, sensor

readings are used as evidence of higher level states within an

activity model. These states are fused to determine more com-

plex and higher level states until the level of belief in the ac-

tivities of interest is determined. 

.2. Extended belief rule-based inference Methodology. RIMER + 

In this section, the extended belief rule-based inference

ethodology (RIMER + ) is reviewed, which can be considered as

 combination of DDA and KDA, in order to take the advantages

f both approaches. We will adapt this methodology for activity

ecognition in a smart environment. 

The RIMER + classifier, [34] , utilizes the recently developed ex-

ended belief rule-based inference methodology, which combines

DA and KDA. Thus, RIMER + ’s Knowledge-Base (KB) is based on

xtended Belief Rule-Bases (E-BRB), which are able to capture in

 homogeneous way the sample data and expert knowledge, uses

asual and nonlinear relationships and, moreover, it can deal with

ome types of uncertainty related to expert knowledge and data. 

RIMER + uses the Evidential Reasoning (ER) algorithm [52] to

nfer the information included in its E-BRBs, in order to produce a

rediction result based on some input of the system. Furthermore,

ne of the main features of RIMER + is its E-BRB, which extends

he KB used in the belief Rule-Base Inference Methodology (RIMER)

51] . Thus, the belief degree distributions are used. So, they are

mbedded in the consequent terms of its rules and also in each

ntecedent term. Take for example the following EBR: 

IF Temperature is (Hot, 0), (Warm, 0.1), (Cold, 0.7) 

THEN Heating is (ON,0.2), (OFF, 0.8) 

Therefore, EBR can capture the fuzziness with linguistic terms,

ncertainty with beliefs, the incompleteness with ignorance or par-

ially known belief and non linear relationships by means of IF-

HEN rules. Thus, this type of extended belief rule is generic and,

oreover, it provides a flexible way to incorporate hybrid input in-

ormation and an efficient rule generation scheme to build E-BRBs

irectly from sample data [34] . 

As has been mentioned, E-BRBs provide the flexibility to in-

orporate context information in the KB. This information could
e vague, uncertain and/or incomplete and heterogeneous (qualita-

ive o quantitative). Furthermore, it provides the means to set the

mportance of different rules and antecedents, using rule weights

noted as θ k for the k th rule) and antecedent relative weights

noted as δik , for the i th antecedent of the k th rule), respectively.

nce the E-BRB is generated from sample data and the expert

nowledge about the environment is added, it can be used to rec-

gnize future activities, setting the values of sensors as inputs for

he E-BRB. This recognition method of the RIMER + approach is

ased on two main processes: 

1. Rule Activation: evaluates which rules need to be activated,

computing their activation weights ( w k ) using the similarity of

their antecedents against the given inputs. 

2. Rule Inference: the ER approach [52] is applied to combine the

activated rules and generate the final output. 

Given that an E-BRB may be generated from sample data, the

uality of data might be an important issue to be concerned when

enerating a reliable E-BRB. In this regard, a new Dynamic Rule Ac-

ivation (DRA) algorithm was proposed in [3,4] as a method to se-

ect the most relevant information to be aggregated. This is under-

aken by considering that data incompleteness and inconsistency

ay be viewed as paired situations, given that the former appears

ue to the lack of information while the latter can be considered as

n excess of heterogeneous information [4] . This upgraded method

s denoted as R + DRA and is detailed in Fig. 1. 
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Fig. 2. Feature selection process with validation (taken from [14] ). 
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So, this approach enhances the performance of RIMER + , espe-

cially in multi-class datasets as is the case of the process for activ-

ity recognition. 

Finally, it is noteworthy that the processes listed in Fig. 1 can

be modified depending on each particular scenario. So, in the next

Subsection, details of how the individual matching degree and rule

activation are provided to work with binary sensor data in smart

environments. 

3. R + DRAH for smart environments with binary sensors 

In this section, we describe the adaption of the RIMER + , which

is called R + DRAH, for activity recognition in smart environments

with binary sensor data 

The binary representation indicates which of the sensors have

been active within a time interval [40] . In order the handle this

kind of data, RIMER + provides the flexibility to modify the similar-

ity and aggregation functions that calculate the individual match-

ing degree and rule activation weights, as was illustrated in Fig. 1. 

Therefore, in R + DRAH to handle binary data, the similarity

and aggregation functions are replace with the following similarity

measure, which is very popular, so-called hamming distance [24] : 

H ( α, A K ) = 

T k ∑ 

i =0 

δik × d H ( αi , A ik ) 

where 

d H ( αi , A K ) = 

{
0 , i f | αi , A ik | = 0 

1 , otherside 
(1)

where α is the input vector ( αi is the input for the i th antecedent

attribute) and A k is the antecedent vector for the k th rule ( A ik is

the i th antecedent of the k th rule). 

Note that in the case study presented in this paper, each αi and

A ik may only take the values 0 or 1, because the activity recogni-

tion environment is only based on binary sensors. If the similarity

function H ( Eq. (1) ) returns zero this means that the input vec-

tor perfectly matches the antecedents of the k th rule, i.e. the cur-

rent sensor values totally match the description of one activity. The

higher value H returns, the more dissimilar the input vector is to

the k th rule. 

In order to accommodate noise in the input data of the dataset,

the rule activation weights ( w k ) are calculated as follows: 

w k = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 × θk i f (H ( α, A k ) = 0 

0 . 2 × θk i f (H ( α, A k ) ≤ 1 

0 . 1 × θk i f (H ( α, A k ) ≤ 2 

0 i f (H ( α, A k ) > 2 

(2)

Eq. (2) shows how we can be handled data with some noise

in the input vector (e.g., sensors with technical failures or deac-

tivated, which produce wrong values) using a hybrid function of

hamming distance. Although rules containing a certain amount of

noise (in 1 or 2 sensors) are not completely discarded, but their

activation weight is substantially lower than if no noise is found

(H ( α, A k ) = 0) . For the binary sensor data, the proposed H function

suits better than the Euclidean distance used in [34] . 

4. Selection features for sensors optimization 

In this paper, the proposal is to obtain a set of relevant sen-

sors and a successful classifier for activity recognition, in order to

deploy low-cost smart environments. In smart environments, it is

not easy to know which the most relevant sensors are. This section

discusses the use of feature selection methods to face this prob-

lem, providing a way to obtain a sensor optimization for a smart

environment. 
It is really difficult to know, a priori, the relevant sensors which

hould be considered in a classification problem for activity recog-

ition. Sometimes, the datasets generated by smart environments

ather information from multiple sensors in order to have a com-

lete representation of the environment domain. Nevertheless, this

act produces large datasets with redundant and irrelevant infor-

ation, which could deteriorate the performance of the classifica-

ion for activity recognition. 

In addition, the increase of the dataset’s size produces a larger

omputational complexity and potentially hinders the learning

rocesses and generalization capabilities of the classifier. 

The problem of identifying the most relevant sensors for activ-

ty recognition in DDA is closely related to the selection of features

n a classification problem [26,43] . 

Feature selection methods are carried out in order to reduce

he dataset, keeping as much information as possible about the do-

ain, without a negative impact on the classification accuracy [15] .

o, irrelevant and redundant features are eliminated. Reducing the

umber of these features clearly improves the time taken to de-

loy a learning algorithm and assists in obtaining a better insight

nto the concept of the underlying classification problem [28,29] . 

In order to offer a formal description of a feature selection

ethod, the definition proposed by Dash and Liu [13] is provided: 

efinition 1. Feature selection attempts to select the minimal

ized subset of features according to the following criteria: i) the

lassification accuracy does not significantly decrease; and ii) the

esulting class distribution, given only the values for the selected

eatures, is as close as possible to the original class distribution,

iven all features. 

Therefore, feature selection methods have a three-fold motiva-

ion. First, to simplify the classification problem due to the fact

hat only the relevant features are used. Second, to maintain ap-

roximately the accuracy of the classifier, after removing some of

he initial features. Finally, to reduce the dimension of the dataset

hich, proportionally, reduces the computational complexity. 

Fig. 2 illustrates the process of feature selection methods which

onsists of the following three steps: 

1 Generation Procedure . The generation procedure attempts to

find out optimal feature subsets which summarize the whole

set, reducing the computational complexity. In the case of a

dataset that contains N features, the total number of candidate

subsets to be generated is 2 N . There are different approaches

to addressing this process: 

• Complete. This approach carries out a complete search for the

optimal sub set according to an evaluation function that is uti-

lized. The most common complete approach is the Exhaustive

Search, which go over all the searching space. Thus, some algo-

rithms use different functions that are based on various back-

tracking techniques, such as branch and bound, best first search
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or beam search, in order to reduce the searching space and op-

timize the search time [39,42] . 

• Heuristic. With this approach, in each iteration, all the features

that remain are considered to be selected (rejected), generating

the subsets in an incremental way. In this case, the searching

space is quadratic in terms of the number of features. Thus,

this method has a higher-speed than the complete search, to

produce the results [33] . 

• Random. This generation procedure differs with the other

methods, because it is set a maximum number of possible it-

erations and, usually, searches a fewer number of subsets than

2 N . In order to select an optimal subset, it is necessary to as-

sign suitable values to different parameters which take part in

the random process [46] . 

In this paper, we are focusing on the method which guarantees

he best accuracy performance, flouting the searching time. Thus,

 complete generation procedure is used, concretely the Exhaustive

earch. Therefore, 2 N candidate subsets will be evaluated. 

2 Evaluation Functions . An evaluation function is used to evalu-

ate the subset under examination. An evaluation function mea-

sures the goodness of a subset produced by some generation

procedure, and this value is compared with the previous best. If

it is found to the better, the it replaces the previous best subset.

Generally, an evaluation function tries to measure the discrim-

inating ability of a feature or a subset in order to distinguish

the different class labels. There are several types of evaluation

functions: 

• Distance Measures that have the idea that in a two-class prob-

lem, the most preferred features are those which induce a

higher difference between the conditional probabilities of two

classes [27,30] . 

• Information Measures which are based on the information gain.

A feature is preferred to another if the information gain from

the first feature is higher than the second one. An example of

this type is entropy. These measures are employed in [29,44] . 

• Dependence Measures that quantify the ability to predict the

value of one variable from the value of another one. Therefore,

a feature is preferred to another if the correlation between the

features with a class is higher than the correlation between an-

other feature and the same class [37,38] . 

• Consistency Measures which deal with to find out the min-

imally sized sub set that satisfies the tolerable inconsistency

rate, which is normally set by the user. These measures are able

to remove redundant and/or irrelevant features and capable of

handling some noise [14,33] . 

• Classifier Error Rate Measures that depend on the classifier it-

self in order to perform the feature selection [26,32] . 

In the presented case study, the consistency measures and the

ependence measures will be used as evaluation functions due to

he fact that these measures have provided a very good overall per-

ormance in classification problems [14] . 

2 Stopping criterion. The feature selection process is an iterative

process. For this reason, it is necessary to establish a criterion

which indicates when the process is finished. In this final mo-

ment, the subset of features has the highest score discovered

up to that point and it is selected as the satisfactory feature

subset. The choice of the stopping criterion may depend on the

generation procedure and the evaluation function; possible cri-

teria include: a subset score exceeds a threshold, a program’s

maximum allowed run time has been surpassed, a maximum

iteration number, etc. 

Finally, usually, a validation process is carried out in order to

heck the validity of the problem generated subset of features, by
esting and comparing the obtained results with results previously

omputed with the original dataset. 

. Case study 

In this Section, the dataset of a smart environment, which will

e used in our proposal to be optimized and used for activity

ecognition, is shown. Then, two optimizations are obtained by

eans of two feature selection methods. Finally, to evaluate the

uitability in terms of robustness of the R + DRAH against four pop-

lar classifiers, some tests are carried out with the two computed

ptimizations. 

.1. Activity recognition dataset 

The case study used in this paper is based on a popular activity

ecognition dataset [49] . The dataset was collected in the house of

 26-year-old male who lived alone in a three-room apartment. In

he environment, 14 state-change sensors were installed. 

This dataset contains 245 observations which have been gener-

ted by 14 binary sensors. The number of instances of each activity

lass in the dataset and the frequency of each sensor in each ac-

ivity class are presented in table. 

Each sensor was located in one of 14 different places within

 home setting: microwave, hall-toilet door, hall-bathroom door,

ups’ cupboard, fridge, plates’ cupboard, front door, dishwasher,

oilet flush, freezer, pans’ cupboard, washing machine, groceries’

upboard and hall-bedroom door. Sensors were left unattended,

ollecting data for 28 days in the apartment. Activities were an-

otated by the subject himself using a Bluetooth headset. 

Seven different activities were annotated, namely: going to bed,

sing toilet, preparing breakfast, preparing dinner, getting a drink,

aking a shower and leaving the house. 

.2. Optimizing the configuration of a heterogeneous architecture of 

ensors with feature selection methods 

In this paper, the application of two feature selection methods

s proposed to obtain two sensor optimizations of a smart environ-

ent, offering a low-cost smart environment for activity recogni-

ion. 

To do so, two sensor optimizations for the smart environment

re obtained. The first optimization is based on a consistency mea-

ure and the second one is based on a dependence measure due

o the fact that these measures have provided a very good overall

erformance [14] . The feature selection methods have been imple-

ented using the Weka software [22] that is a Java software tool

ith machine learning algorithms for solving real-world data min-

ng problems, which has GNU General Public License, GPLv3. 

In the first optimization, a feature selection method based

n consistency measure consistencySubsetEval [33] is applied. This

unction evaluates the worth of a subset of sensors by the level

f consistency in the class values when the training instances are

rojected on the subset of sensors. So, subsets of sensors are highly

orrelated with the class, considering a low intercorrelation. 

In the evaluation functions based on consistency measure case,

he consistency of any subset can never be lower than that of the

ull set of sensors. Therefore, usually, this function is used in con-

unction with a generation procedure of type Random or Complete,

hich looks for the smallest subset with consistency equal to that

f the full set of sensors. 

Although the complete approach takes more time that random

pproach, the first approach is used in our case due to the fact that

he search is conducted in the full search space, providing better

esults than the random method. In our context, the time to search
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Table 1 

Distribution of activity class and sensors. 

Going to bed Using toilet Preparing breakfast Preparing dinner Getting a drink Taking a shower Leaving the house 

ID Sensors \ Num. Act. 24 114 20 10 20 23 34 

1 Microwave 0 0 5 3 0 0 0 

2 Hall-Toilet-door 6 26 1 0 0 23 1 

3 Hall-Bathroom-door 0 98 0 0 0 1 0 

4 Cups-cupboard 0 0 2 4 16 0 0 

5 Fridge 0 0 20 6 19 0 0 

6 Plates-cupboard 0 0 19 10 0 0 0 

7 Front-door 0 0 0 0 0 0 34 

8 Dishwasher 0 0 1 1 1 0 0 

9 Toilet-Flush 0 97 0 0 0 0 0 

10 Freezer 0 0 6 9 1 0 0 

11 Pans-Cupboard 0 0 2 6 0 0 0 

12 Washing-machine 0 0 0 0 0 0 0 

13 Groceries-Cupboard 0 0 16 8 0 0 0 

14 Hall-Bedroom-door 0 4 0 0 0 0 0 

Table 2 

Set of sensors for each optimization with feature selection. 

ID Sensors Initial sensors Optimization 1 Optimization 2 

1 Microwave Yes Yes No 

2 Hall-Toilet-door Yes No Yes 

3 Hall-Bathroom-door Yes Yes Yes 

4 Cups-cupboard Yes Yes No 

5 Fridge Yes Yes Yes 

6 Plates-cupboard Yes Yes Yes 

7 Front-door Yes Yes Yes 

8 Dishwasher Yes No No 

9 Toilet-Flush Yes Yes Yes 

10 Freezer Yes Yes No 

11 Pans-Cupboard Yes No No 

12 Washing-machine Yes No No 

13 Groceries-Cupboard Yes Yes No 

14 Hall-Bedroom-door Yes Yes Yes 

Number of Sensors 14 10 7 
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the optimization is not relevant due to the fact that the optimiza-

tion only be calculated once. 

Regarding the dataset described in the previous section, the fea-

ture selection method selects a subset of 10 sensors, which are in-

dicated in the second column of the Table 2. 

In the second optimization, a feature selection method based

on dependence measure, consistencySubsetEval [23] is applied. This

function evaluates the worth of a subset of sensors by consider-

ing the individual predictive ability of each sensor with the redun-

dancy degree between them. So, the subsets of sensors which are

highly correlated with the class are preferred, taking into account a

low intercorrelation. In this case, the generation procedure of type

Complete is also used in the optimization for the same reason. 

The feature selection method based on dependence measure

generates an optimization with 7 sensors, which are indicated in

the third column of Table 2. 

So, we have obtained two optimizations. On the one hand, a

smart environment is obtained with a cost reduction of 29% with

the first sensor optimization due to the fact that this optimization

has 10 sensors, removing 4 sensors of the initial set. On the other

hand, a smart environment is obtained with a cost reduction of

50% with the second sensor optimization because this optimization

has 7 sensors, eliminating 7 sensors of the initial set. 

In the following section, the two obtained optimizations, with

10 and 7 sensors, are evaluated for activity recognition, comparing

with four popular classifiers. 
m

 

a  

t  
.3. Recognition activity with sensor optimizations. Results and 

iscussion 

Once the two optimizations of the smart environment have

een generated, this paper proposes the use of the adaptation of

IMER + , R + DRAH, as the most suitable classifier in terms of ro-

ustness for activity recognition in a smart environment with a

ensor optimization. 

To prove the robustness of R + DRAH in situations in which a

ensor has some type of failure, a series of tests for each optimiza-

ion is carried out. So, R + DRAH is evaluated comparing with other

our popular classifiers used as DDA approaches for activity recog-

ition. These four classifiers are NB, NN, DT and SVMs that were

eviewed in the Section 2.1 . 

Three commonly-used types of tests were executed to evalu-

te the accuracy rate based on a cross-validation: 10-fold Cross-

alidation (CV10), 4-fold Cross Validation (CV4) and 2-fold Cross-

alidation (CV2). The main advantage of the cross-validation is that

ll the samples in the dataset are eventually used for training and

esting. So, this validation avoids the problem of considering how

he data is divided. The accuracy mean rate for the three cross-

alidations (C10, CV5 and CV2) is also computed to be considered. 

For the optimization 1, Table 3 shows the assessment of the

lassifiers with 10 sensors as well as when one sensor has some

ype of failure with the optimization 1. It is noteworthy that the

ensors with IDs 2, 8, 11 and 12 are not included because the opti-

ization 1 removes these sensors in the selection feature process. 

Regarding the situation in which the set of 10 sensors is avail-

ble in the optimization 1, all classifiers have a higher performance

han the 91%. In this ideal situation, SVM obtains the best results
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Table 3 

Assessment of accuracy and robustness of optimiza- 

tion 1. 

Opt. 1 CV10 CV4 CV2 Mean 

NB 96 ,33 95 ,92 94 ,69 95 ,65 

NN (k = 10) 94 ,69 91 ,84 91 ,84 92 ,79 

DT 95 ,51 94 ,69 93 ,47 94 ,56 

SVM 96 ,73 97 ,14 95 ,10 96 ,32 

R + DRAH 93 ,47 95 ,51 92 ,24 93 ,74 

F. sensor 1 CV10 CV4 CV2 Mean F. sensor 7 CV10 CV4 CV2 Mean 

NB 96 ,32 96 ,73 95 ,51 96 ,19 NB 87 ,34 86 ,94 85 ,71 86 ,66 

NN (k = 10) 91 ,83 91 ,84 91 ,84 91 ,83 NN (k = 10) 83 ,67 82 ,86 82 ,86 83 ,13 

DT 93 ,46 94 ,69 93 ,88 94 ,01 DT 85 ,71 85 ,71 84 ,49 85 ,30 

SVM 97 ,56 96 ,33 95 ,10 96 ,33 SVM 88 ,16 88 ,16 86 ,12 87 ,48 

R + DRAH 97 ,14 97 ,14 94 ,70 96 ,33 R + DRAH 95 ,51 95 ,51 92 ,24 94 ,42 

F. sensor 3 CV10 CV4 CV2 Mean F. sensor 9 CV10 CV4 CV2 Mean 

NB 90 ,61 89 ,80 88 ,57 89 ,66 NB 90 ,61 89 ,80 88 ,57 89 ,66 

NN (k = 10) 86 ,93 86 ,12 86 ,12 86 ,39 NN (k = 10) 86 ,93 86 ,12 86 ,12 86 ,39 

DT 88 ,57 88 ,57 87 ,35 88 ,16 DT 88 ,57 89 ,39 85 ,71 87 ,89 

SVM 91 ,02 90 ,20 88 ,57 89 ,93 SVM 91 ,02 91 ,02 89 ,39 90 ,48 

R + DRAH 95 ,92 95 ,92 92 ,65 94 ,83 R + DRAH 95 ,92 95 ,92 93 ,88 95 ,24 

F. sensor 4 CV10 CV4 CV2 Mean F. sensor 10 CV10 CV4 CV2 Mean 

NB 93 ,46 94 ,29 94 ,29 94 ,01 NB 95 ,10 96 ,33 96 ,73 96 ,05 

NN (k = 10) 93 ,06 93 ,06 87 ,76 91 ,29 NN (k = 10) 91 ,84 91 ,84 91 ,84 91 ,84 

DT 93 ,87 94 ,69 93 ,47 94 ,01 DT 95 ,91 95 ,10 93 ,88 94 ,96 

SVM 97 ,14 97 ,55 95 ,10 96 ,60 SVM 95 ,51 95 ,51 95 ,10 95 ,37 

R + DRAH 97 ,55 97 ,55 94 ,69 96 ,60 R + DRAH 96 ,73 96 ,73 94 ,69 96 ,05 

F. sensor 5 CV10 CV4 CV2 Mean F. sensor 13 CV10 CV4 CV2 Mean 

NB 92 ,24 92 ,65 92 ,65 92 ,51 NB 96 ,32 95 ,51 94 ,29 95 ,37 

NN (k = 10) 92 ,24 91 ,84 82 ,45 88 ,84 NN (k = 10) 92 ,24 92 ,65 92 ,24 92 ,38 

DT 92 ,65 92 ,65 93 ,47 92 ,92 DT 95 ,91 95 ,10 93 ,47 94 ,83 

SVM 94 ,28 93 ,88 93 ,06 93 ,74 SVM 94 ,28 93 ,88 93 ,88 94 ,01 

R + DRAH 96 ,73 96 ,73 92 ,65 95 ,37 R + DRAH 96 ,73 95 ,92 93 ,47 95 ,37 

F. sensor 6 CV10 CV4 CV2 Mean F. sensor 14 CV10 CV4 CV2 Mean 

NB 95 ,91 95 ,10 94 ,29 95 ,10 NB 87 ,75 86 ,94 85 ,71 86 ,80 

NN (k = 10) 91 ,83 91 ,02 88 ,98 90 ,61 NN (k = 10) 84 ,08 83 ,27 83 ,27 83 ,54 

DT 94 ,69 95 ,10 94 ,10 94 ,96 DT 84 ,08 86 ,53 80 ,41 83 ,67 

SVM 95 ,10 95 ,92 94 ,29 95 ,10 SVM 88 ,16 88 ,16 86 ,53 87 ,62 

R + DRAH 95 ,92 95 ,92 93 ,47 95 ,10 R + DRAH 95 ,92 95 ,92 93 ,88 95 ,24 
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ith a rating mean of 96,32%, followed by NB, DT, R + DRAH and

N. 

In situations where a sensor can fail with the optimization 1,

 + DRAH obtains the best results when there is a lack of informa-

ion. Furthermore, the results obtained by R + DRAH are overcome

y several points to the results obtained by other classifiers. This

act is shown in cases when sensors with IDs: 3, 7, 9 and 14 fail.

n other cases, when sensors with IDs: 1, 4, 5, 6, 10 and 13 are

ot operative, the good results of R + DRAH are equivalent to the

lassifier SVM or NB classifiers. 

The best results with 10 sensors are obtained with the SVM

lassifier, but when a sensor is not operative, R + DRAH provides

imilar results or the best results. 

In the second series of tests, Table 4 shows the assessment of

lassifiers for the optimization 2 with 7 sensors and when one sen-

or has some type of failure. It is noteworthy that sensors with IDs:

, 4, 8, 10, 11, 12 and 13 are not included because this optimization

emoves these sensors in the selection feature process. 

When the set of 7 sensors is available in the optimization 1, all

lassifiers have a higher performance than the 90%. However, com-

ared with the first optimization, the best classifier is R + DRAH

ith an accuracy mean rate of 96,33% followed by NB with a

5,78% and DT, SVM and NN. 

In situations where a sensor can fail with the optimization 2,

 + DRAH also obtains the best results. Moreover, the results ob-
ained by R + DRAH are overcome by several points to the results

btained by other classifiers in all cases with loss of information. 

We can conclude that the conjunction of features selection

ethods with the R + DRAH as classifier for activity recognition

rovides an encouraged performance to obtain in a low-cost smart

nvironment. Furthermore, it is remarkable that with optimizations

ith fewer sensors, the classifier R + DRAH obtains more successful

esults. 

Moreover, on the first hand, the datasets generated by smart

nvironments gather information from multiple sensors, which can

ave redundant and irrelevant information. The performance of

he classification for activity recognition overcomes this problem

y means of features selection methods, generating low-cost envi-

onment with suitable sensors. On the other hand, R + DRAH pro-

ides a suitable performance due to its ability to handle data with

ome noise, for example, sensors with technical failures, false pos-

tives or temporary disconnections. This is mainly based on the

ynamic rule activation method to select the most relevant infor-

ation to be aggregated in order to active the rules to infer the

ctivities. 

Finally, regarding to other classifiers, such as the SVM (the sec-

nd best classifier), which are a black box classifier; the R + DRAH

s a white box generating interpretable fuzzy rules, which can be

nalyzed, adjusted and tuned by human experts. 
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Table 4 

Assessment of accuracy and robustness of optimization 2. 

Opt. 2 CV10 CV4 CV2 Mean F. sensor 6 CV10 CV4 CV2 Mean 

NB 95 ,51 95 ,92 95 ,92 95 ,78 NB 87 ,35 87 ,76 87 ,76 87 ,62 

NN (k = 10) 93 ,88 93 ,88 90 ,20 92 ,65 NN (k = 10) 85 ,71 85 ,71 85 ,71 85 ,71 

DT 95 ,92 95 ,10 93 ,88 94 ,97 DT 84 ,90 85 ,31 86 ,12 85 ,44 

SVM 95 ,10 94 ,29 93 ,47 94 ,29 SVM 87 ,35 86 ,12 85 ,71 86 ,39 

R + DRAH 98 ,37 95 ,92 94 ,69 96 ,33 R + DRAH 98 ,78 96 ,33 95 ,10 96 ,74 

F. sensor 2 CV10 CV4 CV2 Mean F. sensor 7 CV10 CV4 CV2 Mean 

NB 95 ,51 95 ,92 95 ,92 95 ,78 NB 95 ,10 95 ,51 95 ,51 95 ,37 

NN (k = 10) 93 ,88 93 ,88 89 ,80 92 ,52 NN (k = 10) 93 ,47 93 ,47 82 ,04 89 ,66 

DT 95 ,92 95 ,10 93 ,88 94 ,97 DT 94 ,69 93 ,88 92 ,24 93 ,61 

SVM 95 ,92 95 ,92 94 ,29 95 ,37 SVM 95 ,10 94 ,29 93 ,47 94 ,29 

R + DRAH 99 ,59 99 ,59 97 ,96 99 ,05 R + DRAH 99 ,18 96 ,73 95 ,51 97 ,14 

F. sensor 3 CV10 CV4 CV2 Mean F. sensor 9 CV10 CV4 CV2 Mean 

NB 95 ,10 95 ,10 95 ,10 95 ,10 NB 93 ,47 93 ,47 93 ,47 93 ,47 

NN (k = 10) 93 ,47 93 ,47 89 ,80 92 ,24 NN (k = 10) 91 ,84 91 ,84 88 ,16 90 ,61 

DT 94 ,29 93 ,47 92 ,24 93 ,33 DT 92 ,24 92 ,65 91 ,43 92 ,11 

SVM 93 ,88 93 ,47 93 ,47 93 ,61 SVM 92 ,65 92 ,65 91 ,84 92 ,38 

R + DRAH 99 ,18 99 ,18 97 ,96 98 ,77 R + DRAH 99 ,18 99 ,19 99 ,18 99 ,18 

F. sensor 5 CV10 CV4 CV2 Mean F. sensor 14 CV10 CV4 CV2 Mean 

NB 93 ,88 94 ,29 94 ,29 94 ,15 NB 93 ,47 93 ,47 93 ,47 93 ,47 

NN (k = 10) 93 ,88 93 ,88 93 ,88 93 ,88 NN (k = 10) 91 ,84 91 ,84 84 ,49 89 ,39 

DT 93 ,47 92 ,65 92 ,24 92 ,79 DT 92 ,24 92 ,24 90 ,61 91 ,70 

SVM 93 ,88 93 ,06 93 ,47 93 ,47 SVM 93 ,06 92 ,24 91 ,02 92 ,11 

R + DRAH 98 ,78 96 ,33 95 ,10 96 ,74 R + DRAH 99 ,18 96 ,73 96 ,73 97 ,55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Conclusions 

The sensors’ optimization can produce the benefit to reduce

costs from a technological perspective, maintaining accuracy for

activity recognition, whilst, moreover, has the additional benefit of

reducing sensor data and the computational complexity. In this pa-

per, the use of feature selection methods has been proposed in or-

der to optimize the set of sensors of a smart environment in con-

junction with R + DRAH, which has been adapted of the RIMER + for

manage binary sensor data in a smart environment. A case study

applying two feature selection methods, based on consistency and

dependence measure for a smart environment with 14 sensors, has

been carried out. Thus, two optimizations with 7 and 10 sensors

have been obtained in which R + DRAH have been shown as the

suitable classifier against four of the most popular data-driven ap-

proaches for activity recognition in situations where an essential

sensor fails. Our future works are focused on extending the exper-

imentation in order to offer performance statistics with different

dataset according to the dataset size (small and large), the balance

among the number of classes (balanced and unbalanced) and, fi-

nally, the presence of noise and inconsistencies. 
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