Conference paper Open Access

Hybrid Robotic System for Arm Training after stroke: preliminary results of a randomized controlled trial

Immick, Nancy; Ambrosini, Emilia; Augsten, Andreas; Rossini, Mauro; Gasperini, Giulio; Proserpio, Davide; Molteni, Franco; Zajc, Johannes; Ferrante, Simona; Pedrocchi, Alessandra; Krakow, Karsten


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/2671771</identifier>
  <creators>
    <creator>
      <creatorName>Immick, Nancy</creatorName>
      <givenName>Nancy</givenName>
      <familyName>Immick</familyName>
      <affiliation>Asklepios Neurologische Klinik Falkenstein, Königstein, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Ambrosini, Emilia</creatorName>
      <givenName>Emilia</givenName>
      <familyName>Ambrosini</familyName>
      <affiliation>NEARLAB, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy.</affiliation>
    </creator>
    <creator>
      <creatorName>Augsten, Andreas</creatorName>
      <givenName>Andreas</givenName>
      <familyName>Augsten</familyName>
      <affiliation>Asklepios Neurologische Klinik Falkenstein, Königstein, Germany</affiliation>
    </creator>
    <creator>
      <creatorName>Rossini, Mauro</creatorName>
      <givenName>Mauro</givenName>
      <familyName>Rossini</familyName>
      <affiliation>Villa Beretta Rehabilitation Center, Valduce Hospital, Costamasnaga, Lecco, Italy.</affiliation>
    </creator>
    <creator>
      <creatorName>Gasperini, Giulio</creatorName>
      <givenName>Giulio</givenName>
      <familyName>Gasperini</familyName>
      <affiliation>Villa Beretta Rehabilitation Center, Valduce Hospital, Costamasnaga, Lecco, Italy.</affiliation>
    </creator>
    <creator>
      <creatorName>Proserpio, Davide</creatorName>
      <givenName>Davide</givenName>
      <familyName>Proserpio</familyName>
      <affiliation>Villa Beretta Rehabilitation Center, Valduce Hospital, Costamasnaga, Lecco, Italy.</affiliation>
    </creator>
    <creator>
      <creatorName>Molteni, Franco</creatorName>
      <givenName>Franco</givenName>
      <familyName>Molteni</familyName>
      <affiliation>Villa Beretta Rehabilitation Center, Valduce Hospital, Costamasnaga, Lecco, Italy.</affiliation>
    </creator>
    <creator>
      <creatorName>Zajc, Johannes</creatorName>
      <givenName>Johannes</givenName>
      <familyName>Zajc</familyName>
      <affiliation>Ottobock Health Products GmbH, Wien, Austria</affiliation>
    </creator>
    <creator>
      <creatorName>Ferrante, Simona</creatorName>
      <givenName>Simona</givenName>
      <familyName>Ferrante</familyName>
      <affiliation>NEARLAB, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy.</affiliation>
    </creator>
    <creator>
      <creatorName>Pedrocchi, Alessandra</creatorName>
      <givenName>Alessandra</givenName>
      <familyName>Pedrocchi</familyName>
      <affiliation>NEARLAB, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy.</affiliation>
    </creator>
    <creator>
      <creatorName>Krakow, Karsten</creatorName>
      <givenName>Karsten</givenName>
      <familyName>Krakow</familyName>
      <affiliation>Asklepios Neurologische Klinik Falkenstein, Königstein, Germany</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Hybrid Robotic System for Arm Training after stroke: preliminary results of a randomized controlled trial</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2018</publicationYear>
  <dates>
    <date dateType="Issued">2018-10-16</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Text">Conference paper</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/2671771</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1007/978-3-030-01845-0_18</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;This work presents the preliminary results of a&lt;/p&gt;

&lt;p&gt;randomized controlled trial aimed at evaluating the efficacy of&lt;/p&gt;

&lt;p&gt;a novel hybrid robotic system for arm rehabilitation after&lt;/p&gt;

&lt;p&gt;stroke. The system was developed within the European project&lt;/p&gt;

&lt;p&gt;RETRAINER and consists of a passive exoskeleton for weight&lt;/p&gt;

&lt;p&gt;relief combined with an arm EMG-triggered neuroprosthesis.&lt;/p&gt;

&lt;p&gt;Up to now, 39 patients completed the 9-week intervention:&lt;/p&gt;

&lt;p&gt;patients in the experimental group achieved a significantly&lt;/p&gt;

&lt;p&gt;better effect in the motoric outcome measures with respect to&lt;/p&gt;

&lt;p&gt;control subjects receiving only conventional therapy. These&lt;/p&gt;

&lt;p&gt;promising results need to be confirmed on a larger sample.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/644721/">644721</awardNumber>
      <awardTitle>REaching and grasping Training based on Robotic hybrid AssIstance for Neurological patients: End users Real life evaluation</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
61
57
views
downloads
Views 61
Downloads 57
Data volume 7.9 MB
Unique views 55
Unique downloads 52

Share

Cite as