Conference paper Open Access

RETRAINER Project: Perspectives and Lesson Learnt on Clinical Trial in Rehabilitation Robotics to Foster Industrial Exploitation

Pedrocchi, Alessandra; Bulgheroni, Maria


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/2671731</identifier>
  <creators>
    <creator>
      <creatorName>Pedrocchi, Alessandra</creatorName>
      <givenName>Alessandra</givenName>
      <familyName>Pedrocchi</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-9957-2786</nameIdentifier>
      <affiliation>Politecnico di Milano</affiliation>
    </creator>
    <creator>
      <creatorName>Bulgheroni, Maria</creatorName>
      <givenName>Maria</givenName>
      <familyName>Bulgheroni</familyName>
      <affiliation>Ab.Acus srl</affiliation>
    </creator>
  </creators>
  <titles>
    <title>RETRAINER Project: Perspectives and Lesson Learnt on Clinical Trial in Rehabilitation Robotics to Foster Industrial Exploitation</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2018</publicationYear>
  <subjects>
    <subject>rehabilitation technology</subject>
    <subject>upper limb exoskeleton</subject>
    <subject>Neuromuscular eletctrical stimulation</subject>
    <subject>tecnology transfer and clinical translation</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2018-10-16</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Text">Conference paper</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/2671731</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1007/978-3-030-01845-0_6</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;The RETRAINER (Reaching and grasping Training based on&lt;/p&gt;

&lt;p&gt;Robotic hybrid AssIstance for Neurological patients: End users Real life evaluation)&lt;/p&gt;

&lt;p&gt;project is an Innovation Action funded by the European Commission&lt;/p&gt;

&lt;p&gt;under the H2020 research framework programme. The project aims at a full&lt;/p&gt;

&lt;p&gt;technology transfer of the results of a previous FP7 project, MUNDUS, aimed at&lt;/p&gt;

&lt;p&gt;the development of upper limb assistive technologies, to a robotic system for&lt;/p&gt;

&lt;p&gt;upper limb and hand rehabilitation to be tested in a wide clinical trial with stroke&lt;/p&gt;

&lt;p&gt;survivors in two clinical centers. The final result of the project is the design of a&lt;/p&gt;

&lt;p&gt;validated system suitable to address the rehabilitation market. Along this project&amp;rsquo;s&lt;/p&gt;

&lt;p&gt;path, several issues affecting both development and validation have been&lt;/p&gt;

&lt;p&gt;pointed out and are here summarized to serve as lesson learnt for prospective&lt;/p&gt;

&lt;p&gt;projects and challenges.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/644721/">644721</awardNumber>
      <awardTitle>REaching and grasping Training based on Robotic hybrid AssIstance for Neurological patients: End users Real life evaluation</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
80
69
views
downloads
Views 80
Downloads 69
Data volume 8.9 MB
Unique views 78
Unique downloads 65

Share

Cite as