Conference paper Open Access

Geometrical Algorithms for Real Time Sound Rendering Using Intelligent Prioritization

Panagiotis Charalampous; Despina Michael-Grigoriou


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">MECHEL F.: Improved mirror source method in roomacoustics. Journal of sound and vibration 256, 5 (2002), 873–940.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">FUNKHOUSER T., TSINGOS N., CARLBOM I., ELKO G., SONDHI M., WEST J. E., PINGALI G., MIN P., NGAN A.: A beam tracing method for interactive architectural acoustics. The Journal of the Acoustical Society of America 115 (2004), 739.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">CHANDAK A., LAUTERBACH C., TAYLOR M., REN Z., MANOCHA D.: Ad-frustum: Adaptive frustum tracing for interactive sound propagation. Visualization and Computer Graphics, IEEE Transactions on 14, 6 (2008), 1707–1722.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">KROKSTAD A., STROM S., SØRSDAL S.: Calculating the acoustical room response by the use of a ray tracing technique. Journal of Sound and Vibration 8, 1 (1968), 118–125.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">ALLEN J. B., BERKLEY D. A.: Image method for efficiently simulating small-room acoustics. The Journal of the Acoustical Society of America 65 (1979), 943.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">BORISH J.: Extension of the image model to arbitrary polyhedra. The Journal of the Acoustical Society of America 75 (1984), 1827.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">SCHRÖDER D., LENTZ T.: Real-time processing of image sources using binary space partitioning. Journal of the Audio Engineering Society 54, 7/8 (2006), 604–619.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">LAINE S., SILTANEN S., LOKKI T., SAVIOJA L.: Accelerated beam tracing algorithm. Applied Acoustics 70, 1 (2009), 172–181.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">MIN P., FUNKHOUSER T.: Priority-driven acoustic modeling for virtual environments. In Computer Graphics Forum (2000), vol. 19, Wiley Online Library, pp. 179–188.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">FUNKHOUSER T., MIN P., CARLBOM I.: Real-time acoustic modeling for distributed virtual environments. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques (1999), ACM Press/Addison-Wesley Publishing Co., pp. 365– 374.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">ANTONACCI F., FOCO M., SARTI A., TUBARO S.: Fast modeling of acoustic reflections and diffraction in complex environments using visibility diagrams. In Proceedings of 12th european signal processing conference (EUSIPCO 04) (2004), pp. 1773–1776.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">SIKORA M., MATELJAN I.: A method for speeding up beamtracing simulation using thread-level parallelization. Engineering with Computers (2013), 1–10.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">TAYLOR M. T., CHANDAK A., ANTANI L., MANOCHA D.: Resound: interactive sound rendering for dynamic virtual environments. In Proceedings of the 17th ACM international conference on Multimedia (2009), ACM, pp. 271–280.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">OKADA M., ONOYE T., KOBAYASHI W.: A ray tracing simulation of sound diffraction based on the analytic secondary source model. Audio, Speech, and Language Processing, IEEE Transactions on 20, 9 (2012), 2448–2460.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">TAYLOR M., CHANDAK A., MO Q., LAUTERBACH C., SCHISSLER C., MANOCHA D.: Guided multiview ray tracing for fast auralization. IEEE transactions on visualization and computer graphics 18, 11 (2012), 1797–1810.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">DREHER M., DUTILLEUX G., JUNKER F., ET AL.: Optimized 3d ray tracing algorithm for environmental acoustic studies. Acoustics 2012 Nantes (2012).</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">SCHISSLER C., MEHRA R., MANOCHA D.: High-order diffraction and diffuse reflections for interactive sound propagation in large environments. ACM Transactions on Graphics (TOG) 33, 4 (2014), 39.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">LAUTERBACH C., CHANDAK A., MANOCHA D.: Interactive sound rendering in complex and dynamic scenes using frustum tracing. Visualization and Computer Graphics, IEEE Transactions on 13, 6 (2007), 1672–1679.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">TAYLOR M., CHANDAK A., REN Z., LAUTERBACH C., MANOCHA D.: Fast edge-diffraction for sound propagation in complex virtual environments. In EAA auralization symposium (2009), pp. 15–17.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">TSINGOS N., GALLO E., DRETTAKIS G.: Perceptual audio rendering of complex virtual environments. In ACM Transactions on Graphics (TOG) (2004), vol. 23, ACM, pp. 249–258.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">TSINGOS N.: Precomputing geometry-based reverberation effects for games. In Audio Engineering Society Conference: 35th International Conference: Audio for Games (2009), Audio Engineering Society.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">FOALE C., VAMPLEW P.: Portal-based sound propagation for first-person computer games. In Proceedings of the 4th Australasian conference on Interactive entertainment (2007), RMIT University, p. 9.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">SILTANEN S., ET AL.: Efficient physics-based room-acoustics modeling and auralization. Aalto-yliopiston teknillinen korkeakoulu (2010).</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">DRECHSLER S.: An algorithm for automatic geometry simplification for room acoustical simulation based on regression planes. Acta Acustica united with Acustica 100, 5 (2014), 956–963.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">ANTANI L., CHANDAK A., TAYLOR M., MANOCHA D.: Direct-to-indirect acoustic radiance transfer. Visualization and Computer Graphics, IEEE Transactions on 18, 2 (2012), 261–269.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">STAVRAKIS E., TSINGOS N., CALAMIA P.: Topological sound propagation with reverberation graphs. Acta Acustica united with Acustica 94, 6 (2008), 921–932.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">MEHRA R., MANOCHA D., ANTANI L., RAGHUVANSHI N.: Real-time sound propagation and noise modeling in outdoor environments using equivalent source formulation. The Journal of the Acoustical Society of America 132, 3 (2012), 1890.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">CHARALAMPOUS P., MICHAEL D.: Tree traversal algorithms for real time sound propagation calculation. In Audio Engineering Society Conference: 55th International Conference: Spatial Audio (2014), Audio Engineering Society.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">KOUTSOURIS G. I., BRUNSKOG J., JEONG C.-H., JACOBSEN F.: Combination of acoustical radiosity and the image source method. The Journal of the Acoustical Society of America 133, 6 (2013), 3963– 3974.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">VORLÄNDER M.: Simulation of the transient and steady-state sound propagation in rooms using a new combined ray-tracing/imagesource algorithm. The Journal of the Acoustical Society of America 86 (1989), 172.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">SAVIOJA L., SVENSSON U. P.: Overview of geometrical room acoustic modeling techniques. The Journal of the Acoustical Society of America 138, 2 (2015), 708–730.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">RÖBER N., KAMINSKI U., MASUCH M.: Ray acoustics using computer graphics technology. In 10th International Conference on Digital Audio Effects (DAFx-07), S (2007), Citeseer, pp. 117–124.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">MECHEL F.: Room Acoustical Fields. Springer Science &amp; Business Media, 2012.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">CHARALAMPOUS P., MICHAEL D.: Improved hybrid algorithm for real time sound propagation using intelligent prioritization. In MELECON 2016 (2016), IEEE.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">ISO: Iso 3382-2:2008,acoustics – measurement of room acoustic parameters – part 2: Reverberation time in ordinary rooms, 2008.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">CHARALAMPOUS P., ECONOMOU P.: An improved userindependent algorithm for room acoustic parameters calculation. In 23rd International Congress on Sound and Vibration (2016), The International Institute of Acoustics and Vibration.</subfield>
  </datafield>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">real time sound rendering</subfield>
  </datafield>
  <controlfield tag="005">20191111070827.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">This work has been partly supported by the project that has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 739578 (RISE – Call: H2020-WIDESPREAD-01-2016-2017-TeamingPhase2)  and the Government of the Republic of Cyprus through the Directorate General for European Programmes, Coordination and Development.

DOI :10.2312/egve.20181319, Geometrical Algorithms for Real Time Sound Rendering Using Intelligent Prioritization, Charalampous, Panagiotis and Michael-Grigoriou, Despina, ICAT-EGVE 2018 - International Conference on Artificial Reality and Telexistence and Eurographics Symposium on Virtual Environments, Bruder, Gerd and Yoshimoto, Shunsuke and Cobb, Sue, 2018, pages 85-94, Copyright ©2018 The Eurographics Association, The Eurographics Association.</subfield>
  </datafield>
  <controlfield tag="001">2669109</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">7-9 November 2018</subfield>
    <subfield code="g">ICAT-EGVE 2018</subfield>
    <subfield code="a">International Conference on Artificial Reality and Telexistence Eurographics Symposium on Virtual Environments (2018)</subfield>
    <subfield code="c">Limassol, Cyprus</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Research centre on Interactive media, Smart systems and Emerging technologies(RISE), Cyprus</subfield>
    <subfield code="0">(orcid)0000-0003-0824-7684</subfield>
    <subfield code="a">Despina Michael-Grigoriou</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1318158</subfield>
    <subfield code="z">md5:f29baf948b3a4b67d074945093ced9b5</subfield>
    <subfield code="u">https://zenodo.org/record/2669109/files/2018_ICATEGVE_AdaptiveIntelligentPrioritization_AsSubmitted.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">http://icat-egve2018.rise.org.cy/</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2018-12-30</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">user-rise-teaming-cyprus</subfield>
    <subfield code="o">oai:zenodo.org:2669109</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">GET Lab, Department of Multimedia and Graphics Arts, Cyprus University of Technology</subfield>
    <subfield code="0">(orcid)0000-0001-8611-9579</subfield>
    <subfield code="a">Panagiotis Charalampous</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Geometrical Algorithms for Real Time Sound Rendering Using Intelligent Prioritization</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-rise-teaming-cyprus</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">692058</subfield>
    <subfield code="a">Network for sOcial compuTing REsearch (NOTRE)</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">739578</subfield>
    <subfield code="a">Research Center in Interactive Media, Smart System and Emerging Technologies</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution Non Commercial No Derivatives 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Geometrical algorithms have been the main subject of research in the field of real time sound rendering. These algorithms&lt;br&gt;
are variants of the image source and ray tracing algorithms, enhanced with improvements that speed up substantially their&lt;br&gt;
performance. The fundamental concepts behind the improvements achieved up to now was the reduction of the processed&lt;br&gt;
information and the acceleration of the actual processing. In this paper, we show how altering the traversal method affects&lt;br&gt;
significantly the algorithm&amp;rsquo;s performance. These optimizations alter its behavior, providing better results for real time purposes.&lt;br&gt;
We separate the techniques into three major categories and we propose a stochastic Monte Carlo algorithm which involves&lt;br&gt;
optimizations based on prioritization.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="g">85-94</subfield>
    <subfield code="b">The Eurographics Association</subfield>
    <subfield code="a">Postfach 2926, 38629 Goslar, Germany</subfield>
    <subfield code="z">978-3-03868-058-1</subfield>
    <subfield code="t">ICAT-EGVE 2018 - International Conference on Artificial Reality and Telexistence and Eurographics Symposium on Virtual Environments</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.2312/egve.20181319</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
20
19
views
downloads
Views 20
Downloads 19
Data volume 25.0 MB
Unique views 15
Unique downloads 16

Share

Cite as