
Quantitative Methods in Object-Oriented Software Engineering

Fernando Brito e Abreu

ISEG (Lisbon Technical University) / INESC

INESC, Rua Alves Redol, 9, 1000 Lisboa, Portugal

+351 1 3100226

fba@inesc.pt

ABSTRACT

This paper includes a brief description of the author’s

doctoral research work in Quantitative Methods applied to

the Object-Oriented Software Engineering field. Previous,

current and future research work are outlined. An overview

of related work is also included.

Keywords

Object Oriented Design; Software Metrics; Effort and

Reliability Prediction Models; Software Engineering.

INTRODUCTION

The adoption of the Object-Oriented paradigm is expected to

help produce better and cheaper software. The main struc-

tural mechanisms of this paradigm, namely, inheritance,

encapsulation, information hiding and polymorphism, are

the keys to foster reuse and achieve easier maintainability.

However, the use of language constructs that support those

mechanisms can be more or less intensive, depending mostly

on the designer’s ability. In fact, the analysis to design

transition is an activity which offers several degrees of

liberty.

Long before the OO languages became widespread, it was

possible to build software with an OO flavor, using conven-

tional 3rd generation languages. Conversely, by simply using

an OO language that supports those mechanisms we are not

automatically favored with an increase in software quality

and development productivity, because its effective use

relies on the designer’s ability. Decisions on best alternatives

are usually fuzzy and mostly based on expert judgment.

Novice designers in particular, are exposed to a myriad of

design decisions that surely affect the final outcome. We can

then expect rather different quality products to emerge, as

well as different productivity gains. Advances in quality and

productivity need to be correlated with the use of those

constructs. We then need to evaluate this use quantitatively

(using design metrics) to guide the OO design process, for

instance by means of design heuristics.

Metrics can also help software managers in the scheduling,

costing, staffing and controlling activities by allowing to

build effort, schedule and reliability models. Quantitative

approaches in software engineering are now fully recognized

and included in standards like [18, 19, 20, 21].

RELATED WORK

Since the early days of computer science many approaches

to quantify the internal structure of procedural software

systems have emerged [28]. Some of those “traditional”

metrics can still be used with the object-oriented paradigm,

specially at the method level. However, the need to quantify

the distinctive features of this paradigm gave birth to new

metric sets in recent years. Most of those metrics haven’t

been experimentally validated yet. This validation step

usually consists of correlation studies between internal

(design) attributes and external (quality) attributes. A brief

survey of known efforts in this area follows.

Several research works in the OO design metrics arena were

produced in recent years [8, 9, 11, 13, 17, 26]. However,

there is a lack of experimental validation. Worse than that,

there is scarce information on how the proposed metrics

should be used. A better scenario can be found on the field

of OO reuse metrics, where experimental studies like [22,

24] were a step ahead.

The MOOSE metrics proposed in [11] were validated in [7].

Besides discussing the metrics' advantages and drawbacks,

the authors claim that several of them appear to be adequate

to predict class fault-proneness during the early phases of the

life-cycle. Nevertheless, some criticism on the MOOSE

metrics’ imprecise and ambiguous definition (lack of lan-

guage bindings) were raised in [12].

In [23] the authors used an extension of the MOOSE set to

build a regression model that is said to be adequate to

predict changeability (effort of correcting or enhancing

classes). The model was validated with data from two

systems built with an object-oriented dialect of Ada.

A metric proposed in [1], derived from the design

information captured in class definitions for measuring the

Copyright © 1997 by the Association of Computing Machinery, Inc.

Permission to make digital/hard copy of part of this work for personal or

classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage, the copyright notice, the title

of the publication and its date appear, and notice is given that copying is by

permission of ACM, Inc. To copy otherwise, to republish, to post on servers,

or to redistribute to lists requires prior specific permission and/or a fee.

number and strength of the object interactions, is claimed to

be useful for predicting experts' design preferences. To

validate the metric the authors used 9 sets of 2 or 3 design

alternatives and compared the evaluations suggested by both

the proposed metric and a panel of object-oriented design

experts. They found out that the preferred alternatives were

coincident in 80% of the cases.

Module and system level metrics for information hiding are

described in [25]. A validation experiment based on a

system with approximately one million lines of Ada code (an

object-based language according to [27]) is described.

Results showed that those metrics were able to “discriminate

between packages that are or are not likely to undergo

significant changes”. On the other hand the authors

recognize that the same experiment showed that there is no

linear correlation between their information-hiding metric

and change.

There is also an increasing interest from OO CASE tool ma-

kers in design metrics. Output from the ROSE tool (which

supports the Booch method), for instance, is being used at

Rational [14] to derive object-oriented metrics.

PREVIOUS WORK

The MOOD metrics

The participant has proposed the MOOD (Metrics for Object

Oriented Design) set [2] which includes the Method and

Attribute Hiding Factors (MHF and AHF), the Method and

Attribute Inheritance Factors (MIF and AIF), the

Polymorphism Factor (POF) and the Coupling Factor

(COF).

These metrics are defined at the system or subsystem1 level

while in other approaches, such as the well know set

proposed in [11], the metrics are defined at the class level.

The criteria used in the MOOD set definition were: (1)

coverage of the basic structural mechanisms of the object-

oriented paradigm as encapsulation, inheritance, polymor-

phism and message-passing, (2) formal definition to avoid

subjectivity of measurement and thus allow replicability, (3)

size independence to allow inter-project comparison, thus

fostering cumulative knowledge and (4) language

independence to broad the applicability of this metric set by

allowing comparison of heterogeneous system imple-

mentations.

Each MOOD metric is associated with such basic structural

mechanisms of the object-oriented paradigm as encapsu-

lation (MHF and AHF), inheritance (MIF and AIF),

polymorphism (POF) or message-passing and association

(COF). The mathematical definition of each MOOD metric

will be introduced after the underlying basic concepts are

made clear. Each metric is expressed as a quotient where the

numerator represents the actual use of one of those

1 - Collection of classes organized in some way to offer a given

functionality as a whole.

mechanisms for a given design. The denominator, acting as a

normalizer, represents the hypothetical maximum achievable

use for the same mechanism within the same universe of

discourse that is, considering the same classes and

inheritance relations. As a consequence, these metrics are

expressed as percentages, ranging from 0% (no use) to 100%

(maximum use) and thus are dimensionless. This avoids the

misleading, subjective or "artificial" units that are often

found in the metrics literature.

Being formally defined, the MOOD metrics avoid sub-

jectivity of measurement and thus allow replicability. In

other words, different people at different times or places can

yield the same values when measuring the same systems.

The MOOD metrics are also system size independent. This

property allows inter-project comparison, thus fostering

cumulative knowledge.

The MOOD metrics definitions make no reference to

specific language constructs. The language (in)dependence

will broaden the applicability of this set of metrics by allow-

ing comparison of heterogeneous system implementations.

The metrics definitions, along with their underlying concepts

are included in next sections.

Methods

The MOOD concept of method is that of a wrapped piece of

procedural code (the body) whose execution as a whole is

triggered by some agent. This is done through an interface

that is identified by a unique name (within a certain range)

and which may contain some mechanism of interchange with

the calling agent (such as parameters or returned values).

Methods are used to perform operations of several kinds

such as obtaining or modifying the status of objects.

Attributes

The MOOD concept of attribute is one of an independently

identified data structure, either static or dynamic, transient or

persistent, atomic or structured (e.g. record or array), which

is used to store constants or variables. Attributes are used,

among other things, to represent the status of each object in

the system.

Methods and Attributes Visibility

The MOOD concept of visibility, associated with what is

often referred to as the range or scope of an identifier, is

related to the use of information hiding mechanisms. Each

feature (method M or attribute A) is either visible or hidden

from a given class C. If a feature is visible to a class C, then

C can use that feature. Therefore, we can define the

following logic function:

is visible C M C
iff

j i

C may call M

otherwise

i j j_ (. ,)

1

0

is visible C A C
iff

j i

C may reference A

otherwise

i j j_ (. ,)

1

0

The visibility of a feature is defined as the percentage of the

system classes, other than the one where it was defined, for

which that feature is visible. Supposing TC is the total

number of classes in the system under consideration, then

the visibilities of method M and attribute A, both defined in

class Ci , are given by:

V C M
is visible C M C

TC
i

i jj

TC

(.)
_ (. ,)

 1

1

V C A
is visible C A C

TC
i

i jj

TC

(.)
_ (. ,)

 1

1

The denominator is the number of all classes except the one

where the feature is defined. Function V may range from

zero (the feature is hidden from all classes) to one (the

feature is visible to all classes).

For the purpose of MOOD measurement, changes in the

visibility of inherited features are accounted for in the class

where they were initially defined. In other words, changes of

visibility in any descendent class will eventually increase the

number of classes that can potentially use the feature. A

similar situation arises when we have feature name clashing

in multiple inheritance. The resulting visibility of a feature

inherited from two or more classes, which had different

visibilities in each ascending class, will be the union of the

corresponding visibilities.

Defined Features

Features defined in a class are the ones whose declaration

lies within that class. That includes the ones that are not

implemented (deferred or external features). We then define

the following functions for any given class Ci :

M Cd i() = methods defined in Ci

A Cd i() = attributes defined in Ci

We are now able to introduce the Method Hiding Factor

(MHF) and Attribute Hiding Factor (AHF) as:

MHF
V M

M C

mim

M C

i

TC

d ii

TC

d i

(())

()

()
1

11

1

AHF
V A

A C

mim

A C

i

TC

d ii

TC

d i

(())

()

()
1

11

1

New and Overriding Features

A defined feature can be either a new or an overriding

version of an inherited one. New features are the ones whose

interface (name and/or parameters) is different from any

inherited feature and thus do not override them. Overriding

features are the ones that change the definition of inherited

features. The following functions are then defined, for any

given class Ci :

M C M C M Cd i n i o i() () () = methods defined in Ci

A C A C A Cd i n i o i() () () = attributes defined in Ci

where:

M Cn i() = new methods in Ci

M Co i() = overriding methods in Ci

A Cn i()= new attributes in Ci

A Co i()= overriding attributes in Ci

Polymorphic Features

An important characteristic of the object-oriented paradigm

is polymorphism2. This characteristic is such that a given

message sent to class Ci can be bound (statically or dy-

namically) to a named method implementation in Ci or one

of its descendants. Thus, the message recipient can have as

many distinct implementations as the number of times this

same method is overridden in Ci descendants. We then

define the Polymorphism Factor (POF) as:

POF
M C

M C DC C

o ii

TC

n i ii

TC

()

() ()

1

1

The numerator represents the actual number of possible

different polymorphic situations. The denominator repre-

sents the maximum number of possible distinct polymorphic

situations for class Ci . This would be the case where all new

methods defined in Ci would be overridden in all its descen-

dants.

Inherited Features

Inherited features in a class Ci are those which are inherited

2 - From the ancient Greek “poly” (several) and “morphos” (shapes).

and not overridden in that class. An inheritance relation, for

instance Cd inheriting from Ca , is represented by

C Cd a . We then define the following functions:

M Ci i() = methods inherited in Ci

A Ci i() = attributes inherited in Ci

Available Features

Available features (methods or attributes) in a class C are the

ones that can be used in association with C. Available

features are the defined plus the inherited ones. We then

define the following functions:

M C M C M Ca i d i i i() () () = available methods in Ci

A C A C A Ca i d i i i() () () = available attributes in Ci

Now we can introduce the Method Inheritance Factor (MIF)

and the Attribute Inheritance Factor (AIF):

MIF
M C

M C

i ii

TC

a ii

TC

()

()

1

1

 AIF
A C

A C

i ii

TC

a ii

TC

()

()

1

1

Coupling

Coupling is due to the representation of associations

between classes (static coupling) and message exchanges

between their instances (dynamic coupling). It can be

identified by the existence of several kinds of references. In

MOOD a class Cc is said to be a client of another class Cs

(the supplier) and is represented by C Cc s if Cc

contains at least one non-inheritance reference to Cs . A

reference can be made in an attribute or method argument

type, a local method type (returned value) or even a call to a

method belonging to the supplier class.

Clientele is represented by the is_client logic function. For

the sake of simplicity, clientele shape and strength (number

of references made to the client class) are not considered.

Therefore we have:

is client C C
iff C C C C

otherwise
c s

c s c s
_ (,)

1

0

The Coupling Factor (COF) is then defined as:

COF
is client C C

TC TC

i jj

TC

i

TC

 _ (,)
11

2

The numerator represents the actual number of couplings

not imputable to inheritance. The denominator is the

maximum possible number of non-inheritance couplings in a

system with TC classes.

Metrics Extraction

MOODKIT G1, a tool to extract MOOD metrics from C++

or Eiffel source code was built and is being or was used by

research teams in Portugal, UK (University of Southampton)

and USA (University of Maryland). It uses specific “stubs”,

based on language parsers, for extracting the design metrics

directly from those OO languages (by reverse engineering).

As previously mentioned the MOOD metrics are supposed to

be fairly implementation language independent. To achieve

this independence the adopted approach was to develop

bindings between MOOD and each specific language (e.g.:

C++ [3] and Eiffel [5]). These bindings include (1) a

mapping of concepts and terminology between MOOD and

the language under consideration and (2) a description of

how basic measures needed to compute MOOD metrics can

be extracted from code written in that language.

One of the research goals was to conduct experimental

validation on MOOD metrics by evaluating the impact of

OO design on software quality characteristics such as

reliability and maintainability. Using MOODKIT G1 (v1.0),

the candidate made an extensive evaluation of available sys-

tems (C++ class libraries) and derived some design

heuristics using a filter metaphor [3].

An experiment conducted at the University of Maryland [4]

evaluated the impact of object-oriented design (expressed by

the MOOD metrics) on resulting software quality attributes

(defect density and rework). The results achieved so far

allow to infer that in fact the design alternatives may have a

strong influence on resulting quality. Quantifying this

influence can help to train novice designers by means of

heuristics [3] embedded in design tools. Being able to

predict the resulting reliability and maintainability is very

important to project managers during the resource allocation

(planning) process. This work was a small step toward the

understanding of how software designs affect resulting

quality.

CURRENT WORK

MOODKIT G2 has a different architecture from its

predecessor. It extracts the MOOD metrics from an OO

design language also proposed by the candidate [6]. This

language, named GOODLY (a Generic Object Oriented

Design Language? Yes!), embodies information about class

features (state and operations), relations between classes

(inheritance, static coupling and dynamic coupling) and

features scope. Parsers for extracting design information

(GOODLY specifications) from several widely used OO

languages such as Smalltalk, C++, Java and Eiffel are being

developed.

This new architecture allows to redefine and extend the

design metrics set without the burden of changing the several

OO language parsers (drawback in MOODKIT G1).

Further empirical validation experiments with a larger

sample of projects and using MOODKIT G2 with GOODLY

are planed for the near future.

A MOOD2 metrics set is currently being defined as a result

of the opinions gathered and limitations perceived while

using the original MOOD set. Among other things the

candidate is trying to apply theoretical validation to the

MOOD metrics by using Measurement Theory [15, 28]. This

research action intends to answer questions such as:

 What kinds of operations can we perform with MOOD

metrics?

 Can MOOD metrics be combined to express complexity

in some way?

 What kind of meaningful statements can be made about a

system who has a certain value for a given MOOD metric?

 Can we build valid relationships between the MOOD

metrics (based on internal measurements) and external

quality characteristics like reliability, maintainability or

testability?

FUTURE WORK

I) MOOD Metrics in the Analysis Phase

Metrics should be collected and used to identify possible

flaws as early as possible in the life-cycle, before too much

work is spent based on them. It is a well known fact that the

effort of correcting and recovering from those defects

increases non-linearly with elapsed project progress since

they were committed. Looking at the analysis instead of

design would then be a step forward towards cost-

effectiveness. The object-oriented paradigm is supposed, at

least theoretically, to allow a seamless analysis-design-

coding transition. Many analysis and design methods have

emerged [10] in the past few years, with their own

diagrammatic representations of differently named

abstractions representing not-so-different basic concepts.

This plethora gave birth to tools, such as ParadigmPlus or

ObjectMaker, supporting multiple analysis and design

methods. These tools map the information extracted from the

distinct diagrams used by those different methods into a

common repository, thus allowing diagrammatic con-

versions. From those kind of repositories the candidate plans

to generate GOODLY specifications (forward engineering).

II) Design Patterns Complexity

Object-oriented design patterns [16] are currently a very

active research field. They seem to be the yellow brick road

to the promised reuse-land. Substantial increases in quality

and productivity are expected to happen if software

developers really start using these new “bricks”. However,

the patterns’ adoption greatly depends on their complexity,

adaptability, functionality and reliability. All those charac-

teristics must be quantitatively evaluated in order to define

acceptance criteria, assess reuse potential and risk or

compare different pattern implementations for similar

functionalities.

If a pattern has an high complexity, potential users will not

understand it and their adoption will be jeopardized.

Measuring and establishing reasonable limits for a pattern’s

complexity seems to be a must. A generic OO complexity

metric is expected to be built upon a combination of the

MOOD metrics.

The functionality offered by a pattern represents its power to

solve a certain category of problems. Some patterns have a

much wider coverage than others in the sense that they can

solve a given problem in many different contexts.

Patterns are not supposed to be used “as is” (verbatim

reuse). Instead, they are supposed to be somehow configured

or adapted (leverage reuse) to solve a particular problem of

the system under construction. Therefore, their degree of

adaptability should also be quantified. A reduced

configuration capability would degrade the pattern’s desired

generality. Too much flexibility, on the other hand, would

surely depend on several compromises which would

sacrifice efficiency and memory usage optimization, provoke

inadmissible increase in complexity and eventually produce

undesirable side-effects.

The unreliability of a system that was built using an adopted

pattern can be originated in the pattern itself or outside of it.

Testing different systems with embedded patterns and

selecting only the faults which depend on the patterns

inclusion, should allow us to correlate them with the

pattern’s complexity. From there we can build predictive

models for reliability or/and redesign patterns for an

increased reliability.

REFERENCES
[1] D. H. Abbott., T. D. Korson and J. D. McGregor,

"A proposed design complexity measure for object-oriented

development”, Clemson University, TR94-105, April 1994.

[2] F.B. Abreu and R. Carapuça, "Object-Oriented

Software Engineering: Measuring and Controlling the

Development Process”, Proceedings of the 4th International

Conference on Software Quality, McLean, Virginia, USA,

October 1994.

[3] F.B. Abreu, M. Goulão and R. Esteves, “Toward

the Design Quality Evaluation of Object-Oriented Software

Systems”, Proceedings of the 5th International Conference

on Software Quality, Austin, Texas, USA, October 1995.

[4] F.B. Abreu and W. Melo, “Evaluating the Impact of

Object-Oriented Design on Software Quality”, Proceedings

of the Third International Software Metrics Symposium,

IEEE, Berlin, March 1996.

[5] F.B. Abreu, R. Esteves and M. Goulão, “The

Design of Eiffel Programs: Quantitative Evaluation Using

the MOOD Metrics”, Proceedings of the TOOLS USA

Conference, Santa Barbara, July 1996.

[6] F.B. Abreu, Ochoa, L. and M. Goulão, “The

GOODLY Design Language for MOOD Metrics

Collection”, INESC/ISEG internal report (available at

http://albertina.inesc.pt/ftp/pub/esw/mood), March 1997.

 [7] V. Basili, L. Briand, W. Melo, “A Validation of

Object-Oriented Design Metrics”, Technical Report CS-TR-

3343, University of Maryland, Department of Computer

Science, May. 1995.

[8] M. Campanai, P. Nesi, "Supporting OO Design

with Metrics", Proceedings of TOOLS Europe 94, France,

1994.

[9] S.N. Cant, Brian Henderson-Sellers, D.R. Jeffery,

"Application of cognitive complexity metrics to object-

oriented programs", Journal of Object-Oriented

Programming, pp. 52-63, July-August 1994.

[10] Dennis de Champeaux, Penelope Faure, "A

Comparative Study of Object-Oriented Analysis Methods",

Journal of Object-Oriented Programming, vol. 4, n. 10, pp.

21-33, March / April 1992.

[11] S. Chidamber, C. Kemmerer, “A metrics suite for

object oriented design”, Center of Information Systems

Research (MIT), WP No. 249, July 1993 , also published in

IEEE TSE Vol. 20 (6), pp. 476-493, June 1994.

[12] N. I. Churcher, M. J. Shepperd, “Comments on ‘A

metrics suite for object oriented design’ “, IEEE TSE, Vol.

21 (3), pp. 263-265, 1995.

[13] Reiner Dumke, "A Measurement Framework for

Object-Oriented Software Development", submitted to the

Annals of Software Engineering, Vol. 1, 1995

[14] Bill Fay, Jim Hamilton, Viktor Ohnjec,

“Position/Experience Report”, Workshop on Pragmatic and

Theoretical Directions in Object-Oriented Software Metrics,

OOPSLA’94, Portland, USA, October 1994.

[15] Norman E. Fenton (editor), Software Metrics: A

Rigorous Approach, Chapman & Hall (UK) or Van

Nostrand Reinhold (USA), 1991.

[16] E. Gamma, R. Helm, R. Johnson, J. Vlissides,

Design Patterns: Elements of Reusable Object-Oriented

Software, Addison-Wesley, 1995.

[17] Trevor P. Hopkins, "Complexity metrics for quality

assessment of object-oriented design", SQM´94, Edinburgh,

July 1994, proceedings published as Software Quality

Management II, vol. 2: Building Quality into Software, pp.

467-481, Computational Mechanics Press, 1994.

[18] Institute of Electrical and Electronic Engineers,

“ANSI/IEEE P-1061/D21 - Standard for a Software Quality

Metrics Methodology”, 1990.

[19] International Organization for Standardization,

“ISO/IEC 14598 - Information Technology - Software

Product Evaluation”, ISO JTC1/SC7, 1995.

[20] International Organization for Standardization,

“ISO/IEC 9000 / Part 3 - Guidelines for the Application of

ISO 9001 to the Development, Supply and Maintenance of

Software”, ISO JTC1/SC7, 1991.

[21] International Organization for Standardization,

“ISO/IEC 9126 - Information Technology - Software

Product Evaluation - Quality Characteristics and Guide-

lines for their use”, ISO JTC1/SC7, 1991.

[22] John Lewis, Sallie Henry, Dennis Kafura, “An

Empirical Study of the Object-Oriented Paradigm and

Software Reuse", Proceedings of OOPSLA'91, ACM, pp.

184-196, 1991.

[23] W. Li, Sallie Henry, “Object-oriented metrics that

predict maintainability”, Journal of Systems and Software,

Vol. 23 (2), pp. 111-122, 1994.

[24] Walcélio Melo, Lionel Briand, Victor R. Basili,

“Measuring the Impact of Reuse on Quality and Productivity

in Object-Oriented Systems”, Technical Report CS-TR-

3395, University of Maryland, Dep. of Computer Science,

January 1995.

[25] L. Rising, F. Calliss, "An information hiding

metric”, Journal of Systems and Software, Vol. 26, pp. 211-

220, 1994.

[26] Brian Henderson-Sellers, "Identifying internal and

external characteristics of classes likely to be useful as

structural complexity metrics”, Proceedings of OOIS'94,

London, Dec.1994, Springer-Verlag, pp. 227-230, 1995.

[27] Peter Wegner, “Dimensions of Object-Oriented

Design”, Proceedings of the OOPSLA’87 Conference, pp.

168-182, October 1987.

[28] Horst Zuse, Software Complexity: Measures and

Methods, Walter de Gruyer, 1991.

