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ABSTRACT 

This paper includes a brief description of the author’s 

doctoral research work in Quantitative Methods applied to 

the Object-Oriented Software Engineering field. Previous, 

current and future research work are outlined. An overview 

of related work is also included. 
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INTRODUCTION 

The adoption of the Object-Oriented paradigm is expected to 

help produce better and cheaper software. The main struc-

tural mechanisms of this paradigm, namely, inheritance, 

encapsulation, information hiding and polymorphism, are 

the keys to foster reuse and achieve easier maintainability. 

However, the use of language constructs that support those 

mechanisms can be more or less intensive, depending mostly 

on the designer’s ability. In fact, the analysis to design 

transition is an activity which offers several degrees of 

liberty.  

Long before the OO languages became widespread, it was 

possible to build software with an OO flavor, using conven-

tional 3rd generation languages. Conversely, by simply using 

an OO language that supports those mechanisms we are not 

automatically favored with an increase in software quality 

and development productivity, because its effective use 

relies on the designer’s ability. Decisions on best alternatives 

are usually fuzzy and mostly based on expert judgment. 

Novice designers in particular, are exposed to a myriad of 

design decisions that surely affect the final outcome. We can 

then expect rather different quality products to emerge, as 

well as different productivity gains. Advances in quality and 

productivity need to be correlated with the use of those 

constructs. We then need to evaluate this use quantitatively 

(using design metrics) to guide the OO design process, for 

instance by means of design heuristics. 

Metrics can also help software managers in the scheduling, 

costing, staffing and controlling activities by allowing to 

build effort, schedule and reliability models. Quantitative 

approaches in software engineering are now fully recognized 

and included in standards like [18, 19, 20, 21].  

 

RELATED WORK 

Since the early days of computer science many approaches 

to quantify the internal structure of procedural software 

systems have emerged [28]. Some of those “traditional” 

metrics can still be used with the object-oriented paradigm, 

specially at the method level.  However, the need to quantify 

the distinctive features of this paradigm gave birth to new 

metric sets in recent years. Most of those metrics haven’t 

been experimentally validated yet. This validation step 

usually consists of correlation studies between internal 

(design) attributes and external (quality) attributes. A brief 

survey of known efforts in this area follows. 

Several research works in the OO design metrics arena were 

produced in recent years [8, 9, 11, 13, 17, 26]. However, 

there is a lack of experimental validation. Worse than that, 

there is scarce information on how the proposed metrics 

should be used. A better scenario can be found on the field 

of OO reuse metrics, where experimental studies like [22, 

24] were a step ahead. 

The MOOSE metrics proposed in [11] were validated in [7]. 

Besides discussing the metrics' advantages and drawbacks, 

the authors claim that several of them appear to be adequate 

to predict class fault-proneness during the early phases of the 

life-cycle. Nevertheless, some criticism on the MOOSE 

metrics’ imprecise and ambiguous definition (lack of lan-

guage bindings) were raised in [12]. 

In [23] the authors used an extension of the MOOSE set to 

build a regression model that is said to be adequate to 

predict changeability (effort of correcting or enhancing 

classes). The model was validated with data from two 

systems built with an object-oriented dialect of Ada. 

A metric proposed in [1], derived from the design 

information captured in class definitions for measuring the 
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number and strength of the object interactions, is claimed to 

be useful for predicting experts' design preferences. To 

validate the metric the authors used 9 sets of 2 or 3 design 

alternatives and compared the evaluations suggested by both 

the proposed metric and a panel of object-oriented design 

experts. They found out that the preferred alternatives were 

coincident in 80% of the cases. 

Module and system level metrics for information hiding are 

described in [25]. A validation experiment based on a 

system with approximately one million lines of Ada code (an 

object-based language according to [27]) is described. 

Results showed that those metrics were able to “discriminate 

between packages that are or are not likely to undergo 

significant changes”. On the other hand the authors 

recognize that the same experiment showed that there is no 

linear correlation between their information-hiding metric 

and change. 

There is also an increasing interest from OO CASE tool ma-

kers in design metrics. Output from the ROSE tool (which 

supports the Booch method), for instance, is being used at 

Rational [14] to derive object-oriented metrics. 

 

PREVIOUS WORK 

The MOOD metrics 

The participant has proposed the MOOD (Metrics for Object 

Oriented Design) set [2] which includes the Method and 

Attribute Hiding Factors (MHF and AHF), the Method and 

Attribute Inheritance Factors (MIF and AIF), the 

Polymorphism Factor (POF) and the Coupling Factor 

(COF). 

These metrics are defined at the system or subsystem1 level 

while in other approaches, such as the well know set 

proposed in [11], the metrics are defined at the class level. 

The criteria used in the MOOD set definition were: (1) 

coverage of the basic structural mechanisms of the object-

oriented paradigm as encapsulation, inheritance, polymor-

phism and message-passing, (2) formal definition to avoid 

subjectivity of measurement and thus allow replicability, (3) 

size independence to allow inter-project comparison, thus 

fostering cumulative knowledge and (4) language 

independence to broad the applicability of this metric set by 

allowing comparison of heterogeneous system imple-

mentations. 

Each MOOD metric is associated with such basic structural 

mechanisms of the object-oriented paradigm as encapsu-

lation (MHF and AHF), inheritance (MIF and AIF), 

polymorphism (POF) or message-passing and association 

(COF). The mathematical definition of each MOOD metric 

will be introduced after the underlying basic concepts are 

made clear. Each metric is expressed as a quotient where the 

numerator represents the actual use of one of those 

                                                           

1 - Collection of classes organized in some way to offer a given 

functionality as a whole. 

mechanisms for a given design. The denominator, acting as a 

normalizer, represents the hypothetical maximum achievable 

use for the same mechanism within the same universe of 

discourse that is, considering the same classes and 

inheritance relations. As a consequence, these metrics are 

expressed as percentages, ranging from 0% (no use) to 100% 

(maximum use) and thus are dimensionless. This avoids the 

misleading, subjective or "artificial" units that are often 

found in the metrics literature. 

Being formally defined, the MOOD metrics avoid sub-

jectivity of measurement and thus allow replicability. In 

other words, different people at different times or places can 

yield the same values when measuring the same systems. 

The MOOD metrics are also system size independent. This 

property allows inter-project comparison, thus fostering 

cumulative knowledge. 

The MOOD metrics definitions make no reference to 

specific language constructs. The language (in)dependence 

will broaden the applicability of this set of metrics by allow-

ing comparison of heterogeneous system implementations. 

The metrics definitions, along with their underlying concepts 

are included in next sections. 

Methods 

The MOOD concept of method is that of a wrapped piece of 

procedural code (the body) whose execution as a whole is 

triggered by some agent. This is done through an interface 

that is identified by a unique name (within a certain range) 

and which may contain some mechanism of interchange with 

the calling agent (such as parameters or returned values). 

Methods are used to perform operations of several kinds 

such as obtaining or modifying the status of objects. 

Attributes 

The MOOD concept of attribute is one of an independently 

identified data structure, either static or dynamic, transient or 

persistent, atomic or structured (e.g. record or array), which 

is used to store constants or variables. Attributes are used, 

among other things, to represent the status of each object in 

the system. 

Methods and Attributes Visibility 

The MOOD concept of visibility, associated with what is 

often referred to as the range or scope of an identifier, is 

related to the use of information hiding mechanisms. Each 

feature (method M or attribute A) is either visible or hidden 

from a given class C. If a feature is visible to a class C, then 

C can use that feature. Therefore, we can define the 

following logic function: 

is visible C M C
iff

j i

C may call M

otherwise
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The visibility of a feature is defined as the percentage of the 

system classes, other than the one where it was defined, for 

which that feature is visible. Supposing TC is the total 

number of classes in the system under consideration, then 

the visibilities of method M and attribute A, both defined in 

class Ci , are given by: 
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The denominator is the number of all classes except the one 

where the feature is defined. Function V may range from 

zero (the feature is hidden from all classes) to one (the 

feature is visible to all classes). 

For the purpose of MOOD measurement, changes in the 

visibility of inherited features are accounted for in the class 

where they were initially defined. In other words, changes of 

visibility in any descendent class will eventually increase the 

number of classes that can potentially use the feature. A 

similar situation arises when we have feature name clashing 

in multiple inheritance. The resulting visibility of a feature 

inherited from two or more classes, which had different 

visibilities in each ascending class, will be the union of the 

corresponding visibilities. 

Defined Features  

Features defined in a class are the ones whose declaration 

lies within that class. That includes the ones that are not 

implemented (deferred or external features). We then define 

the following functions for any given class Ci : 

M Cd i( )  = methods defined in Ci  

A Cd i( ) = attributes defined in Ci  

We are now able to introduce the Method Hiding Factor 

(MHF) and Attribute Hiding Factor (AHF) as: 
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New and Overriding Features 

A defined feature can be either a new or an overriding 

version of an inherited one. New features are the ones whose 

interface (name and/or parameters) is different from any 

inherited feature and thus do not override them. Overriding 

features are the ones that change the definition of inherited 

features. The following functions are then defined, for any 

given class Ci : 

M C M C M Cd i n i o i( ) ( ) ( )  = methods defined in Ci  

A C A C A Cd i n i o i( ) ( ) ( )   = attributes defined in Ci  

where: 

M Cn i( ) = new methods in Ci  

M Co i( ) = overriding methods in Ci  

A Cn i( )= new attributes in Ci  

A Co i( )= overriding attributes in Ci  

Polymorphic Features 

An important characteristic of the object-oriented paradigm 

is polymorphism2. This characteristic is such that a given 

message sent to class Ci  can be bound (statically or dy-

namically) to a named method implementation in Ci  or one 

of its descendants. Thus, the message recipient can have as 

many distinct implementations as the number of times this 

same method is overridden in Ci  descendants. We then 

define the Polymorphism Factor (POF) as: 

 

POF
M C

M C DC C
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The numerator represents the actual number of possible 

different polymorphic situations. The denominator repre-

sents the maximum number of possible distinct polymorphic 

situations for class Ci . This would be the case where all new 

methods defined in Ci  would be overridden in all its descen-

dants. 

Inherited Features 

Inherited features in a class Ci  are those which are inherited 

                                                           

2 - From the ancient Greek “poly” (several) and “morphos” (shapes). 



and not overridden in that class. An inheritance relation, for 

instance Cd  inheriting from Ca , is represented by 

C Cd a . We then define the following functions: 

M Ci i( )  = methods inherited in Ci  

A Ci i( ) = attributes inherited in Ci  

Available Features 

Available features (methods or attributes) in a class C are the 

ones that can be used in association with C. Available 

features are the defined plus the inherited ones. We then 

define the following functions: 

M C M C M Ca i d i i i( ) ( ) ( )   = available methods in Ci  

A C A C A Ca i d i i i( ) ( ) ( )   = available attributes in Ci  

Now we can introduce the Method Inheritance Factor (MIF) 

and the Attribute Inheritance Factor (AIF): 

MIF
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Coupling 

Coupling is due to the representation of associations 

between classes (static coupling) and message exchanges 

between their instances (dynamic coupling). It can be 

identified by the existence of several kinds of references. In 

MOOD a class Cc  is said to be a client of another class Cs  

(the supplier) and is represented by C Cc s  if Cc  

contains at least one non-inheritance reference to Cs . A 

reference can be made in an attribute or method argument 

type, a local method type (returned value) or even a call to a 

method belonging to the supplier class. 

Clientele is represented by the is_client logic function. For 

the sake of simplicity, clientele shape and strength (number 

of references made to the client class) are not considered. 

Therefore we have: 

 

is client C C
iff C C C C

otherwise
c s

c s c s
_ ( , ) 
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The Coupling Factor (COF) is then defined as: 

 

COF
is client C C

TC TC

i jj

TC

i

TC




  _ ( , )
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The numerator represents the actual number of couplings 

not imputable to inheritance. The denominator is the 

maximum possible number of non-inheritance couplings in a 

system with TC  classes. 

 

Metrics Extraction 

MOODKIT G1, a tool to extract MOOD metrics from C++ 

or Eiffel source code was built and is being or was used by 

research teams in Portugal, UK (University of Southampton) 

and USA (University of Maryland). It uses specific “stubs”, 

based on language parsers, for extracting the design metrics 

directly from those OO languages (by reverse engineering). 

As previously mentioned the MOOD metrics are supposed to 

be fairly implementation language independent. To achieve 

this independence the adopted approach was to develop 

bindings between MOOD and each specific language (e.g.: 

C++ [3] and Eiffel [5]). These bindings include (1) a 

mapping of concepts and terminology between MOOD and 

the language under consideration and (2) a description of 

how basic measures needed to compute MOOD metrics can 

be extracted from code written in that language. 

One of the research goals was to conduct experimental 

validation on MOOD metrics by evaluating the impact of 

OO design on software quality characteristics such as 

reliability and maintainability. Using MOODKIT G1 (v1.0), 

the candidate made an extensive evaluation of available sys-

tems (C++ class libraries) and derived some design 

heuristics using a filter metaphor [3].  

An experiment conducted at the University of Maryland [4] 

evaluated the impact of object-oriented design (expressed by 

the MOOD metrics) on resulting software quality attributes 

(defect density and rework). The results achieved so far 

allow to infer that in fact the design alternatives may have a 

strong influence on resulting quality. Quantifying this 

influence can help to train novice designers by means of 

heuristics [3] embedded in design tools. Being able to 

predict the resulting reliability and maintainability is very 

important to project managers during the resource allocation 

(planning) process. This work was a small step toward the 

understanding of how software designs affect resulting 

quality. 

 

CURRENT WORK 

MOODKIT G2 has a different architecture from its 

predecessor. It extracts the MOOD metrics from an OO 

design language also proposed by the candidate  [6]. This 

language, named GOODLY (a Generic Object Oriented 

Design Language? Yes!), embodies information about class 

features (state and operations), relations between classes 

(inheritance, static coupling and dynamic coupling) and 

features scope. Parsers for extracting design information 

(GOODLY specifications) from several widely used OO 

languages such as Smalltalk, C++, Java and Eiffel are being 

developed. 

This new architecture allows to redefine and extend the 



design metrics set without the burden of changing the several 

OO language parsers (drawback in MOODKIT G1). 

Further empirical validation experiments with a larger 

sample of projects and using MOODKIT G2 with GOODLY 

are planed for the near future. 

 

A MOOD2 metrics set is currently being defined as a result 

of the opinions gathered and limitations perceived while 

using the original MOOD set. Among other things the 

candidate is trying to apply theoretical validation to the 

MOOD metrics by using Measurement Theory [15, 28]. This 

research action intends to answer questions such as: 

 What kinds of operations can we perform with MOOD 

metrics? 

 Can MOOD metrics be combined to express complexity 

in some way? 

 What kind of meaningful statements can be made about a 

system who has a certain value for a given MOOD metric? 

 Can we build valid relationships between the MOOD 

metrics (based on internal measurements) and external 

quality characteristics like reliability, maintainability or 

testability? 

 

FUTURE WORK 

I) MOOD Metrics in the Analysis Phase 

Metrics should be collected and used to identify possible 

flaws as early as possible in the life-cycle, before too much 

work is spent based on them. It is a well known fact that the 

effort of correcting and recovering from those defects 

increases non-linearly with elapsed project progress since 

they were committed. Looking at the analysis instead of 

design would then be a step forward towards cost-

effectiveness. The object-oriented paradigm is supposed, at 

least theoretically, to allow a seamless analysis-design-

coding transition. Many analysis and design methods have 

emerged [10] in the past few years, with their own 

diagrammatic representations of differently named 

abstractions representing not-so-different basic concepts. 

This plethora gave birth to tools, such as ParadigmPlus or 

ObjectMaker, supporting multiple analysis and design 

methods. These tools map the information extracted from the 

distinct diagrams used by those different methods into a 

common repository, thus allowing diagrammatic con-

versions. From those kind of repositories the candidate plans 

to generate GOODLY specifications (forward engineering). 

 

II) Design Patterns Complexity 

Object-oriented design patterns [16] are currently a very 

active research field. They seem to be the yellow brick road 

to the promised reuse-land. Substantial increases in quality 

and productivity are expected to happen if software 

developers really start using these new “bricks”. However, 

the patterns’ adoption greatly depends on their complexity, 

adaptability, functionality and reliability. All those charac-

teristics must be quantitatively evaluated in order to define 

acceptance criteria, assess reuse potential and risk or 

compare different pattern implementations for similar 

functionalities. 

If a pattern has an high complexity, potential users will not 

understand it and their adoption will be jeopardized. 

Measuring and establishing reasonable limits for a pattern’s 

complexity seems to be a must. A generic OO complexity 

metric is expected to be built upon a combination of the 

MOOD metrics. 

The functionality offered by a pattern represents its power to 

solve a certain category of problems. Some patterns have a 

much wider coverage than others in the sense that they can 

solve a given problem in many different contexts.  

Patterns are not supposed to be used “as is” (verbatim 

reuse). Instead, they are supposed to be somehow configured 

or adapted (leverage reuse) to solve a particular problem of 

the system under construction. Therefore, their degree of 

adaptability should also be quantified. A reduced 

configuration capability would degrade the pattern’s desired 

generality. Too much flexibility, on the other hand, would 

surely depend on several compromises which would 

sacrifice efficiency and memory usage optimization, provoke 

inadmissible increase in complexity and eventually produce 

undesirable side-effects. 

The unreliability of a system that was built using an adopted 

pattern can be originated in the pattern itself or outside of it. 

Testing different systems with embedded patterns and 

selecting only the faults which depend on the patterns 

inclusion, should allow us to correlate them with the 

pattern’s complexity. From there we can build predictive 

models for reliability or/and redesign patterns for an 

increased reliability. 
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