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ABSTRACT

This paper is part of the ICLR Reproducibility Challenge 2019. We tried to repli-
cate the results and algorithm for training an iterative partial differential equation
solver by interpreting the solver as a linear convolutional neural network and opti-
mizing the weights of the convolutional kernels. We can replicate the results of the
original paper Hsieh et al. (2019)1, obtaining a general solver, which generalizes
well to a wide variety of geometries and boundary conditions, while achieving
high speed ups compared to the baseline solver and guaranteeing convergence.2

1 INTRODUCTION

Partial differential equations (PDEs) are differential equations which contain a-priori unkown multi-
variable functions and their partial derivatives. They are used to model various physical phenomena,
such as heat, fluid dynamics or quantum mechanics. There are several numerical methods to solve
PDEs. A common one is the finite-difference method (FDM), which approaches the differential
equation by discretizing the problem space and converting the PDE to a system of linear equations.
The obtained linear system can be solved using an iterative procedure which updates the solution
until convergence is reached.

The original paper proposes to use machine learning techniques in order to find high performing
update rules instead of designing them by hand Hsieh et al. (2019), while still guaranteeing conver-
gence. In order to fulfill these requirements the learned solver is an adapted existing standard solver,
from which the convergence property is inherited by enforcing that a fixed point of the original solver
is a fixed point for the trained solver as well. We stress that the goal is not to find a new solver, but
to optimize an existing one. To be precise the learned part operates with the residuals after applying
the standard solver. This construction allows application to other existing linear iterative solvers of
equivalent design.

Since a linear iterative solver can be expressed as a product of convolutional operations, it is not
far fetched to use the similar techniques used in deep learning in order to find such an optimal
operator. In order to test this approach a solver was trained to solve a 2D Poisson equation on a
square-shaped geometry with Dirichlet boundary conditions. This solver is then tested on larger
geometries of two shapes and different boundary values. No significant loss of performance was
observed; generalization is thus reached.

For more information we kindly refer to the original paper Hsieh et al. (2019).

2 BACKGROUND

In this section, we give a short introduction to the Poisson problem and iterative solvers, which will
help to understand the justification of using a convolutional neural network to obtain a solver.

1We based our this report on the version from the 10 October 2018. We noted no differences to the newest
version from the 23 November 2018 with regard to this report.

2The code, written in Python using PyTorch, can be found on Github: https://github.com/
francescobardi/pde_solver_deep_learned
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2.1 POISSON EQUATION

The Poisson equation is a second order linear partial differential equation (PDE). In order to guar-
antee the existence and uniqueness of a solution, appropriate boundary conditions needs to be pre-
scribed [Gilbarg & Trudinger (2001)]. In this paper only Dirichlet boundary conditions were con-
sidered. The Poisson problem hence reads:

Find u : Ω = Ω ∪ ∂Ω→ R s.t

{
∇2u =

∑
i

∂2

∂x2
i

= f(x) in Ω

u = b(x) on ∂Ω
(1)

Where Ω ⊂ Rk is a bounded domain with boundary ∂Ω. More specifically we consider Ω = [0, 1]2.

2.2 FINITE DIFFERENCE METHOD

In order to solve complex, real-world PDEs a numerical approach must be used, as analytic solutions
can seldomly be found. As a first step the problem is discretized by transforming the solution space
from u : Rk → R to uh : Dk → R, where Dk is a discrete subset of Rk. In this paper k = 2 and
denoting by N the domain size, we introduce a regular grid Ωh ⊂ Dk on Ω:

Ωh = {xi,j = (ih, jh) i, j = 0, ..., N − 1}
Ωh = {xi,j = (ih, jh) i, j = 1, ..., N − 2}
∂Ωh = Ωh \ Ωh

with h = 1/(N − 1) and denoting by Ωh the interior points, and by ∂Ωh the boundary points.
Equation 1 can be approximated as follows, discretizing and approximating∇2:

Find uh : Ωh → R s.t.

{
1
h2 (ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4ui,j) = fi,j in Ωh

ui,j = bi,j in ∂Ωh

(2)

It can be shown that the discrete approximation in equation 2 is stable and that ||u − uh||L2 ≤ ch2

with c being a constant (Thomas (1995)). Introducing a matrix A ∈ RN2×N2

and a vector f ∈ RN2

problem definition 2 can be written as a linear system:
Au = f (3)

With A being a pentadiagonal matrix:

Ai,j =


1 if i = j,

− 1
4 else if j ∈ {i± 1, i±N},

0 else

and defining i? = bi/Nc, j? = (i mod N) we have:

fi =
h2

4
f(xi?,j?)

In order to prescribe the boundary conditions we introduce a reset operator G:

G(u, b) = Gu + (I −G)b

where G ∈ RN2×N2

is a diagonal matrix and b ∈ RN2

is the boundary values vector:

Gi,i = 1, bi = 0 xi?,j? ∈ Ωh

Gi,i = 0, bi = b(xi?,j?) xi?,j? ∈ ∂Ωh

We note that the proposed approach to enforce boundary conditions is restricted to iterative meth-
ods solving linear systems equivalent to equation 3. Moreover we have not investigated how this
approach can be generalized to other type of boundary conditions other than Dirichlet or to different
iterative methods such as the Gauss-Seidel method.
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2.3 ITERATIVE SOLVERS

A linear iterative solver finds the solution of a linear system by iteratively updating an initial solution
guess u0. The updating step can be expressed as:

uk+1 = Tuk + c

Where T is a constant update matrix and c is a constant vector. A common approach to build T and
c is to split A into A = M −N and by rewriting Au = f as Mu = Nu + f the following
updating rule naturally arises:

uk+1 = M−1Nuk + M−1f

For more details we refer readers to LeVeque (2007) or to Hsieh et al. (2019).

2.3.1 JACOBI METHOD

Setting M = diag(A) leads to the so called Jacobi method. In the case of the Poisson problem
M = I and T = I − A, hence relying on the previously introduced reset operator the Jacobi
method reads:

uk+1 = Ψ(uk)

= G((I −A)uk + f , b)

= G((I −A)uk + f) + (I −G)b

= G((I −A)uk + f − b) + b

The Jacobi method can also be implemented by convolution and point-wise operations, as we explain
in the following. We define by ωJ ∗ u the 2D convolution with zero padding of the kernel ωJ and
u ∈ RN×N , with:

ωJ =

(
0 1/4 0

1/4 0 1/4
0 1/4 0

)
We can also define a new reset operator G denoting by ◦ the Hadamard product:

G(u, b) = G ◦ u + b

where G, b ∈ RN×N :

Gi,j = 1, bi,j = 0 xi,j ∈ Ωh

Gi,j = 0, bi,j = b(xi,j) xi,j ∈ ∂Ωh

Finally the Jacobi method can be written as

uk+1 = Ψ(uk)

= G(ωJ ∗ uk + f , b)

= G ◦ (ωJ ∗ uk + f) + b

3 LEARNING PROCESS

We want to find an operator H to optimize the convergence of the Jacobi method for the Poisson
problem of the form:

uk+1 = ΦH(uk)

= Ψ(uk) +H(Ψ(uk)− uk)
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We defineH as the composition of K operations:

H(w) = HK ...(H3(H2(H1(w))))...)

Hi(w) = G ◦ (ωi ∗w)

As in the Jacobi method ωi ∗w represents a 2D convolution with zero padding and no bias term of
a 3 × 3 kernel ωi with w. The operation with G ensures that the residuals are always zero at the
boundary points.

3.1 INTERPRETATION OF H

The operator H can also be expressed as a matrix vector multiplication. We call H ∈ RN2×N2

the
equivalent matrix:

H = GHKGHK−1...GH1

Hi is a banded matrix which is obtained from the corresponding 3× 3 kernel ωi as follows:

Hi,i−N−1 = ω0,0 Hi,i−N = ω0,1 Hi,i−N+1 = ω0,2

Hi,i−1 = ω1,0 Hi,i = ω1,1 Hi,i+1 = ω1,2

Hi,i+N−1 = ω2,0 Hi,i+N = ω2,1 Hi,i+N+1 = ω2,2

So the new method can be written using only matrix multiplications as:

uk+1 = ΦH(uk) = Ψ(uk) + H(Ψ(uk)− uk)

This interpretation is useful because if the following holds:

ρ(GT + H(GT − I)) < 1 (4)

then the method is guaranteed to convergence to a fixed point. Which can be used during training
time to enforce the convergence requirement.

4 TRAINING AND GENERALIZATION

4.1 TRAINING

In order to find the optimal operator H the corresponding linear neural network is created. Each
2D convolutional layer has a kernel size 3 × 3 and zero bias, without any activation function. The
training phase is done on a set of Poisson problem instances D. A problem instance is uniquely
defined by G, f , and b. We set f = 0 and we use a square domain with a 16 × 16 grid. Each side
exhibits a different but constant boundary value chosen from a uniform distribution on the interval
[-1, 1]. For each problem instance the error between the ground truth solution u?(G,f , b) and
the computed solution using ΦH with k iterations contributes to the loss function. The ground truth
solution is obtained using the Jacobi method operator Ψ with a sufficiently high number of iterations
k = 2000. The optimization objective is then defined as:

min
H

∑
G,b,f∈D;k∈DU(1,20)

∥∥∥Φk
H(u0,G,f , b)− u?(G,f , b)

∥∥∥2
2

(5)

With k ∈ DU(1, 20) we denote the sampling of k from a discrete uniform distribution on the interval
[1, 20]. The initial guess u0 is sampled from a Gaussian distribution: u0 ∼ N (0, 1). We have not
enforced the any constraint to guarantee that the obtained operator ΦH converges to a fixed point.
Since it is not possible to express analytically the spectral radius in Inequality 4 it is not clear how a
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regularization term could be added to the objective function. A possible solution would be to check
the spectral radius at each iteration and if > 1 under-relax the weights of the convolutional kernels
ωi. However this technique is highly computationally expensive since it requires to compute the
eigenvalues of a N2 × N2 matrix at each iteration. We showed however that empirically, without
explicitly enforcing this constraint, the optimization yields an operator ΦH which indeed converges
for the tested problems.

4.1.1 OPTIMIZER

We are using Adadelta as the optimizer of our model, because of its ability to adapt over time and
its minimal computational overhead. The method requires no manual adjustment of a learning rate
and is robust to various selection of hyperparameters. Adadelta adjusts the learning rate by slowing
down learning around a local optima, when the accuracy changes by a small margin. Adadelta
also uses the idea of momentum to accelerate progress along dimensions in which the gradient
consistently point in the same direction. This idea is implemented by keeping track of the previous
parameter update and applying an exponential decay with a decay factor of ρ = 0.9 (Zeiler (2012)).

Table 1: Parameters used in the training process.
Grid size N ×N 16× 16

Number of problems |D| 50
Batch size |B| 10
Max epochs 1000
Tolerance 1e-6
Optimizer Adadelta

ρ 0.9

The training was done with batch optimization of size |B| = 10. At each epoch the set of problem
instances D is randomly split in d|D|/|B|e subsets. The loss for these batches is defined as the sum
over all losses in the batch. The pseudo code for our training process is given in Algorithm 1.

Parameter: ConvNetH
Data : G,b,f
Result : Optimal ConvNetH
for {G,f , b} ∈ D do

Compute u?(G,f , b)
Randomly sample ki from DU(1, 20)
Sample u0 from a Gaussian with µ = 0 and σ = 1

end
repeat
D? ← randomly split D in d|D|/|B|e subsets
for B ∈ D? do

lossbatch ←
∑

p∈B

∥∥∥Φk
H(p)− u?(p)

∥∥∥2
2

Compute the gradient of the loss function
Update weights ofH

end

lossepoch ←
∑

p∈D

∥∥∥Φk
H(p)− u?(p)

∥∥∥2
2

until ‖lossepoch−1 − lossepoch‖ < Tolerance;

Algorithm 1: Training Process

4.2 HYPER PARAMETER SEARCH

In order to find the optimal number of layers and learning rate a simple grid search is performed. As
a first step we fix the number of layers K = 3 and compare the loss evolution for different learning
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rates γ. From Figure 1 it is evident the the loss decay is highly dependent on the choice of the
learning rate. For γ small the loss tends to converge to what probably is a local minimum while for
high values it can lead to divergence problems; note that in Figure 1 the loss for γ = 1e − 4 is not
displayed since the optimization diverged.
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Loss evolution for different learning rates γ 
 K=3, || = 50, || = 10, max epochs=200

γ=1.00e−06
γ=2.15e−06
γ=4.64e−06
γ=1.00e−05
γ=2.15e−05
γ=4.64e−05
γ=1.00e−04
Adadelta

Figure 1: Loss evolution for different learning rates

We hence decided to use the Adadelta optimization method for its ability to adapt to the specific
problem. We report in Table 1 the parameters used for the training process. The number of layers K
chosen was from 1 to 5. Figure 2 compares the loss evolution for the different models. It is evident
that the improvement on the total loss at convergence diminishes with K increasing, in particular it
seems that there is not a substantial difference when k > 3.
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Loss evolution for different K 
 || = 50, || = 10, Adadelta, max epochs=1000
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Figure 2: Loss evolution for different number of layers K

5 EXPERIMENTS & RESULTS

The hypothesis of the original paper is that a general solver can be found by training on simple
domains. The simplest Laplace equation∇2u = 0 on a square boundary shape was therefore chosen
as training data. The model was trained on 16× 16 grid, and evaluated on grids of size 32× 32 and
64 × 64 for both a square and an L-shaped domain. The L-shaped domain is created by removing
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Figure 3: Error evolution w.r.t. solver iterations for different number of layers K
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Figure 4: Example solutions for the two domains.

a smaller square from one of the edges. Each side exhibits a different but constant boundary value
chosen from a uniform distribution on the interval [-1, 1]. Thus an L-shaped domain has 6 different
boundary values. The ground truth solution is obtained using the Jacobi method with a sufficient
number of iterations k = 5× 104. See Figure 4 for an example solution.

In Figure 3 we shows how the error w.r.t the ground truth solution evolves with the number of
iterations k for the obtained solvers (K = {1, 2, 3, 4, 5}) and the Jacobi method. The learned solvers
clearly outperform the Jacobi method, however we need better metrics in order to fairly compare the
different models.

Both solvers were evaluated on three metrics: the number of iterations, ratio of FLOPS and ratio
of CPU-time until required tolerance is reached. The number of flops were calculated assuming
both solvers would be implemented using convolutional operators. This results in 4 multiply-add
operations for each element in the grid for the Jacobi iteration, whereas the learned solvers exhibit
4 + 9K multiply-add operations. This is the same measurement as reported in the original paper,
which is an estimation of the FLOPS taken. In addition to the paper we measured the CPU-time,
which deemed us to be a less error-prone and more reliable measure, nevertheless both ratios gave
comparable results.

As can be seen in Table 2 the trained solver was considerably faster than the existent solver, showing
a much quicker conversion than the baseline model. Thus replicating the given results in the original
paper. The highest speed-up is achieved by the 5-layer network.
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Table 2: Test results of solver trained on a 16× 16 grid with Adadelta as optimizer. Sample size for
each test of 20, number of iterations was counted until a difference to the ground truth solution of
1e− 6 or a convergence difference of 1e− 12 were achieved. Shown are the mean and the standard
deviation.

ratios: trained solver
existent solver

K Grid size Geometry FLOPS CPU time [s] #iterations k

1
32 l shape 0.688± 0.001 0.308± 0.064 0.212± 0.000

square 0.688± 0.000 0.332± 0.097 0.212± 0.000

64 l shape 0.689± 0.001 0.351± 0.053 0.212± 0.000
square 0.686± 0.011 0.327± 0.025 0.211± 0.003

2
32 l shape 0.518± 0.001 0.161± 0.032 0.094± 0.000

square 0.518± 0.001 0.171± 0.051 0.094± 0.000

64 l shape 0.521± 0.001 0.165± 0.026 0.095± 0.000
square 0.519± 0.008 0.183± 0.031 0.094± 0.001

3
32 l shape 0.421± 0.001 0.106± 0.012 0.054± 0.000

square 0.421± 0.001 0.101± 0.013 0.054± 0.000

64 l shape 0.426± 0.001 0.115± 0.017 0.055± 0.000
square 0.425± 0.007 0.116± 0.019 0.055± 0.001

4
32 l shape 0.401± 0.002 0.109± 0.028 0.040± 0.000

square 0.401± 0.002 0.095± 0.022 0.040± 0.000

64 l shape 0.408± 0.001 0.097± 0.013 0.041± 0.000
square 0.407± 0.007 0.098± 0.016 0.041± 0.001

5
32 l shape 0.402± 0.002 0.078± 0.016 0.033± 0.000

square 0.402± 0.002 0.083± 0.016 0.033± 0.000

64 l shape 0.412± 0.001 0.088± 0.012 0.034± 0.000
square 0.410± 0.007 0.091± 0.023 0.033± 0.001

6 RELATED WORK

Recently, there have been several works on applying deep learning to solve the Poisson equation.
However, to the best of our knowledge, previous works used deep networks to directly generate the
solution; they have no correctness guarantees and are not generalizable to arbitrary grid sizes and
boundary conditions. This is the reason why our work was focused on reproducing the results of
Hsieh et al. (2019), and on empirically proving the generalization of their model to arbitrary shapes
and grid sizes.

7 CONCLUSION & FUTURE WORK

We could partially confirm the results reported in the original paper, not every result was repro-
ducible either through lack of time or certainty in how these results were achieved or measured. The
trained solver was able to generalize well to the presented different sizes, geometries and boundary
values, while using less resources compared to the standard solver.

In the future work we would like to improve the design of the solver and the experiments in order
to gain more confidence in the presented approach. For example H is fixed for each iteration, one
could imagine a solver with differentH for different iterations up to a certain threshold. We did not
have the opportunity to test the solver using the MultiGrid method, nor the square-Poisson problem.
It is not clear how the cylinder domain was implemented in a finite difference framework, whether
radial coordinates or a non uniform grid were used.
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We estimate that investigating how this approach can be generalized to other type of boundary
conditions other than Dirichlet or to different iterative methods such as the Gauss-Seidel method
would lead to interesting results and a more applicable approach in general, as well as trying to
solve different PDEs.
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