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It is argued that duality symmetry of the generalized Maxwell’s equations (with magentic sources) can be gauged
in the usual way, and that arguments against incorrectly assume a particular form of potential or Lagrangian.
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1 Maxwell’s Equations

An electromagnetic field F is a bivector valued field with
vanishing curl. The four Maxwell equations are a con-
sequence of this statement and are given by the single
equation[1]

∇F = J, (1)

where

F = E + IB (2)

is a frame dependent decomposition of F into a timelike
bivector E and spacelike bivector IB. In general,

J = Je + IJb, (3)

where Je = ∇ · F is a vector and IJb = ∇ ∧ F is a
trivector. As suggested by notation, Je is the electrical
current density, and Jb is a hypothetical magnetic current
density.

The restriction that F has vanishing curl

∇∧ F = 0 (4)

is the same as requiring that Jb = 0. The “generalized”
Maxwell’s equations, without the constraint that Jb = 0,
are solely determined by the fact that F is a bivector. In
other words, any bivector field contains a decomposition
into electric and magnetic parts that satisfy the general-
ized Maxwell’s equations (Equation 1).

2 Generalized Potentials

By allowing F to be an arbitrary bivector field, it can be
defined in terms of a potential M as

F = 〈∇M〉2, (5)

where the brackets are an indication to only take the
bivector part of ∇M .
∇M only contains even grade terms if M contains odd

grade terms. Assuming M contains no even terms (which
would have no contribution to F ), it is of the form

M = Me + IMb, (6)

where Me is a vector and IMb is a trivector such that

F = Fe + Fb = ∇∧Me +∇ · IMb, (7)

which ensures that the electric and magnetic source
terms

Je = ∇ · (∇∧Me) and Jb = ∇∧ (∇ · IMb) (8)

are sourced by the corresponding vector potentials Me

and Mb. Note that M is the usual electromagnetic poten-
tial when Mb = 0.
F is invariant under

M 7→M −∇φ, (9)

where

φ = φe + Iφb, (10)

for scalar and pseudoscalar fields φe and Iφb. A similar
construction can be found in [3]. [2] showed that any mul-
tivector field F has an anti-derivative if it is integrable,
so we can be assured that the M actually exists. Fur-
thermore, we are guaranteed that the antiderivative M
satisfies

F = ∇M = ∇∧Me +∇ · IMb (11)

which automatically comes with the constraints

∇ ·Me = ∇∧ IMb = 0, (12)

which is just the Lorenz gauge for both electric and mag-
netic potentials. M is given explicitly by a generalized
Cauchy’s integral formula [2]

M(x) =

∫
G(x, x′)F (x′)|dmx′|−

∮
G(x, x′)n−1dm−1x′M(x′),

(13)
where n is the unit normal and G is the green’s function

for ∇.
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3 Duality Transformations

A duality rotation of F

F 7→ FeIφ = cos(θ)E − sin(θ)B + I(B cos(θ) + E sin(θ)),
(14)

mixes up electric and magnetic fields. If this is a
global, constant transformation, then Equation 1 is in-
variant given an identical transformation of J

J 7→ JeIφ, (15)

which mixes up electric and magnetic sources. Because
of this mixing of electric and magnetic sources, the duality
transformation does not preserve the physical content of
the theory, and so cannot be considered a true symmetry
of the equation (unless J = 0). On the other hand, dual-
ity transformations are a formal symmetry of Equation 1.
And seeing that the presence of magnetic sources already
challenges the physical integrity of J , it is arguably less
wrong to call it a symmetry in the general case where J
includes magnetic sources.

For the case J = 0, duality is a true global symmetry
of Equation 1, so one might ask whether this symmetry
can be promoted to a local symmetry. Interestingly, while
Equation 1 with J = 0 is invariant under duality transfor-
mations, the traditional (sourceless) Lagrangian

Le =
1

2
〈F 2
e 〉. (16)

is not (brackets denote the scalar part). This has caused
some confusion regarding the possibility of gauging duality
symmetry.

Additionally, [4] reviewed attempts of [5], [6], and [7] to
gauge this symmetry. [6] and [7] concluded that duality
symmetry could not be gauged, in contradiction to the
result of [5], who arrived at the equation

∇F = IAF, (17)

where JA ≡ IAF behaves like a current, including mag-
netic sources.

[4] concluded that the discrepancy between these results
was due to the fact that [6] and [7] required preservation
of gauge invariance, whereas [5] failed to consider this (i.e.
that the gauging process breaks gauge invariance of the
original field).

However, the potential used in the argument of [4] was a
complex 3-vector potential, which is guaranteed to satisfy
the vacuum equations. Failure of gauge invariance is to
be expected, seeing that Equation 17 involves the electric
and magnetic current density JA.

The confusion is cleared up by introduction of a full
multivector valued potential M — a potential for both
electric and magnetic sources. By a similar method, [3]
and [10] constructed dual symmetric Lagrangians.

Ultimately, the no-go conclusions reached by [6] and [7]
were due to the fact that the resulting gauge field intro-
duces both electric and magnetic sources into the Equa-
tion 1. This is the reason for loss of gauge invariance and
related to the lack of local symmetry at the level of the
action.

[4], [5], [6], and [7] only considered the vacuum equa-
tions. A potential for a vacuum field does not admit
sources, so the vacuum gauge field description cannot con-
tinue to be used after gauging. Hence, loss of gauge in-
variance.

The usual (sourceless) Lagrangian given by Equation 16
fails to be symmetric because it’s missing its “magnetic”
counterpart. A dual symmetric Lagrangian (for the vac-
cum equations) can be written[3]

L =
1

2
〈F 2
e + F 2

b 〉. (18)

[9] constructed a dual symmetric Lagrangian by a differ-
ent method and arrived at the same equations as [5] and
generalized the result for the case where J 6= 0.

Note that the lack of symmetry of Equation 16 is a dis-
tinct issue from the loss of gauge invariance. To maintain
gauge invariance, the potential must be promoted to a full
multivector as in Equation 6.

Here, we will present a derivation of the results of [9] at
the field level, directly from Equation 1, without assuming
Equation 4. If we allow duality transformations to vary,
letting φ = φ(x), then we will pick up an extra term in
the derivative

∇(FeIφ) = ∇FeIφ − I∇φFeIφ, (19)

where the negative sign is due to the fact that the pseu-
doscalar I anticommutes with ∇.

We can construct a covariant derviative D with an
added gauge field that transforms in such a way to absorb
the contributions of this local symmetry to the derivative.
Namely, D must transform so that

D′F ′ = D′(FeIφ) = DFeIφ. (20)

To accomplish this, we’ll tack on a term to the derivative

D = ∇− IA (21)

that transforms as

A 7→ A′ = A−∇φ (22)

in tandem with duality transformations. The quantity
A must be the same grade as ∇φ, so it is a vector whose
curvature FA = ∇∧A satisfies Maxwell’s equations with-
out magnetic sources.1 Equation 22 is equivalent to

D 7→ D′ = D + I∇φ, (23)

1Actually, it could technically include a trivector term and pre-
serve the form of the equation. It may be interesting to try gauging
duality plus “scaling” transformations of the form eφb+Iφe .
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which ensures Equation 20 holds, yielding the equation

∇F − IAF = J. (24)

Equation 24 is the same as the result of [9], as well as
[5] for the case J = 0.

IA itself is a pseudo-vector, and was correctly identified
to transform as such by [5] and [9]. Due to its transforma-
tion properties, [5], [11], and [8] proposed that it gave rise
to long-range spin interactions mediated by an axial vector
boson (they called it an “axial photon”). [9] drew connec-
tions to axion electrodynamics. [10] constructed identified
a relation to electroweak gauge fields.

Identifying the gauge field

IA = ∇Ia, (25)

where Ia is a pseudoscalar “axion” field, and requiring
Jb = 0 and A · F = 0 results in the equations of axion
electrodynamics:

∇F = Je + (∇Ia) · F. (26)

Interestingly, in this case, A = −∇a is a gradient of a
scalar field, which implies that the curvature FA = ∇∧A =
0. Normally, this field would be considered to be absent
of physical content.

The fact that IA is a trivector is expected when com-
pared with the U(1) gauge theory in quantum mechanics.
Gauge theory usually involves operators i∂µ instead of just
∂µ. In this case, the pseudoscalar I takes on the dual roles
of the unit imaginary i, since I2 = −1 and of the duality
(Hodge) map between vectors and pseudo-vectors.

The replacement

D 7→ −ID = −I∇−A = γµ(I∂µ −Aµ) (27)

places the gauging procedure performed here and in
quantum mechanics on comparable footing, and we can
see that the gauge field here is no different from the U(1)
gauge field of electromagnetism in Dirac theory.

This raises the question of whether the field A can be
identified directly with an electromagnetic field. From this
perspective, the gauge field would not give rise to a new
“axial photon,” as suggested by [5], [11], and [8]. The
gauge boson would simply be a photon. In which case,
Equation 24 would describe a pair of coupled electromag-
netic fields F and FA = ∇ ∧ A interacting non-linearly.
Physically comprehensible interactions that do not involve
magnetic sources would be described by the equation

∇F − IAF = Je, (28)

where the pseudovector part ∇ ∧ F − IA · F = Jb = 0
vanishes. However, Je would necessarily pick up magnetic
source terms under a gauge transformation, so the above
gauge field must be fixed.
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