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The antiderivative of a divergence free multivector field is shown to be curl free up to a harmonic function. This
result implies that any vector valued current density J that is divergence free possesses a bivector valued antiderivative
F that satisfies ∂F = J under suitable boundary conditions. In four dimensions, this is Maxwell’s equation. This
reinforces an existing result indicating that charge conservation can serve as a foundation for an axiomatic formulation
of electrodynamics.
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1 Introduction

The question Can Maxwells equations be obtained from
the continuity equation? was first asked by José A. Heras
in [1], who concluded yes and provided a construction
by means of a generalization of Helmholtz decomposition.
The purpose of the present paper is to affirm and gener-
alize the theorem of Heras to manifolds of any dimension
by means of a generalized Helmholtz decomposition of ge-
ometric calculus.

After establishing a mapping between n-vector fields
and differential forms of degree n, which allows for the re-
sult of this paper to be translated into differential forms,
I present the Fundamental Theorem of Geometric Calcu-
lus, and two consequences: a generalization of Cauchy’s
Integral Formula and Helmholtz decomposition for multi-
vector fields.

Using these results, I show that all divergence free (co-
closed) fields fail to be coexact (i.e. the curl of some other
field) by at most a monogenic term. Monogenic fields are
characterized by the property that they are fully deter-
mined by boundary conditions, analogous to complex an-
alytic functions. I present some conditions under which
these fields are coexact. A field whose antiderivative is curl
free is dubbed faithful, by which it follows that the deriva-
tive of a curl free field is faithful, and the antiderivative of
a faithful field is curl free. This establishes an equivalence
between the statements “an electromagnetic field F is a
curl free bivector field” and “an electromagnetic current
J is a faithful vector field,” both of which fully determine
the structure of Maxwell’s equations.

I then show that a conserved vector field J is faithful on
a simple manifold of arbitrary dimension under suitable
boundary conditions. This reinforces the result of Heras
that the continuity equation implies Maxwell’s equations,
under satisfactory boundary conditions.

2 Fields and forms

If Fn ≡ 〈F 〉n is the grade n part of the multivector field
(hereafter, just field) F =

∑
Fn in an arbitrary geometric

algebra G, then its corresponding differential form fn of
degree n is a scalar field given by [2]

fn ≡ dnx† · Fn, (1)

which is the projection of the n-vector field Fn onto the
directed measure dnx† = dxn ∧ · · · ∧ dx1, where dxi are
vector valued differentials.

The hodge star operation ∗ acts on fields as

∗ F ≡ F †I, (2)

where I is the pseudoscalar of some oriented vector man-
ifold.1

The exterior derivative d behaves identically to the curl

dfn ≡ dn+1x† · (∂ ∧ Fn), (3)

and the “adjoint operator” δ behaves identically to (mi-
nus) the divergence

δfn ≡ dn−1x† · (−∂ · Fn). (4)

The word form will be reserved for scalar fields corre-
sponding to some n-vector field via Equation 1. Lowercase
letters will be used for forms and uppercase letters for
fields. Subscripts denote grade of a multivector (degree of
a form).

3 Derivatives

A field F is called curl free (or closed) when

∂ ∧ F = 0 (5)

and divergence free (or coclosed) when

1See Chapter 4 of [2], or Section 6.5 of [4].
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∂ · F = 0, (6)

where ∂ = ∂x is the derivative with respect to the vector
x. This operator is unique to geometric calculus, and the
entire subject is a study of the properties of this opera-
tor. It’s also often called the Dirac operator and can be
written ∂ = ek∂k where ∂k = ∂

∂xk = ek · ∂ with respect to

coordinates xk = ek · x.2

A field for which

∂F = ∂ · F + ∂ ∧ F = 0 (7)

is called monogenic. It possesses the property of com-
plex analytic functions that, in any region, it is fully deter-
mined by its values on the boundary of that region. Hence,
the form ω is closed if dω = 0, coclosed if δω = 0, and
monogenic if dω = δω = 0. Note that for general fields,
∂F = 0 does not necessarily imply that ∇·F = ∇∧F = 0.

A field H that satisfies

∂2H = 0 (8)

might be called harmonic, although the term is inap-
propriate in mixed signature spaces. For instance, in
Minkowski space, ∂2H = (∂2t − ~∇2)H = 0 is the wave
equation and its properties differ dramatically from the
usual harmonic functions in Euclidean spaces. Nonethe-
less, I will abuse the term here for lack of a better one. A
form γ is then harmonic if dδγ + δdγ = 0.

4 Potentials

If a field J is written as

J = ∂ ·G+ ∂ ∧H, (9)

then G and H are called potentials for J . Similarly, if a
form ω is given by

ω = dα+ δβ (10)

then α and β will be called potentials for ω.

A field J is called exact when

J = ∂ ∧ F (11)

and coexact when

J = ∂ · F, (12)

whereby a form ω is exact if ω = dα and coexact if
ω = δβ. Two curl free fields are called cohomologous if
their difference is an exact field. Similarly, two divergence
free fields are called homologous if their difference is a
coexact field.

2See p. 252 of [2] for a coordinate free, integral definition of ∂.

5 Antiderivatives

A field F is called an antiderivative of J if

J = ∂F = ∂ · F + ∂ ∧ F, (13)

which is unique up to a monogenic term. That is, F +C
such that ∂C = 0 is also an antiderivative. Furthermore,
given an antiderivative, one has possession of constraints
on F . For every Jk = 0 (again, where Jk = 〈J〉k is the
k-grade part of J),

Jk = ∂ · Fk+1 + ∂ ∧ Fk−1 = 0. (14)

As an example, if J = Jn is an n-vector field, then

Jn = ∂F = ∂ · Fn+1 + ∂ ∧ Fn−1, (15)

and the constraints due to Jn−2 = Jn+2 = 0 and Fn−3 =
Fn+3 = 0 are

Jn−2 = ∂ · Fn−1 = 0 and Jn+2 = ∂ ∧ Fn+1 = 0. (16)

Of course, F could contain terms of higher and lower
grades as long as they vanish under the derivative, but
they make no contribution to Jn. Under the restriction
that it only has grades which contribute to Jn, F is of the
form

F = Fn−1 + Fn+1. (17)

If jn and fn are the forms given by Jn and Fn, then
Equations 3 and 4 imply that, in terms of differential
forms, Equation 15 is of the form

jn = −δfn+1 + dfn−1, (18)

and Equation 16 is equivalent to

δfn−1 = dfn+1 = 0. (19)

Given potentials fn−1 and fn+1 under these constraints,
one is in possession of an antiderivative of jn.

6 The Fundamental Theorem

LetM be an m-dimensional smooth oriented vector man-
ifold with a piecewise smooth boundary ∂M and L be a
linear function, differentiable on M and ∂M. Then, [2]
[3] [4] ∫

L(ẋ, dmx∂̇) =

∮
L(x, dm−1x), (20)

where L(ẋ, dmx∂̇) denotes right and left differentiation
all x dependent terms in L by ∂. Note that the linear
function L is multivector-valued and Stokes’ theorem of
differential forms is equivalent to the scalar valued part∫

〈L(ẋ, dmx∂̇)〉 =

∮
〈L(x, dm−1x)〉. (21)
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7 Integral Formula

Let J be a field on a simple (not self-intersecting) man-
ifold M subject to the same criteria in the fundamental
theorem. Suppose J satisfies the equation

∂F = J. (22)

Then F is given by [2]

F (x) = + (−1)mI−1(x)

∫
g(x, x′)dmx′J(x′)

− (−1)mI−1(x)

∮
g(x, x′)dm−1x′F (x′),

(23)

where g is a Green’s function of ∂ satisfying ∂g(x, x′) =
−g(x, x′)∂′ = δ(x−x′). This result says that any integrable
field has a local antiderivative, and it’s given by Equation
23.

Helmholtz decomposition Notice that the integral
formula is simply a generalized Helmholtz decomposition,
since

J = ∂F = ∂ · F + ∂ ∧ F, (24)

is a decomposition of J into divergence free and curl free
fields, ∂ ·F and ∂∧F respectively. This is because ∂∧(∂∧
M) = ∂ · (∂ ·M) = 0 for any field M . Additionally, this
decomposition comes with constraints given by Equation
14.

The corresponding result for forms is that locally, for
any n-form jn, there exists an n + 1-form fn+1 and an
n− 1-form fn−1, such that

jn = −δfn+1 + dfn−1, (25)

with the constraints dfn+1 = δfn−1 = 0. Note that
this is a stronger result than Helmholtz decomposition due
to the constraints on fn−1 and fn+1 and stronger than
Hodge decomposition due the fact that it is not restricted
to Riemannian manifolds.

8 Divergence and curl free fields

The above result implies that antiderivatives of divergence
free fields fail to be curl free, and antiderivatives of curl
free fields fail to be divergence free, by at most a harmonic
function H satisfying ∂2H = 0.

Suppose J is divergence free (the dual result for curl free
fields follows analogously). By the integral formula, it has
a local antiderivative F , such that J = ∂F . Hence,

∂·J = ∂·(∂F ) = ∂·(∂·F+∂∧F ) = ∂·(∂∧F ) = ∂(∂∧F ) = 0,
(26)

which means that C ≡ ∂ ∧ F is monogenic and J is
locally homologous with C

J − C = ∂F − C = ∂ · F, (27)

because their difference is coexact.
Employing the integral theorem, C has an antiderivative

H such that

C = ∂H. (28)

WithG ≡ F−H, this implies that F can then be written

F = G+H (29)

where ∂G = ∂ · F and ∂2H = 0. Note that if H = 0,
then ∂F = ∂ ·F . Hence, F fails to be curl free by at most
a harmonic function H.

As an example, if C is a monogenic r-vector field, then
C can be written C = ∂ · (x ∧ C)/r = ∂ ∧ (x · C)/(n− r),
and C is both exact and coexact, in which case3

J = ∂F = ∂ · (F + x ∧ C/r) (30)

is locally coexact — although, F is not curl free.
If C = 0 on the boundary, then C = 0 everywhere, and

its antiderivative is curl free

J = ∂F = ∂ · F. (31)

Let us call a field J faithful if its antiderivative is curl
free. Faithful fields are coexact, and all divergence free
fields differ from faithful fields by at most a monogenic
field, which depends solely on the manifold and bound-
ary conditions. Note, however, that coexact fields are not
necessarily faithful.

A form is faithful if

j = −δf and df = 0. (32)

A field J with a divergence free antiderivative F is co-
faithful and can be written

J = ∂F = ∂ ∧ F, (33)

and hence, a form is cofaithful if

j = df and δf = 0. (34)

9 Conserved currents

Consider the specific case of a divergence free vector field J
(i.e. a conserved current). By Equation 16 and Equation
29, any antiderivative F of J can be decomposed into

F = F0 + F2, (35)

such that

∂F = ∂ · F2 + ∂F0 = J, (36)

3Under what conditions are general monogenic multivector fields
exact / coexact?
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where ∂ ∧ F2 = 0 and ∂2F0 = 0. Any divergence free
vector field J can be written in this form, in regions where
J is integrable.

This is an important result, particularly in flat space-
time, so I’ll write it out in the familiar vector alge-
bra of three dimensions by splitting ∂ = γ0( 1

c∂t + ~∇),

F2 = ~E + i ~B, and J = (cρ + ~J)γ0 into frame dependent
timelike and spacelike terms. In four dimensions, with
χ ≡ F0, Equation 36 can be decomposed into

~∇ · ~E +
1

c
∂tχ = cρ ~∇ · ~B = 0

~∇× ~B − ~∇χ =
1

c
∂tE + ~J ~∇× ~E = −1

c
∂tB.

(37)
That is, Equation 37 is equivalent to the continuity

equation in flat spacetime.
On suitable manifolds and under suitable boundary con-

ditions, J is locally faithful. Equation 24 tells us that J
can be written

J = (−1)mI−1
(∫

gdmx∂J −
∮
gdm−1xJ

)
. (38)

For instance, if the boundary term vanishes, then J is
given by

J = (−1)mI−1
∫
gdmx∂J, (39)

which is only dependent on ∂J = ∂2F = ∂2(F0 + F2) =
∂2F2, since F0 is harmonic. In other words, when J is
fully determined by its derivative ∂J , J is independent of
F0 and J can generally be written as

J = ∂F = ∂ · F, (40)

and J is faithful. Equation 37 is then equivalent to
Maxwell’s equations

~∇ · ~E = cρ ~∇ · ~B = 0

~∇× ~B =
1

c
∂tE + ~J ~∇× ~E = −1

c
∂tB.

(41)

This affirms the result of Heras that Maxwell’s equations
can be obtained from the continuity equation.[1]

Maxwell’s equations follow from directly from the state-
ment that “an electromagnetic field F is a curl free bivec-
tor field and its derivative is its current J .” To say that
it is curl free means that

∂ ∧ F = 0, (42)

and its derivative J is

J = ∂F = ∂ · F, (43)

which are Maxwell’s equations with no magnetic
monopoles or currents. Of course, Maxwell’s equations
imply the continuity equation

∂ · J = ∂ · (∂ · F ) = 0, (44)

which means charge is conserved.
The result of this paper allows for an alternative char-

acterization of Maxwell’s equations. F is an antiderivative
of J , so to say that F is curl free is the same as saying J
is faithful. Hence, the above characterization is equivalent
to the dual statement “an electromagnetic current J is a
faithful vector field and its antiderivative is an electromag-
netic field F .”
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