
Towards Assembly Information Modeling (AIM)
Ayoub Lharchi, Mette Ramsgaard Thomsen and Martin Tamke

Centre for IT and Architecture (CITA), Copenhagen, Denmark, alha@kadk.dk

ABSTRACT
Nowadays digital tools support architects, engineers and con-
structors in many specific tasks in the construction industry.
While these tools are covering almost all aspects of design
and manufacturing, the planning and design for the assembly
of buildings remain an unexplored area. This research aims to
lay the foundations of a new framework for the design for as-
sembly in architectural applications entitled Assembly Infor-
mation Modeling. In practice, it is a central digital model con-
taining the structure architectural design, construction details,
three dimensional representations, assembly sequences, issue
management and others. This framework forms the base for
a multitude of novel applications for assembly design, plan-
ning and execution, such as assembly simulation and strate-
gies communication, problem detections in the early design
phases and interdisciplinary coordination. This paper de-
scribes the specifications of the digital assembly model and
illustrate two use cases: collaborative assembly design using
AEC cloud-based platforms and Augmented Assembly using
Augmented reality devices.

Author Keywords
Design For Assembly; Digital Model; Assembly Modeling

1 INTRODUCTION
For an extended period, many architectural systems were
strictly restricted in their general topology and geometrical
differentiation because of both technical and economic fac-
tors [11]. These limitations increased the need for a toolbox
that is adapted for complex geometries and led the architects
and engineers to search and develop an entirely new set of
methods and tools for design and manufacturing [3]. Today
digital tools form the basis of nearly all design, construction,
fabrication and management tools in all professions related to
the building industry [13].

Overall, computational design tools and digital fabrication
processes enabled a higher degree of differentiation between
the elements in a single structure [11] and it became possi-
ble to design and manufacture large-scale freeform shapes.

SimAUD 2019 April 07-09 Atlanta, Georgia
c© 2019 Society for Modeling & Simulation International (SCS)

However, this new shape emergence posed significant chal-
lenges in terms of communication, fabrication, and assembly
[9]. Although there are many attempts to standardize the in-
formation modeling and data sharing between the different
interdisciplinary partners within one project [12], there are
more issue that can rise and are not covered by traditional
approaches such as Building Information Modeling (BIM).

This research aims to fill the existing gap in the design for
assembly field, by suggesting a novel approach for handling
assembly information in a construction context. By combin-
ing computer science techniques and design practices from
other disciplines, this project defines in a first step a scheme
by which professionals can describe, analyze and communi-
cate assembly information.

This digital model forms the base for a multitude of novel
approaches for assembly design, planning and execution (fig-
ure 1): now detailed digital assembly information can be
shared and discussed between partners through cloud-based
platforms, assembly sequences can be generated and opti-
mized with the help of algorithms and new human-machine
interfaces such as augmented reality can be used to assemble
constructions. Finally, the model presents the base for future
robotic assembly.

Figure 1. Potential Applications of Assembly Information Modeling

2 DESIGN FOR ASSEMBLY IN ARCHITECTURE

A proficient assembly planning should be part of any success-
ful design. This can reduce assembly time, allow flexibility
and improve the quality and reliability of the final product
[15]. Design for Assembly (DfA) is a well-established prac-
tice in other disciplines since the 80s [2], especially in indus-
trial and mechanical design. It is often combined with Design
for Manufacturing (DfM) techniques in order to optimize the
manufacturing and assembly within industrial applications.
DfA aims to have a full understanding of the assembly pro-
cess and to extract principles that influence the design itera-
tions. In general, it involves two crucial steps: minimization
of the number of the separated parts that constitute the global
structure (figure 2), and the improvement of the “Assembla-
bility” of the remaining parts [2]. Research has been con-
ducted on assembly planning, little focus was however set on
the integration of questions of assembly in the design phase
[14]. Furthermore, the existing approaches to DfA are all
rooted in industrial fabrication processes for e.g. machines
and consumer products, which makes it difficult to have a
direct transfer of these to an architectural context due to ma-
terial and scale considerations.

Figure 2. Pieces number reduction for optimized Assembly
[2]

3 ASSEMBLY INFORMATION MODELING
An Assembly Information Model (AIM) as described here is
a digital framework directed for application in building pro-
cesses, that aims to include all the necessary data to describe
precisely an assembly sequence and at the same time to bridge
the different authoring tools used by the stakeholders. The
model specifications are freely available online and are cov-
ering most of the common needs in a typical architectural
assembly planning process, but can be extended as well if
needed. In order to assure high interoperability between dif-
ferent software package, the implementation presented in this
paper is intentionally software agnostic and is using exclu-
sively open source libraries to allow an eventual use in com-
mercial software.

The AIM implementation we propose is composed of the fol-
lowing elements:

• A library called AIM.Core defining the basic functions and
managing the input (geometry and meta-data) and output
(files, documentation, etc.).

• A set of plug-ins for different host CAD systems. Each
plug-in uses the geometric capabilities of the host software

and the AIM.Core library to generate an Assembly model
(.adm).

The AIM.Core library was written in C# [5], which is a
powerful object-oriented language and using the .NET Core
Framework, which in itself is a further approach to ensure
a cross-platform compatibility. For demonstration and test-
ing purposes an AIM.GH - plug-in for the Grasshopper [10]
environment was developed. Additional plug-ins to generate,
read and manipulate the assembly model can be written easily
by persons with a certain knowledge of the host application
API, using any .NET programming language [8].

The full model specifications and the implementations source
code are available online at: https://www.github.com/
ALharchi/AIM

The digital model is composed of the following classes:

3.1 Elements
An element refers to any physical element in the structure.
It can be either a part of the structure (beam, column) or a
fastener (bolt, screw, etc.). The model stores the defined po-
sition, orientation and the geometry of all the elements. For
each one, there is a corresponding file containing the geom-
etry. Depending on the modeling approach and the software
used, a NURBS or MESH description is used. If the used
software support both NURBS and Mesh geometries, dual
representation can be enabled, and both geometries represen-
tation will be stored to maximize the interoperability. The
NURBS is stored in a .STEP file, while the MESH is in a
.STL file.

For similar elements, only one file (or two if dual representa-
tion is enabled) is used to reduce the model size and memory
usage.

3.2 Transformations
Transformations are the sequence of geometrical operations
that are necessary to get an element from the entry position to
the final position. The entry position can be any safe position
without collision or obstacles (on the ground for example).
The final position corresponds to the correct spatial location
and orientation within the structure. Two main types of trans-
formations are defined using simple mathematical concepts:

• Translation: Linear movement in space, defined by a three-
dimensional vector.

• Rotation: Circular movement defined by a rotation plane
and a rotation angle (expressed in radian).

Using these two transformations, complex spatial movements
can be described. When loaded, the appropriate AIM plug-
in will convert it to match with the software native spatial
library.

3.3 Components
Elements are grouped together in components. Typically, one
component includes several parts and the necessary fasteners.
Single-element components are also possible. Transforma-
tions can also be assigned to components.

https://www.github.com/ALharchi/AIM
https://www.github.com/ALharchi/AIM

3.4 User Manipulation Zone (UMZ)
The user manipulation zone is the necessary area to operate
during an assembly step. It is represented by a sphere defined
by radius from the fastener element.

3.5 Joints
Joints define the relation between two or more elements (fig-
ure 3). The order or the Assembly Sequence (AS) is specified.
Each joint is expressed in the necessary number of transfor-
mations.

PART 01

PART 02

JOINT SOLUTION
SPACE

INSERTION DIRECTION

SOLUTION SPACE

Figure 3. Joints in space with vectors

3.6 Issues
Issues are problems concerning the assembly process that
needs to be communicated. It can be either manually defined
by the user during the model creation or automatically raised
later by the computation engine (as described in 4).

Issues are divided into categories according to the severity
and impact on the assembly process:

• Critical: The assembly is impossible.

• Moderate: The assembly is partially possible.

• Suggestion: The assembly is possible, but can be im-
proved.

Every issue is linked to the user that created it, which can be
used later for an issue management platform (see 6.1).

3.7 Documentation
Technical drawings of the different elements can be automat-
ically pre-generated and included in the digital model. They
are saved in PDF and PNG format (figure 4).

4 MODEL COMPUTATION
One of the main benefits of the assembly modeling approach
is to have all the information in one single model, which facil-
itates any desired analysis or computation. The model com-
putation helps to detect issues in the assembly process in the
early stages. Although some of these problems can be de-
tected using 4D simulation of the construction process, the
adoption of such techniques remains very slow [4]. They are

Figure 4. Example of documentation included in the model

usually related to the geometry of the elements [6], for ex-
ample, if the parts cannot be assembled because of incompat-
ible joints, collision with other elements or due to a wrong
assembly sequence order. The problem can also be related
to logistics: the assembly is possible in theory but very dif-
ficult or impossible to realize in practice. This is often the
case if there are some unpredicted constraints on site, such
as a smaller crane (only one insertion direction; from above)
or existing construction that would prevent the spatial move-
ment of large elements.

Since the AIM.Core does not include any geometrical kernel,
the model computation is executed on the software side (using
the adequate AIM plug-in).

4.1 Mathematical Conflict Detection
Using the information embedded within the joint definition,
issues in the assembly sequence can be detected. Before us-
ing computationally expensive Boolean operations to detect
collisions, the joints design space are evaluated and conflict-
ing solutions are flagged.

4.2 Physical Collision Detection
Using the transformations, every element in the model is in-
terpolated from the initial entry position until the final posi-
tion within the structure. The computational Engine is detect-
ing any collision between the current part, and all the previ-
ously placed parts during the assembly operation (figure 5).
If there is none, the part is marked as safe; otherwise, an issue
is raised and recorded in the model as well. A custom colli-
sion detection algorithm had to be written based on the exist-
ing Boolean operations available in the HCS. The issue with
the existing collision detection methods is that they flag two
touching solids as intersecting, while in an assembly context,
it is accepted or necessary within certain tolerances (such as
sliding an element in between two already placed elements).

4.3 Fabrication Constraints
The user can provide additional information about the avail-
able logistics. This is intended to be used in coordination and
assembly sequence evaluation. All the existing constraints or
construction on site are stored within the model. An abstract

Figure 5. Transformation interpolation from entry to final position.

representation (reduced mesh) is used to reduce the model
size.

5 FILE FORMAT
The Assembly Digital Model (ADM) is intended to be used
for various applications (see section 6). It is crucial to em-
bed all the information within one comprehensive to allow the
desired interoperability. Furthermore, one self-contained file
facilitates the exchange with cloud-based platforms, robotic
interfaces and other devices. According to the specifications,
the information is divided into three categories:

• Geometry data: This includes the elements’ geometry. It is
a collection of STEP and STL files.

• Graphical data: Technical drawings (PNG or PDF).

• Meta-data: Further data, which provides additional infor-
mation about the geometry (transformations, issues, joints
etc.), relationships to overall project, related models, pro-
cesses etc.. The metadata is plain text.

The ADM is open-source and the implementation uses freely
available libraries that are running on the three majors oper-
ating systems (Windows, Linux and MacOS).

5.1 ADM Container
The ADM container we propose is new file format that uses
the extension .adm. It is a compressed ZIP file that encapsu-
lates the geometry and graphical files and one single database
for the meta-data (see section 5.2). The files are organized in
hierarchy using folders (figure 6).

Every element is stored in separated file to allow a quick
loading for single elements and to facilitate the replace-
ment/adjustments.

5.2 Meta-Data storage
It was necessary to define a way to store the metadata that
is flexible enough to allow an integration of interlinking data

filename.adm
 data.db
 geometry/
 part_01.stp
 part_02.stp
 fastener_01.stp
 ...
 docs/
 part_01.pdf
 part_02.pdf
 ...

Figure 6. Hierarchy in the .adm file

with the possibility of complex queries. The most commonly
used format for this purpose are relational databases and text
storage format such as JSON (JavaScript Object Notation)
and XML (Extensible Markup Language). While XML and
JSON offers the advantages of being human-readable, in this
case most of the processing is automated. Therefore the ad-
vantage was given to organization querability.

For this purpose, we chose to use a relational database be-
cause it is allowing the definition of relations between ele-
ments, that once in the system, can be queried using a spe-
cific language SQL (Structured Query Language). Common
operations queries are already provided with the model and
the user can easily write his own query if needed. Among the
different relational database systems, we chose to use SQLite
because of its advantages as it is a serverless database system
so it does not need a server and the generated file can be ma-
nipulated directly within the different application (table 1).

6 APPLICATIONS
As we describe a general approach to formalise assembly in
a digital model, many promising areas of applications can
be imagined. For example the ADM can be a unified base

Table 1. Comparison of relational database systems
[7]

for communication between different stakeholders, engineers
or architects can receive instant feedback on their assem-
bly strategies through further computation or analysis of the
ADM, as the ADM can provide detailed data for robotic as-
sembly.

In this research, we evaluated our approach with two areas
of applications, which require an effective communication of
assembly strategies and operate at different design stages.

6.1 Collaborative Design for Assembly
The collaborative design for assembly is a platform for the
communication, viewing and discussion of assembly data. A
web-based platform uses the ADM and makes it available to
the different stakeholders with a powerful built-in 3D viewer.
The requirement was to create an integrated platform that
would run on most modern web browsers without the need of
any additional plug-ins. This would include mobile devices
such as smartphones and tablets for eventual on-site usage.
The presented platform utilize the Autodesk Forge cloud ser-
vices [1]. We used the Forge Viewer API and Model Deriva-
tive API. The application backend was written in ASP.NET
using the .NET Core framework; meanwhile, the front-end
was mainly in HTML, CSS and JavaScript.

One user can upload an ADM file that is processed by the Au-
todesk Forge cloud, translated into SVF format. Afterwards,
the assembly information is injected into the 3D model. The
model is then made available for all the users of the platform
for editing and viewing (figures 7 and 8).

Figure 7. Individual elements management

6.2 Augmented Assembly

Figure 8. 3D Viewer

Using the ADM model, it is possible to extract step by step in-
formation, which guides a user through an assembly process.
Augmented Reality (AR) devices are particularly adapted for
this usage as they allow overlaying a digital input onto the
user view and thus align the relevant information to the ob-
jects of interest [16]. Our tests show (figure 9) that empow-
ered an AR device, an inexperienced user can assemble com-
plex structures without any previous knowledge or training.

The Augmented Assembly interface was implemented for
the head mounted device Microsoft Hololens. Using the au-
tonomous self-tracking features, it was possible to track the
user in the space and display assembly information that over-
lap with the environment (figure 10). The software running
on the Hololens was developed using the Unity 3D Game En-
gine in C#. The assembly sequence was displayed to the user
in sequential order. The assembly was animated in a way that
the user can distinguish clearly the orientation of the element
as well as the necessary transformations to put it in the correct
place.

The user interface uses two input systems of the Hololens:

• Gesture-Based: To select and manipulate the different ele-
ments. It also allows extracting information from the digi-
tal assembly model and displaying them directly in the aug-
mented view.

• Vocal commands: This provides a hands-free interface to
control the assembly animation (showing the next or previ-
ous piece, pausing the animation etc.).

7 CONCLUSION AND FUTURE WORK
We present Assembly Information Modeling (AIM) as a
framework to describe, analyze and communicate assembly
strategies in the AEC sector. While the current specification
of the digital model is covering many typical assembly plan-
ning needs (Collision detection, documentation generation,
4D simulation etc.), many technical improvements are neces-
sary to cover more specific cases such as generic joints and
interfacing with existing manufacturing techniques. This in-
cludes defining the joints class more abstractly and providing
additional queries to extract and export data from the model.
Furthermore, the implementation of a geometric kernel that
would be embedded in the AIM.Core library is envisioned,
to unify the geometric operations and to skip the translation
phase to the native format within the host CAD software. In

Figure 9. A user performing augmented assembly

Figure 10. Augmented assembly view

addition, this will speed up the necessary computation time
for collision detection.

Two areas of exploration seem especially pressing in respect
to the general move of AEC sector:

• Mechanization of the construction site, through robotic as-
sembly where the ADM is uploaded directly to a robotic
arm for an automatic assembly.

• Integration of simulation tools in early design planning,
where AIM can be used for an integrated path planning,
using a system capable of generating collision free robotic
paths for the construction. Ultimately, the model can serve
as a base for machine learning algorithm to assist the de-
signer for assembly choices.

8 ACKNOWLEDGMENTS
This project was undertaken as part of the Innochain Early
Training Network. This project has received funding from
the European Union’s Horizon 2020 research and innovation
programme under the Marie Sklodowska-Curie Grant Agree-
ment No. 642877. We would also like to express our gratitude
to the industrial partners of this research; Blumer Lehmann
and Design-To-Production, as well to Autodesk, especially
the Forge development team.

REFERENCES

1. Autodesk Forge: Cloud-based AEC developer tools .
https://forge.autodesk.com.

2. Boothroyd, G. Design for assembly—the key to design
for manufacture. The International Journal of Advanced
Manufacturing Technology 2, 3 (1987), 3–11.

3. Boothroyd, G. Assembly automation and product design.
CRC Press, 2005.

4. Boton, C., Kubicki, S., and Halin, G. The challenge of
level of development in 4d/bim simulation across aec
project lifecyle. a case study. Procedia Engineering 123
(2015), 59–67.

5. C# Programming Language. https:
//docs.microsoft.com/en-us/dotnet/csharp/.

6. Czmoch, I., and Pekala, A. Traditional design versus
bim based design. Procedia Engineering 91 (2014),
210–215.

7. Relational Databases Comparison.
https://www.digitalocean.com/community/
tutorials/sqlite-vs-\
mysqlvs-postgresql-a-comparison-of-relational-\
database-management-systems.

8. .NET Framework, a free, cross-platform, open source
platform for building apps.
https://www.microsoft.com/net.

9. Eigensatz, M., Kilian, M., Schiftner, A., Mitra, N. J.,
Pottmann, H., and Pauly, M. Paneling architectural
freeform surfaces. ACM transactions on graphics (TOG)
29, 4 (2010), 45.

10. Algorithmic Modeling for Rhinoceros 3D.
https://www.grasshopper3d.com.

11. Krieg, O. D., Dierichs, K., Reichert, S., Schwinn, T., and
Menges, A. Performative architectural morphology:
Robotically manufactured biomimetic finger-joined
plate structures.

12. Tamke, M. Aware design models. In Proceedings of the
Symposium on Simulation for Architecture & Urban
Design, Society for Computer Simulation International
(2015), 213–220.

13. Tamke, M., and Thomsen, M. R. Digital wood craft.
Joining Languages, Cultures and Visions: CAADFutures
(2009), 673–686.

14. Usai, S., and Stehling, H. La seine musicale. In
Humanizing Digital Reality. Springer, 2018, 201–209.

15. Wilson, R. H. On geometric assembly planning. Tech.
rep., STANFORD UNIV CA DEPT OF COMPUTER
SCIENCE, 1992.

16. Zollmann, S., Hoppe, C., Kluckner, S., Poglitsch, C.,
Bischof, H., and Reitmayr, G. Augmented reality for
construction site monitoring and documentation.
Proceedings of the IEEE 102, 2 (2014), 137–154.

https://forge.autodesk.com
https://docs.microsoft.com/en-us/dotnet/csharp/
https://docs.microsoft.com/en-us/dotnet/csharp/
https://www.digitalocean.com/community/tutorials/sqlite-vs- \ mysqlvs-postgresql-a-comparison-of-relational- \ database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs- \ mysqlvs-postgresql-a-comparison-of-relational- \ database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs- \ mysqlvs-postgresql-a-comparison-of-relational- \ database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs- \ mysqlvs-postgresql-a-comparison-of-relational- \ database-management-systems
https://www.microsoft.com/net
https://www.grasshopper3d.com

	1 Introduction
	2 Design for assembly in architecture
	3 Assembly Information Modeling
	3.1 Elements
	3.2 Transformations
	3.3 Components
	3.4 User Manipulation Zone (UMZ)
	3.5 Joints
	3.6 Issues
	3.7 Documentation

	4 Model Computation
	4.1 Mathematical Conflict Detection
	4.2 Physical Collision Detection
	4.3 Fabrication Constraints

	5 File format
	5.1 ADM Container
	5.2 Meta-Data storage

	6 Applications
	6.1 Collaborative Design for Assembly
	6.2 Augmented Assembly

	7 conclusion and future work
	8 ACKNOWLEDGMENTS

