Software Open Access

IC-PCP profiling: software and data set

Taal, Arie; Wang, Junchao; de Laat, Cees; Zhao, Zhiming


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/5f679e3d-6699-4153-bfb7-ef2ef130743b/uva-sne-ic-pcp-profiling-4f7e1a858184.zip"
      }, 
      "checksum": "md5:22b19a5d6cd69b4c9f22ae3658f9faa0", 
      "bucket": "5f679e3d-6699-4153-bfb7-ef2ef130743b", 
      "key": "uva-sne-ic-pcp-profiling-4f7e1a858184.zip", 
      "type": "zip", 
      "size": 58271773
    }
  ], 
  "owners": [
    26570
  ], 
  "doi": "10.5281/zenodo.2652669", 
  "stats": {
    "version_unique_downloads": 7.0, 
    "unique_views": 233.0, 
    "views": 242.0, 
    "version_views": 242.0, 
    "unique_downloads": 7.0, 
    "version_unique_views": 233.0, 
    "volume": 407902411.0, 
    "version_downloads": 7.0, 
    "downloads": 7.0, 
    "version_volume": 407902411.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.2652669", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.2652668", 
    "bucket": "https://zenodo.org/api/files/5f679e3d-6699-4153-bfb7-ef2ef130743b", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.2652668.svg", 
    "html": "https://zenodo.org/record/2652669", 
    "latest_html": "https://zenodo.org/record/2652669", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.2652669.svg", 
    "latest": "https://zenodo.org/api/records/2652669"
  }, 
  "conceptdoi": "10.5281/zenodo.2652668", 
  "created": "2019-04-27T06:29:05.521878+00:00", 
  "updated": "2020-01-25T07:21:39.541470+00:00", 
  "conceptrecid": "2652668", 
  "revision": 5, 
  "id": 2652669, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.2652669", 
    "version": "version 4-16-2019", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "IC-PCP profiling: software and data set", 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.2652668", 
        "relation": "isVersionOf"
      }
    ], 
    "notes": "This research has received funding from the European Union's Horizon 2020 research and innovation program under grant agreements 643963 (SWITCH project), 654182 (ENVRIPLUS project), 676247 (VRE4EIC project), 824068(ENVRI-FAIR project) and 825134(ARTICONF project).", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "2652668"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "2652669"
          }
        }
      ]
    }, 
    "grants": [
      {
        "code": "676247", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::676247"
        }, 
        "title": "A Europe-wide Interoperable Virtual Research Environment to Empower Multidisciplinary Research Communities and Accelerate Innovation and Collaboration", 
        "acronym": "VRE4EIC", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }, 
      {
        "code": "654182", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::654182"
        }, 
        "title": "Environmental Research Infrastructures Providing Shared Solutions for Science and Society", 
        "acronym": "ENVRI PLUS", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }, 
      {
        "code": "643963", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::643963"
        }, 
        "title": "Software Workbench for Interactive, Time Critical and Highly self-adaptive cloud applications", 
        "acronym": "SWITCH", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }, 
      {
        "code": "825134", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::825134"
        }, 
        "title": "smART socIal media eCOsytstem in a blockchaiN Federated environment", 
        "acronym": "ARTICONF", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }
    ], 
    "keywords": [
      "IC-PCP", 
      "Profiling", 
      "Cloud", 
      "Time critical application", 
      "Critical paths"
    ], 
    "publication_date": "2019-04-16", 
    "creators": [
      {
        "affiliation": "University of Amsterdam", 
        "name": "Taal, Arie"
      }, 
      {
        "affiliation": "University of Amsterdam", 
        "name": "Wang, Junchao"
      }, 
      {
        "affiliation": "University of Amsterdam", 
        "name": "de Laat, Cees"
      }, 
      {
        "orcid": "0000-0002-6717-9418", 
        "affiliation": "University of Amsterdam", 
        "name": "Zhao, Zhiming"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "type": "software", 
      "title": "Software"
    }, 
    "description": "<pre>We study the scheduling decisions for handling deadline-constrained workflows in the context of planning customized virtual infrastructures in the cloud. We specifically focus on the effects of using different types of greediness in selecting cost-effective virtual machines for the tasks in an application&#39;s workflow graph. The profiling procedure followed demonstrates that for the widely used approach of the partial critical path algorithm a greedy version is preferred to a more stringent version under different stress conditions, from tight to loose deadlines. Representative topologies of workflow applications are used to generate sets of task graph scheduling problems. </pre>\n\n<pre>Monitoring the performance of the partial critical path algorithm with different types of greediness reveals which of the topologies tested are difficult to solve under various stress conditions.</pre>\n\n<pre>It turns out that an invalid outcome of a greedy version of the partial critical path algorithm is more susceptible to become valid via a final refinement cycle than a less greedy version. The procedure outlined in this paper will allow for a systematic study of a specific heuristic in a workflow scheduling method to increase its success in infrastructure planning under different deadline conditions and is proposed to be part of a general profiling framework.</pre>\n\n<pre>All four implementations of the IC-PCP algorithm used in this study as well as the data to produce the performance figures are available at https://bitbucket.org/uva-sne/ic-pcp-profiling/src/master.</pre>"
  }
}
242
7
views
downloads
All versions This version
Views 242242
Downloads 77
Data volume 407.9 MB407.9 MB
Unique views 233233
Unique downloads 77

Share

Cite as