Diagram Open Access

An Information Ecology for Sustainable Agriculture

Raturi, Ankita; Mirsky, Steven; Reberg-Horton, Chris


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nkm##2200000uu#4500</leader>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Liu J, Folberth C, Yang H, Röckström J, Abbaspour K, Zehnder AJB. A Global and Spatially Explicit Assessment of Climate Change Impacts on Crop Production and Consumptive Water Use. PLOS ONE. 2013 Feb 27;8(2):e57750.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Schmidhuber J, Tubiello FN. Global food security under climate change. PNAS. 2007 Dec 11;104(50):19703–8.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Allan RP, Soden BJ. Atmospheric Warming and the Amplification of Precipitation Extremes. Science. 2008 Sep 12;321(5895):1481–4.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Gornall J, Betts R, Burke E, Clark R, Camp J, Willett K, et al. Implications of climate change for agricultural productivity in the early twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences. 2010 Sep 27;365(1554):2973–89.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci USA. 2014 Mar 4;111(9):3268–73.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Trenberth KE, Dai A, Schrier G van der, Jones PD, Barichivich J, Briffa KR, et al. Global warming and changes in drought. Nature Climate Change. 2014 Jan;4(1):17–22.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Flörke M, Kynast E, Bärlund I, Eisner S, Wimmer F, Alcamo J. Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: A global simulation study. Global Environmental Change. 2013 Feb 1;23(1):144–56.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Heap I. Global perspective of herbicide-resistant weeds. Pest Management Science. 2014 Sep 1;70(9):1306–15</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Williams A, Hunter MC, Kammerer M, Kane DA, Jordan NR, Mortensen DA, et al. Soil Water Holding Capacity Mitigates Downside Risk and Volatility in US Rainfed Maize: Time to Invest in Soil Organic Matter? PLoS ONE. 2016;11(8):e0160974.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Goolsby DA, Battaglin WA, Lawrence GB, Artz RS, Aulenbach BT, Hooper RP, et al. Flux and sources of nutrients in the Mississippi-Atchafalya river Basin topic 3 report. :156.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Boyer EW, Goodale CL, Jaworski NA, Howarth RW. Anthropogenic nitrogen sources and relationships to riverine nitrogen export in the northeastern U.S.A. Biogeochemistry. 2002 Apr 1;57(1):137–69.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Zibilske LM, Bradford JM. Soil Aggregation, Aggregate Carbon and Nitrogen, and Moisture Retention Induced by Conservation Tillage. Soil Science Society of America Journal. 2007 May 1;71(3):793–802.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Cox HW, Kelly RM, Strong WM. Pulse crops in rotation with cereals can be a profitable alternative to nitrogen fertiliser in central Queensland. Crop Pasture Sci. 2010 Sep 30;61(9):752–62.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Mortensen DA, Egan JF, Maxwell BD, Ryan MR, Smith RG. Navigating a Critical Juncture for Sustainable Weed Management. BioScience. 2012 Jan 1;62(1):75–84.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Dunn M, Ulrich-Schad JD, Prokopy LS, Myers RL, Watts CR, Scanlon K. Perceptions and use of cover crops among early adopters: Findings from a national survey. Journal of Soil and Water Conservation. 2016 Jan 1;71(1):29–40.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Myers R, Watts C. Progress and perspectives with cover crops: Interpreting three years of farmer surveys on cover crops. Journal of Soil and Water Conservation. 2015 Nov 1;70(6):125A-129A.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Mirsky, S, Reberg-Horton, C, Raturi, A. Precision Sustainable Agriculture. Available: http://precisionsustainableag.org</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Nardi B, O' Day V. Information ecologies: Using technology with heart. MIT Press; 1999.</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">information ecology</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">sustainable agriculture</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">cover crops</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">informatics</subfield>
  </datafield>
  <controlfield tag="005">20190426222302.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">This material is based upon work supported by an interagency agreement between Natural Resources Conservation Service and Agricultural Research Service at the U.S. Department of Agriculture.</subfield>
  </datafield>
  <controlfield tag="001">2651643</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">USDA Agricultural Research Service</subfield>
    <subfield code="a">Mirsky, Steven</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">North Carolina State University</subfield>
    <subfield code="a">Reberg-Horton, Chris</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">2894446</subfield>
    <subfield code="z">md5:1badbe4725dac785beb76a692acab040</subfield>
    <subfield code="u">https://zenodo.org/record/2651643/files/V7-The Information Ecology.png</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2017-06-08</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">user-ixa</subfield>
    <subfield code="o">oai:zenodo.org:2651643</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">USDA Agricultural Research Service</subfield>
    <subfield code="0">(orcid)0000-0003-0637-8541</subfield>
    <subfield code="a">Raturi, Ankita</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">An Information Ecology for Sustainable Agriculture</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-ixa</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Feeding 10 billion people by 2050 will require transformative changes to our food production systems&lt;sup&gt;1, 2&lt;/sup&gt;. Climate change&lt;sup&gt;3-6&lt;/sup&gt;, water scarcity and urban demand&lt;sup&gt;7&lt;/sup&gt;, herbicide-resistant weeds&lt;sup&gt;8&lt;/sup&gt;, and declining soil&lt;sup&gt;9&lt;/sup&gt; and water quality&lt;sup&gt;10,11&lt;/sup&gt; are increasing crop production risks, lowering yields, and negatively impacting the environment. The increased use of sustainable agricultural practices &amp;nbsp;such as reduced-tillage&lt;sup&gt;12&lt;/sup&gt;, diversified crop rotations&lt;sup&gt;13&lt;/sup&gt;, and integrated weed management especially through incorporation of cover crops&lt;sup&gt;14&lt;/sup&gt;, are necessary to achieve this goal. However, farmers repeatedly cite management complexity and a need for site- and system-specific information to overcome the barriers to adoption&lt;sup&gt;15, 16&lt;/sup&gt;. Sustainable agriculture thus demands precision tools to account for genetic and environmental nuances in complex, adaptive, agricultural systems, while simultaneously responding to the social, technological, and economic contexts of farming.&lt;/p&gt;

&lt;p&gt;&lt;em&gt;Precision Sustainable Agriculture&lt;/em&gt;&lt;sup&gt;17&lt;/sup&gt; uses a data-driven and human-centered approach to the research and development of on-farm monitoring tools, cloud-based, information management tools for large-scale agricultural research projects, decision support tools for agriculture data stakeholders, and modeling and analysis tools for use in sustainable agriculture. We are laying the foundation of an information ecology&lt;sup&gt;18&lt;/sup&gt; for sustainable agriculture: a system of tools, data, methods, and actors to maximize farm productivity, profitability, and sustainability.&lt;/p&gt;

&lt;p&gt;References:&lt;/p&gt;

&lt;ol&gt;
	&lt;li&gt;Liu J, Folberth C, Yang H, Röckström J, Abbaspour K, Zehnder AJB. A Global and Spatially Explicit Assessment of Climate Change Impacts on Crop Production and Consumptive Water Use. PLOS ONE. 2013 Feb 27;8(2):e57750.&lt;/li&gt;
	&lt;li&gt;Schmidhuber J, Tubiello FN. Global food security under climate change. PNAS. 2007 Dec 11;104(50):19703&amp;ndash;8.&lt;/li&gt;
	&lt;li&gt;Allan RP, Soden BJ. Atmospheric Warming and the Amplification of Precipitation Extremes. Science. 2008 Sep 12;321(5895):1481&amp;ndash;4.&lt;/li&gt;
	&lt;li&gt;Gornall J, Betts R, Burke E, Clark R, Camp J, Willett K, et al. Implications of climate change for agricultural productivity in the early twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences. 2010 Sep 27;365(1554):2973&amp;ndash;89.&lt;/li&gt;
	&lt;li&gt;Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci USA. 2014 Mar 4;111(9):3268&amp;ndash;73.&lt;/li&gt;
	&lt;li&gt;Trenberth KE, Dai A, Schrier G van der, Jones PD, Barichivich J, Briffa KR, et al. Global warming and changes in drought. Nature Climate Change. 2014 Jan;4(1):17&amp;ndash;22.&lt;/li&gt;
	&lt;li&gt;Flörke M, Kynast E, Bärlund I, Eisner S, Wimmer F, Alcamo J. Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: A global simulation study. Global Environmental Change. 2013 Feb 1;23(1):144&amp;ndash;56.&lt;/li&gt;
	&lt;li&gt;Heap I. Global perspective of herbicide-resistant weeds. Pest Management Science. 2014 Sep 1;70(9):1306&amp;ndash;15&lt;/li&gt;
	&lt;li&gt;Williams A, Hunter MC, Kammerer M, Kane DA, Jordan NR, Mortensen DA, et al. Soil Water Holding Capacity Mitigates Downside Risk and Volatility in US Rainfed Maize: Time to Invest in Soil Organic Matter? PLoS ONE. 2016;11(8):e0160974.&lt;/li&gt;
	&lt;li&gt;Goolsby DA, Battaglin WA, Lawrence GB, Artz RS, Aulenbach BT, Hooper RP, et al. Flux and sources of nutrients in the Mississippi-Atchafalya river Basin topic 3 report. :156.&lt;/li&gt;
	&lt;li&gt;Boyer EW, Goodale CL, Jaworski NA, Howarth RW. Anthropogenic nitrogen sources and relationships to riverine nitrogen export in the northeastern U.S.A. Biogeochemistry. 2002 Apr 1;57(1):137&amp;ndash;69.&lt;/li&gt;
	&lt;li&gt;Zibilske LM, Bradford JM. Soil Aggregation, Aggregate Carbon and Nitrogen, and Moisture Retention Induced by Conservation Tillage. Soil Science Society of America Journal. 2007 May 1;71(3):793&amp;ndash;802.&lt;/li&gt;
	&lt;li&gt;Cox HW, Kelly RM, Strong WM. Pulse crops in rotation with cereals can be a profitable alternative to nitrogen fertiliser in central Queensland. Crop Pasture Sci. 2010 Sep 30;61(9):752&amp;ndash;62.&lt;/li&gt;
	&lt;li&gt;Mortensen DA, Egan JF, Maxwell BD, Ryan MR, Smith RG. Navigating a Critical Juncture for Sustainable Weed Management. BioScience. 2012 Jan 1;62(1):75&amp;ndash;84.&lt;/li&gt;
	&lt;li&gt;Dunn M, Ulrich-Schad JD, Prokopy LS, Myers RL, Watts CR, Scanlon K. Perceptions and use of cover crops among early adopters: Findings from a national survey. Journal of Soil and Water Conservation. 2016 Jan 1;71(1):29&amp;ndash;40.&lt;/li&gt;
	&lt;li&gt;Myers R, Watts C. Progress and perspectives with cover crops: Interpreting three years of farmer surveys on cover crops. Journal of Soil and Water Conservation. 2015 Nov 1;70(6):125A-129A.&lt;/li&gt;
	&lt;li&gt;Mirsky, S, Reberg-Horton, C, Raturi, A. Precision Sustainable Agriculture. Available: &lt;a href="http://precisionsustainableag.org"&gt;http://precisionsustainableag.org&lt;/a&gt;&lt;/li&gt;
	&lt;li&gt;Nardi B, O&amp;rsquo; Day V. Information ecologies: Using technology with heart. MIT Press; 1999.&lt;/li&gt;
&lt;/ol&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.2651642</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.2651643</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">image</subfield>
    <subfield code="b">diagram</subfield>
  </datafield>
</record>
228
12
views
downloads
All versions This version
Views 228229
Downloads 1212
Data volume 34.7 MB34.7 MB
Unique views 205206
Unique downloads 1212

Share

Cite as