There is a newer version of this record available.

Working paper Open Access

Identifying AI talents in LinkedIn database, A machine learning approach

Thomas Roca


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/d851a975-969c-4cf7-a18c-544beed1dbd5/AI%20in%20the%20Labour%20Force.pdf"
      }, 
      "checksum": "md5:ad32f3b8052423d7351fbe8be111b8ea", 
      "bucket": "d851a975-969c-4cf7-a18c-544beed1dbd5", 
      "key": "AI in the Labour Force.pdf", 
      "type": "pdf", 
      "size": 3518830
    }
  ], 
  "owners": [
    65673
  ], 
  "doi": "10.5281/zenodo.2649208", 
  "stats": {
    "version_unique_downloads": 145.0, 
    "unique_views": 56.0, 
    "views": 62.0, 
    "downloads": 61.0, 
    "unique_downloads": 58.0, 
    "version_unique_views": 190.0, 
    "volume": 214648630.0, 
    "version_downloads": 159.0, 
    "version_views": 213.0, 
    "version_volume": 565878180.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.2649208", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.2649207", 
    "bucket": "https://zenodo.org/api/files/d851a975-969c-4cf7-a18c-544beed1dbd5", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.2649207.svg", 
    "html": "https://zenodo.org/record/2649208", 
    "latest_html": "https://zenodo.org/record/3240963", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.2649208.svg", 
    "latest": "https://zenodo.org/api/records/3240963"
  }, 
  "conceptdoi": "10.5281/zenodo.2649207", 
  "created": "2019-04-23T13:57:06.360110+00:00", 
  "updated": "2019-11-11T07:08:48.077135+00:00", 
  "conceptrecid": "2649207", 
  "revision": 5, 
  "id": 2649208, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.2649208", 
    "description": "<p>How to identify specific profiles among the&nbsp;hundred of millions gathered in LinkedIn?&nbsp;LinkedIn Economic Graph thrives on skills,<br>\naround 50 thousand of them are listed by&nbsp;LinkedIn and constitute one of the main signals&nbsp;to identify professions or trends. Artificial&nbsp;Intelligence (AI) skills, for example, can be&nbsp;used to identify the diffusion of AI in industries&nbsp;[16]. But the noise can be loud around&nbsp;skills for which the demand is high. Some&nbsp;users may add &quot;trendy&quot; skills on their profiles&nbsp;without having work experience or training&nbsp;related to them. On the other hand, some&nbsp;people may work in the broad AI ecosystem&nbsp;(e.g. AI recruiters, AI sales&nbsp;representatives,&nbsp;etc.), without being the AI practitioners we&nbsp;are looking for. Searching for keywords in profiles&#39;&nbsp;sections can lead to mis-identification of&nbsp;certain profiles, especially for those related to&nbsp;a field rather than an occupation. This is the<br>\ncase for Artificial Intelligence.&nbsp;In this paper, we propose a machine learning&nbsp;approach to identify such profiles, and suggest<br>\nto train a binary text-classifier using job offers&nbsp;posted on the platform rather than actual profiles.<br>\nWe suggest this approach allows to avoid&nbsp;manually labeling the training dataset, granted&nbsp;the assumption that job profiles posted by recruiters&nbsp;are more &quot;ideal-typical&quot; or simply provide&nbsp;a more consistent triptych &quot;job title, job&nbsp;description, associated skills&quot; than the ones&nbsp;that can be found among member&#39;s profiles.</p>", 
    "language": "eng", 
    "title": "Identifying AI talents in LinkedIn database, A machine learning approach", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "relations": {
      "version": [
        {
          "count": 2, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "2649207"
          }, 
          "is_last": false, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "3240963"
          }
        }
      ]
    }, 
    "communities": [
      {
        "id": "dfp17"
      }
    ], 
    "keywords": [
      "Artificial Intelligence", 
      "Skills", 
      "Machine learning", 
      "Natural Language Processing", 
      "Big Data"
    ], 
    "publication_date": "2019-04-23", 
    "creators": [
      {
        "affiliation": "Microsoft, Linkedin", 
        "name": "Thomas Roca"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "subtype": "workingpaper", 
      "type": "publication", 
      "title": "Working paper"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.2649207", 
        "relation": "isVersionOf"
      }
    ]
  }
}
213
159
views
downloads
All versions This version
Views 21362
Downloads 15961
Data volume 565.9 MB214.6 MB
Unique views 19056
Unique downloads 14558

Share

Cite as