
uJVM: Lightweight Java Virtual Machine for embedded
systems
Oleksandr S. Moliavko1, Taras A. Drozdovskyi1, Vitalii M.
Petrychenko1, and Oleg E. Kopysov1

1 Samsung R&D Institute Ukraine 1

DOI: 10.21105/joss.01338

Software
• Review
• Repository
• Archive

Submitted: 20 February 2019
Published: 16 April 2019

License
Authors of papers retain copy-
right and release the work un-
der a Creative Commons Attri-
bution 4.0 International License
(CC-BY).

Background

Embedded computing systems have already become omnipresent in day-to-day life, and in
the foreseeable future their applications and importance will increase even further. How-
ever, developing S/W for these systems is generally slow, complex and error-prone process,
largely because this S/W must comply with limitations imposed by specific H/W plat-
forms and use platform-specific libraries or assembly-language fragments to access H/W
devices (storage, I/O ports, timers, etc.). These limitations make almost any application
locked to specific platform, greatly increasing development costs and forcing the develop-
ers to start from scratch if a similar S/W is necessary for a different H/W platform. Also,
writing a lot of low-level code makes applications difficult to debug and maintain. In
an era where embedded applications often process confidential data, S/W errors become
security vulnerabilities that can have severe consequences. However, manually written
low-level code typical for C apps can be removed altogether by using Java for S/W devel-
opment. Java apps are largely immune to C issues with memory leaks, undefined behavior
and buffer overruns; besides, they’re inherently cross-platform, so they can be written and
debugged without even having access to actual H/W on which these apps are supposed
to run. These advantages make Java, at least in theory, an attractive alternative to C for
developing embedded system S/W; however, Java Virtual Machine implementations suit-
able for embedded systems are either proprietary and inaccessible to general community,
or very minimalistic and lack functionality necessary for efficient applications. uJVM was
developed as a part of research effort at Samsung into cross-platform S/W development
for embedded systems. We expect it to be useful for both commercial applications and
research; areas of research it will be used in include, among others, comparative C/Java
performance evaluation, standard compliance, thread safety and memory management
mechanisms. Memory management is of particular importance for embedded systems
which usually have limited RAM capacities and are supposed to run continuously for ex-
tended time periods; faults in memory manager that can cause memory leaks or excessive
fragmentation can be fatal in embedded systems, in which applications cannot rely on
OS-provided mechanisms. Performance penalties of Java applications when compared to
similar C counterparts are expected to be significant, however, many of modern embed-
ded systems have computing power that far exceeds one actually necessary, so this issue
is not expected to be as critical as efficient memory management. Standard compliance
is important for cross-platform applications; since in Java the ability of H/W platform
to run application is largely determined by JVM that runs on this H/W, much attention
must be paid to uJVM standard compliance.

Moliavko et al., (2019). uJVM: Lightweight Java Virtual Machine for embedded systems. Journal of Open Source Software, 4(36), 1338.
https://doi.org/10.21105/joss.01338

1

https://doi.org/10.21105/joss.01338
https://github.com/openjournals/joss-reviews/issues/1338
https://github.com/Samsung/uJVM/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.01338


Implementation overview

uJVM was designed in accordance with overall architecture described in Java Virtual
Machine Specification Java SE 7 Edition(Lindholm, Yellin, Bracha, & Buckley, 2013). So
basically it can be divided into 3 parts:

• Class loader Class loader of uJVM can load contents of classes stored in .class or
.jar files into memory, perform linking and initialization.

• Managed memory areas(“The java memory model,” 2009) uJVM supports thread
specific register storage, memory allocation for heap and thread-specific stacks and
garbage collection.

• Execution engine Due to severe memory footprint restrictions, uJVM has only byte-
code interpreter as execution engine - implementing JIT compiler would greatly
increase memory consumption. uJVM execution engine gives Java code access to
H/W drivers (e.g., UART, GPIO and SysTick for most platforms) and JNI methods.
Note, however, that as of January 2019 Java classes that directly contain native C
code are not supported yet.

As of March 2019, uJVM is available for following H/W platforms:

• STM32F103-BluePill
• STM32F4Discovery
• STM32-E407
• STM32F429I-DISCO
• STM32F769I-DISCO
• Arduino MEGA 2560
• MSP-EXP432P401R
• EK-TM4C1294XL
• NuMaker-PFM-M2351
• SAML11 Xplained Pro

Real-time operating systems for which uJVM has working proof-of-concept applications
are:

• ZephyrOS
• aFreeRTOS
• NuttX
• OP-TEE platform (as a trusted application implementation).

Note that the source code for these applications is not present in repository,
but can be added easily if need arises.

uJVM was developed from the outset as an Open Source implementation of Java Vir-
tual Machine for embedded systems and other computational environments with severe
resource limitations. It has much lower memory footprint than other available JVM im-
plementations (bare-metal variant including a simple Java application can run in as little
as 6 kB of RAM and needs approximately 45 kB of Flash ROM for storage) and has
working variants for a variety of architectures including x86_64, AVR and ARM (Cortex-
M3(“ARM cortex-m3 technical reference manual,” 2006), Cortex-M4(“ARM cortex-m4
technical reference manual,” 2010) and Cortex-M23(“ARM cortex-m23 processor techni-
cal reference manual,” 2010) families). Build system provided in uJVM project allows

Moliavko et al., (2019). uJVM: Lightweight Java Virtual Machine for embedded systems. Journal of Open Source Software, 4(36), 1338.
https://doi.org/10.21105/joss.01338

2

https://doi.org/10.21105/joss.01338


the developer to configure uJVM, disabling unnecessary features to conserve resources
or enabling specific H/W capabilities support (e.g., using FPU to accelerate floating-
point calculations will provide an order of magnitude acceleration in calculation-intensive
tasks).

Potential future development and applications

There are plans to obtain Oracle certification of uJVM as Java SE 7 compliant JVM im-
plementation by fully passing TCK, to make uJVM suitable for applications that require
certified JVM implementations. uJVM source code and documentation are available at
https://github.com/Samsung/uJVM. Development plans include improving JNI support,
execution speed and library support, including H/W peripheral control libraries.

Expected audience for uJVM project

uJVM project can benefit from contributions from several categories of specialists:

• Developers with experience in C language app development for resource-constrained
environments - for improvement of Java bytecode interpreter and its subsystems

• Developers with H/W library development experience - for extending support of
H/W devices in future Java applications

• Java developers - for providing standard library support by uJVM
• Application developers who will use uJVM as a platform for practical applications

Research applications

At first, creating a Java Virtual Machine capable of running useful applications on
resource-constrained embedded systems was considered difficult, and uJVM was itself
developed as a part of proof-of-concept research project. However, now that uJVM is a re-
ality, there is an ongoing research on using it for implementing security-related S/W com-
ponents of LF Edge ecosystem. Among others, a smart home appliance controllers based
on Cortex-M3 chips are expected to use Java applications running on uJVM for process-
ing user’s biometric authentication data. As reaction speed and resource consumption of
generic solutions already available on market were deemed unsatisfactory, uJVM running
under Zephyr RTOS (https://zephyrproject.org, https://github.com/zephyrproject-rtos/
zephyr) or as a bare-metal application was proposed as an alternative. While memory
consumption is found to be roughly similar to C-language equivalent Zephyr apps, ease
of debugging and verification seem to make uJVM an appealing alternative to C-based
framework. Performance of said Java apps was not evaluated yet as of time of this writing,
but preliminary proof-of-concepts seem to operate fast enough to provide user interface
free of lags and freezes.

References

ARM cortex-m23 processor technical reference manual. (2010). Retrieved from
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0550c/cortex_m23_r1p0_
technical_reference_manual_DDI0550C_en.pdf

Moliavko et al., (2019). uJVM: Lightweight Java Virtual Machine for embedded systems. Journal of Open Source Software, 4(36), 1338.
https://doi.org/10.21105/joss.01338

3

https://github.com/Samsung/uJVM
https://zephyrproject.org
https://github.com/zephyrproject-rtos/zephyr
https://github.com/zephyrproject-rtos/zephyr
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0550c/cortex_m23_r1p0_technical_reference_manual_DDI0550C_en.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0550c/cortex_m23_r1p0_technical_reference_manual_DDI0550C_en.pdf
https://doi.org/10.21105/joss.01338


ARM cortex-m3 technical reference manual. (2006). Retrieved from https://static.docs.
arm.com/ddi0439/b/DDI0439B_cortex_m4_r0p0_trm.pdf

ARM cortex-m4 technical reference manual. (2010). Retrieved from https://static.docs.
arm.com/ddi0439/b/DDI0439B_cortex_m4_r0p0_trm.pdf

Lindholm, T., Yellin, F., Bracha, G., & Buckley, A. (2013). The java® virtualma-
chine specificationjava se 7 edition. Retrieved from https://docs.oracle.com/javase/specs/
jvms/se7/jvms7.pdf

The java memory model. (2009). Retrieved from http://www.cs.umd.edu/%7Epugh/
java/memoryModel/

Moliavko et al., (2019). uJVM: Lightweight Java Virtual Machine for embedded systems. Journal of Open Source Software, 4(36), 1338.
https://doi.org/10.21105/joss.01338

4

https://static.docs.arm.com/ddi0439/b/DDI0439B_cortex_m4_r0p0_trm.pdf
https://static.docs.arm.com/ddi0439/b/DDI0439B_cortex_m4_r0p0_trm.pdf
https://static.docs.arm.com/ddi0439/b/DDI0439B_cortex_m4_r0p0_trm.pdf
https://static.docs.arm.com/ddi0439/b/DDI0439B_cortex_m4_r0p0_trm.pdf
https://docs.oracle.com/javase/specs/jvms/se7/jvms7.pdf
https://docs.oracle.com/javase/specs/jvms/se7/jvms7.pdf
http://www.cs.umd.edu/%7Epugh/java/memoryModel/
http://www.cs.umd.edu/%7Epugh/java/memoryModel/
https://doi.org/10.21105/joss.01338

	Background
	Implementation overview
	Potential future development and applications
	Expected audience for uJVM project
	Research applications
	References

