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Abstract 

Chemical reactions taking place in active centers of different enzymes are controlled by electric fields 

created by the protein in these centers. These electric fields can be experimentally detected by different 

experimental techniques (infrared absorption, NMR, etc.). In this paper, we use quantum chemical 

calculations to show that Mössbauer spectroscopy can be also used to study protein electric field. We 

study effect of both the model and protein electric fields on the magnitude of quadrupole splitting of 

Mössbauer spectra of the high-spin ferrous myoglobin and its models. It is shown that the quadrupole 

splitting is notably affected by the protein electric field.  This result also explains a number of the 

experimental data. 
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Introduction 

.Relationship between structure, dynamics and function of enzymes is one of the major problems of 

modern biochemistry and biophysics.  It is clear that environment of the active center of an enzyme 

creates an electric field (EF), the latter affecting chemical reactions taking place in the active center 

(see, for example [1]).  Therefore, it is very important to study this EF and its spatial distribution. 

Heme proteins (HPs) are widely used to address this problem, because they can be studied by optical 

and infrared absorption, NMR, Raman scattering and many other experimental techniques.  The effect 

of the heme environment on the electronic structure, spectra and properties of the heme active center 

have been studied both experimentally (for reviews see [2-7]) and theoretically using the vibronic 

theory of activation [8-13] and direct quantum chemical calculations.[14-18,3,19,20]  It was shown 

that in carbon monoxide complex of myoglobin (MbCO) the electronic structure and, consequently, 

the spectra (13C, and 17O nuclear magnetic resonance spectra, optical absorption and infrared 

absorption spectra) are notably affected by the heme environment EF.  Comparison of the 

experimentally observed C-O vibrational frequency, ν(CO), and the dissociation rate constants of CO, 

NO and O2 of different Mb mutants with the calculated EF in the heme pocket showed [4] that the 

protein EF affects both the ν(CO) and the affinity of the heme for these diatomic ligands.  A recent 

study of the CO complex of horseradish peroxidase showed that not only the position of the CO 

infrared band, but also its width is very revealing, providing specific information on the dynamics of 

the heme environment (see, for example [21-24]). 

The quadrupole splitting (ΔEQ) of the excited nuclear state of iron isotope 57Fe is observed in 

Mössbauer spectra [25-32] and provides one with direct information about the inhomogeneity of the 

electric field (electric field gradient, EFG), produced on the iron nucleus by its environment, both the 

electron cloud and external electric field.  ΔEQs of HPs and iron porphyrin complexes were extensively 

studied theoretically.[15,16,33,34]  These studies showed that application of the DFT approach 

produces good results on computations of ΔEQs.  



 

 

 

 

 

 

Effect of the protein EF on ΔEQ of only closed-shell HPs with big energy gap between the excited 

states and the ground one was studied earlier; it was shown to be very weak.[16]  This result is well 

understood, because admixture of the excited states to the ground one by external perturbations is 

weak and, consequently, distribution of electronic cloud around the iron nucleus in such compounds 

is weakly affected by the perturbations. 

At the same time in HPs containing open-shell iron its electronic structure is expected to be much 

more sensitive to any perturbations (including EF) than that of closed-shell heme proteins, because 

the energy gap under consideration is much smaller.  However, to our best knowledge effect of external 

EFs on ΔEQ of these compounds was not studied theoretically. 

In this letter we report results of theoretical study of effects of different model EFs on ΔEQ of the high-

spin (S=2) iron-porphin-imidazole complex (Fe(P)(Im)), model of the Mb active center, and of EF of 

the distal environment of the heme on ΔEQ of myoglobin. 

Theory 

ΔEQ of the iron atom is controlled by the principal components of the EF gradient tensor (Vzz, Vyy, and 

Vxx, |Vzz| > |Vyy| > |Vxx|) on this atom. 
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e is the electron charge and Q = 0.16·10-28·m² is quadrupole moment of the 57Fe I* = 3/2 excited 

state.[15] 



 

 

 

 

 

 

To check how different model EFs and the EF of the closest heme environment affect ΔEQ, we 

computed Vzz, Vyy, and Vxx using the DFT approach utilizing pure functional BPW91 (Becke 88 

exchange and PW91 correlation functionals); spin unrestricted method; and Wachter's all electron 

basis set for iron, 6-311G* set for other heavy atoms, and 6-31G* set for hydrogen atoms [15], as it 

was implemented in the Gaussian 03 package [35].  Note, that this approach was shown to reliably 

calculate ΔEQ of isolated active centers of different closed- and open-shell HPs.[15] 

Results and Discussion 

In the beginning, the geometry optimization of the high-spin Fe(P)(Im) complex was performed.  Then 

the electronic structures of Fe(P)(Im) in the presence of E = 0.01 a.u. homogeneous EFs (1 a.u. = 

5.14·109 V/cm , this magnitude of the field being of the order of the field in the heme pocket [4,36]) 

directed parallel (E║) and perpendicular (E┴) to the porphyrin plane, were calculated.  Effects of 

changes in the iron out of the porphyrin plane displacement (r) and distance between the iron and 

nitrogen of the proximal imidazole (R) were also studied. 

The geometry optimization of the high-spin Fe(P)(Im) complex yielded r = 0.32 Å and R = 2.12 Å. 

To understand how strong the EF effect is, one has to compare this effect to the one of the heme 

distortions. To do that we calculated the effect of two widely discussed and functionally important 

heme distortions: changes in r and R to 0.42 Å (note that in hemoglobin r ≈ 0.4 Å [37]) and 2.27 Å, 

respectively. Note, that elongation of the covalent iron-imidazole bond R by 0.15 Å substantially 

affects the electron cloud around the iron atom. 

The results are presented in Table 1. They show that both the distortions and EFs affect ΔEQ, the 

perpendicular to the porphyrin plane EF affecting ΔEQ not less, than the distortions under 

consideration.  The field parallel to the porphyrin plane hardly changes ΔEQ.  Note, that homogeneous 

EF by itself does not affect ΔEQ.  Consequently, the change in ΔEQ reflects the reorganization of 

electron cloud around the iron nucleus caused by the homogeneous EF. 



 

 

 

 

 

 

Table 1  Influence of the distortions and of the homogeneous EF on ΔEQ of the high-spin Fe(P)(Im) 

 ΔEQ mm/s η 

r = 0.32 Å, R = 2.12 Å 

E = 0 

-2.06 0.77 

r = 0.42 Å, R = 2.12 Å 

E = 0 

-2.13 0.97 

r = 0.32 Å, R= 2.27 Å 

E = 0 

-2.18 0.48 

r = 0.32 Å, R = 2.12 Å 

E║ = 0.01 a. u. 

-2.06 0.76 

r = 0.32 Å, R = 2.12 Å 

E┴ = 0.01 a. u. 

-1.94 0.91 

r = 0.32 Å, R = 2.12 Å, 

E┴ = -0.01 a. u. 

-2.11 0.64 

The effect of the closest heme environment on ΔEQ of Mb was also computed.  To do this we used the 

X-ray data [38].  We simulated the distal and proximal histidines with imidazoles and neglected the 

contribution of the peripheral porphyrin residues.  The latter assumption is based on (a) the fact that 

these residues do not participate in the porphyrin pi-conjugation, and (b) our finding that EF parallel 

to the porphyrin plane hardly affects ΔEQ, see Table 1.  The relative positions of heavy atoms of the 



 

 

 

 

 

 

heme, distal imidazole, and hydrogen bonded water molecule were taken from [38], then the hydrogen 

atoms were added and their positions were refined by the geometry optimization using the same 

quantum chemical approach, see Fig. 1.  

 

Fig. 1 Structure of heme and its distal environment in myoglobin [38] with optimized positions of 

the hydrogen atoms (Fe – violet, O – red, N – blue, C – grey, H – white) 

 Using this structure, we computed ΔEQ of the heme-imidazole complex with and without the distal 

environment, the results being presented in Table 2.   

Table 2 Influence of EF of the distal imidazole and the water molecule on ΔEQ of myoglobin heme  

 ΔEQ, mm/s η 

Heme -2.08 0.68 

Heme and distal 

environment 

-2.18 0.69 

 



 

 

 

 

 

 

It follows from Table 2 that EF of the distal environment, histidine and water changes ΔEQ by 0.1 

mm/s, this change being just a beat weaker, than the effect of the elongation of the covalent iron-

imidazole bond by 0.15 Å, 0.12 mm/s, see Table 1.  It follows from this comparison, that the protein 

EF can affect ΔEQ of deoxyheme proteins to the same extent as relatively large heme structural 

changes.  Consequently, the protein EF effect is notable and measurable and has to be taken into 

account when interpreting Mossbauer spectra of these proteins. 

Note, that taking into account the EF of the heme environment improves the theoretical result, making 

it considerably closer to the experimentally observed value of -2.22 mm/s [39], but hardly affects η. 

It follows from the results presented above that both the model and protein electric fields notably affect 

the quadrupole splitting of the ferrous iron of Fe(P)(Im) and of ferrous deoxyheme proteins.   

To our best knowledge, the results presented in this letter are the first demonstration of the effect of 

an external EF on ΔEQ.  It stems from the re-organization of the electronic cloud around the iron 

nucleus caused by the EF. 

This effect of the protein EF can explain, at least partially, the deviation between the experimental 

results and those, obtained without taking into account the EF.[15]  It also can contribute to the 

broadening of the deoxyhemoglobin Mössbauer spectra [30] as a result of different heme environment 

in α and β subunits of hemoglobin.[37] 

Conclusion 

It follows from the results presented above that external electric field can notably affect quadrupole 

splitting of complexes with open-shell metal atoms. As such, on the one hand, it must be taken into 

account when interpreting the experimental data. On the other hand, it can be used as an effective 

probe of external electric fields, including protein electric field. 
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