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CVD2014 - A database for evaluating no-reference
video quality assessment algorithms

Mikko Nuutinen, Toni Virtanen, Mikko Vaahteranoksa, Tero Vuori, Pirkko Oittinen, and Jukka Hikkinen

Abstract—In this study, we present a new video database:
CVD2014 - Camera Video Database. In contrast to previous
video databases, this database uses real cameras rather than
introducing distortions via post-processing, which results in a
complex distortion space in regard to the video acquisition
process. CVD2014 contains a total of 234 videos that are
recorded using 78 different cameras. Moreover, this database
contains observer-specific quality evaluation scores rather than
only providing mean opinion scores. We have also collected open-
ended quality descriptions that are provided by the observers.
These descriptions were used to define the quality dimensions
for the videos in CVD2014. The dimensions included sharpness,
graininess, color balance, darkness and jerkiness. At the end
of this paper, a performance study of image and video quality
algorithms for predicting subjective video quality is reported.
For this performance study, we proposed a new performance
measure that accounts for observer variance. The performance
study revealed that there is room for improvement regarding
the video quality assessment algorithms. The CVD2014 video
database has been made publicly available for the research
community. All video sequences and corresponding subjective
ratings can be obtained from the CVD2014 project page (http:
//www.helsinki.fi/psychology/groups/visualcognition/).

Index Terms—Video camera, quality attribute, subjective eval-
uation, video quality algorithm

I. INTRODUCTION

HE research field related to image and video quality is

multidisciplinary and is composed of the primary disci-
plines of vision, color, computational and behavioral sciences.
Among the top priorities of this research is the development
of a computational model (in the form of an algorithm) that is
capable of predicting the subjective visual quality of natural
images and videos. An established practice is to use publicly
available databases when the performance of new image or
video quality assessment (I/VQA) algorithms are tested or
validated.

These databases include test images or videos that are dis-
torted in different ways and annotated with subjective ratings.
Table I lists the publicly available video databases known
to us. Note that not all of the distortions that occur in the
typical video production chain are included in these databases.
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TABLE I: Public video databases and distortion types

Database Distortions Data

EPFL-PoliMi [5] Transmission error Raw

ECVQ and EVVQ [6] Compression DMOS + o

Poly@NYU Video Qual- | Frame rate, quantization | Raw

ity Databases [7], [8] parameter

Poly@NYU Packet Loss | Transmission error Raw

Database [9]

IRCCyN/IVC  databases | Compression, Raw

[10] Transmission error

LIVE [11] Compression, transmission | DMOS + o
error

LIVE Mobile [12] Compression, transmission | DMOS + o
error

MMSP (SVD) [13] Spatial and temporal reso- | Raw
lution, compression

CSIQ [14] Compression, transmission | DMOS + o
error

IVP [15] Compression, transmission | DMOS + o
error

TUM 1080p25 [16] Compression Raw

TUM 1080p50 [17] Compression Raw

AVC HD Database [18] Transmission error Raw

VQEG FR-TV Phase I | Compression, transmission | DMOS + o

Database [19] error

VQEG HDTV Database | Compression, transmission | Raw

[20] error

The traditional video production chain can be divided into
video acquisition, encoding and transmission processes [1].
Furthermore, there can be a fourth process, rendering, which
is the key aspect of three-dimensional (3D) and high dynamic
range (HDR) video production [2]-[4]. The distortions in
the public databases presented in Table I are related to the
encoding (compression) and transmission processes, but they
are not related to video acquisition or rendering. The focus
of this study is to present a new database related to video
acquisition.

Thus, we argue that the VQA algorithms proposed in
the literature and validated by using public video databases
(such as those listed in Table I) are only feasible with a
restricted set of distortions. One reason why the process of
video acquisition is missing from the databases is because the
video samples from it are cumbersome to produce. Capturing
real video samples that use different video cameras, which
we have performed in this study, requires a considerable
amount of work. In addition, a large number of different
video cameras should be available. Another option to produce
samples is to simulate the video capturing process. In the
video capturing process, the camera optics project an optical
image onto an image sensor [21], while signal processing
tunes the capturing parameters (exposure and focus). Then,
for example, white balance, sharpness, noise reduction and



colors are processed [22]-[24] before the output is encoded.
The simulation is, however, complex and has not yet matured
as a research topic.

Note that prior work regarding the quality of video acquisi-
tion is related more to the camera quality research field than
to the field of signal processing (I/'VQA algorithms). In the
camera quality research field, both subjective and objective
methods have long traditions. Subjective evaluations function
as the ground truth for camera quality [25]-[30]. Subjective
methods have also been used for characterizing the quality
properties of photographs and video sequences [31]-[33]. For
example, Radun et al. [32] found that the most important
image quality dimensions are color shift, naturalness, darkness
and sharpness. However, subjective measurements require a
large number of assessors and are time consuming to imple-
ment. In addition, subjective measurements cannot be used for
applications that require real-time parametric control based on
quality data.

Methods for objective measurements in camera quality
research employ synthetic test target charts rather than images
or video sequences captured from natural scenes. Test targets
are captured under specific types and levels of illumination in
a strict laboratory environment, and characterization values are
computed from the acquired signal. The ISO (International Or-
ganization for Standardization) has published objective camera
measurement standards for resolution [34], noise [35], lens
optical distortion [36], Opto-Electrical Conversion Function
(OECF) [37] and color [38] characterization and measure-
ments. Test target measurements, however, primarily describe
how camera systems function. They do not correlate well with
the perceived quality of images and video sequences captured
from natural scenes [39]. In addition, adaptive signal pro-
cessing in cameras hinders the interpretation of measurement
data [40]-[43].

I/VQA algorithms (e.g., [44]-[52]) have been developed
for measuring the perceived quality of natural images and
videos. Unfortunately, the current VQA algorithms, as stated
above, and IQA algorithms, as indicated in [53], have been
developed only for the processes of image/video encoding and
transmission. A VQA algorithm developed for the process of
video acquisition could substitute or supplement test target
measurements in the field of camera quality research. In this
paper, we propose the CVD2014 video database, which is, to
the best of our knowledge, the first publicly available video
database in which there are distortions that arise from the
video acquisition process. The primary purpose of CVD2014
is to function as training data for developing new VQA
algorithms dedicated to the video acquisition process. The
videos in CVD2014 were captured using 78 different cameras.
The quality of the cameras varied from low-quality mobile
phone cameras to dedicated video and high-quality digital
single lens reflex (DSLR) cameras. The videos were evaluated
through subjective experiments. In addition to overall quality,
we collected quality attribute scales and open-ended quality
descriptions. The video database and experimental data have
been made publicly available for the research community. In
addition, we distribute all of the subjective data rather than
making only the mean opinion scores available.
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The remainder of this paper is divided into three parts.
In the first part, we describe the properties of the captur-
ing devices and captured scenes and how the videos were
processed for the subjective experiments. The second part
introduces the subjective experiment settings and how the
subjective data were analyzed. The third part of the paper
presents the performance study of the video quality assessment
algorithms. For that part of the study, we have proposed a
new measure for evaluating algorithms. This new performance
measure accounts for the observer variance, which is possible
with the CVD2014 database because observer-specific data
are available. The primary contributions of this paper are
summarized below:

o The videos in the CVD2014 database are captured using
78 different cameras, and the distortions are related to
the video acquisition process. In contrast to many earlier
databases, the videos in the CVD2014 database contain
audio. In addition, the CVD2014 database contains more
comprehensive and detailed subjective data. We have
analyzed subjective quality attributes and open-ended
descriptions collected from the observers.

e For the algorithm performance study, we introduced a
new performance measure that accounts for the variance
between observer answers. In earlier studies, the predic-
tions of the algorithms were only compared to the mean
opinion scores.

II. VIDEO SEQUENCES, CAPTURING AND
POST-PROCESSING

A. Video sequences

The challenge of constructing the CVD2014 database was
that the video sequences need to be shot by different cameras
and still be as similar as possible. When the earlier video
databases were constructed, they only needed to capture one
good video sequence for one scene. Then, the entire set
of test videos was processed from the reference. Because
the quality differences between the video sequences in the
CVD2014 database arise from the different capturing devices
(see Section II-B), the test videos had to be captured one at a
time when using different cameras.

The video sequences in the CVD2014 database were cap-
tured from many different scenes. Figure 1 shows three frames
from the scenes. The frames are from the beginning, middle
and end of the video sequences. The length of the trimmed
and processed videos was 10 - 25 s. The processing steps of
the videos for the subjective experiments and algorithm perfor-
mance study are described in Section II-D. Short descriptions
of the sequences are provided below.

o Traffic — A bus is driving on a busy road and passes the
camera. The camera pans to the direction of the sea where
a man is walking on a walkway.

e City — A view from a central location in a city where
a man is walking from the outdoors to a tunnel, which
includes a gradual change in color temperature and
illuminance based on the panning camera and moving
objects.
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Fig. 1: CVD2014 video database sequences 1-5 (from top to
bottom): Traffic (1), City (2), Talking Head (3), Newspaper
(4) and Television (5)

o Talking Head — The upper body of a man who is talking
(in Finnish).

o Newspaper — A man is reading a newspaper indoors, and
the light turns to a different color temperature.

e Television — A man is walking to a sofa and picks up an
orange from a basket, sits down and switches on a TV,
on which a news program begins.

The scenes contain different amounts of spatial and temporal
information. ITU (International Telecommunication Union)
Recommendation P.910 [26] defines the metrics of spatial
perceptual information (SI) and temporal perceptual informa-
tion (TI) for characterizing the level of activity in a video
sequence. The calculation of SI in each frame f(z,y,t) of a
video sequence is filtered by a Sobel filter, and the standard
deviation std(Sobel(f(z,y,t))) for each Sobel-filtered frame
is calculated when = and y are pixel coordinates and ¢ is a
frame index. TI is based on the difference between successive
frames, D(z,y,t) = f(z,y,t) — f(x,y,t + 1). The standard
deviation std(D(x,y,t)) of each difference frame is calcu-
lated. The standard [26] defines that the SI and TI values for
a video sequence are the maximums of std(Sobel(f(x,y,t)))
and std(D(z,y,t)), respectively.

We were concerned that a single SI or TI value, as de-
scribed in the standard, for the entire video sequence could
be misleading if the content changes throughout the duration
of the video. For example, in the videos in the CVD2014
database, there are moving and static objects, and videos are
captured using static or panning cameras in a row. Thus, we
decided to use the point clouds of SI and TI values, rather
than their single values, when characterizing the scenes from
which the videos were captured. Point clouds characterize the
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Fig. 2: Spatial and temporal activity presented as point cloud
values for the example (high-quality) video sequences

TABLE II: Frequency table of video formats and frame rates
in the cameras used for capturing the videos in the CVD2014
database

10< 13< 19< 22< 25< 28<
Ifps | fps | fps | fps | fps | fps
Video format <13 | <16 | <22 | <25 | <28 | <31
QCIF (176 x144) 1
QVGA (320 x 240) | 1 1
CIF (352 x 288) 1
VGA (640 x 480) 7 1 18
NTSC (720 x 480) 1 1 2
PAL (768 x 576) 3
WPAL (848 x 430) 1
HD (1280 x 720) 3 1 9
FHD (1920 x 1080) 6 1 15

time course properties of the videos better than single values.

Figure 2 shows the point cloud values (SI(t),TI(t — 1))
of the CVD2014 scenes, where ¢t = 2,...,7 and T is the
number of frames in the video sequence. The values were
calculated from the high-quality video sequences. The point
clouds show that the motion and detail levels vary for the
different scenes. For example, both the SI and TI values in the
talking head scene are low and at a constant level throughout
the scene. With the newspaper and traffic scenes, the TI values
vary slightly throughout the scenes, but the SI values remain at
a constant level. With the television and city scenes, both the SI
and TI levels vary considerably, which indicates the presence
of spatial and temporal properties that vary considerably.

B. Video capturing and artifacts

In total, 3 DSLR, 4 digital video (DVC), 8 digital still
(DSC) and 63 mobile cameras were used for video capturing.
Each camera was used in auto mode. Different cameras have
different recording formats, settings and video codecs. The
cameras used the H.264 (43 cameras), MPEG-4 (28 cameras),
MPEG-2 (3 cameras), MJPG (2 cameras) or DV (2 cameras)
codecs for compressing video streams. Frequency data of
different video formats' and frame rates are listed in Table II.

The videos in the CVD2014 database, which were produced
by 78 different capturing devices, contain multiple highly

ICommon Intermediate Format (CIF), Quarter CIF (QCIF), Video Graphics
Array (VGA), Quarter VGA (QVGA), National Television System Committee
(NTSC), Phase Alternating Line (PAL), Wide PAL (WPAL), High Definition
(HD), Full HD (FHD)



complex and signal-dependent artifacts, unlike most distor-
tions in the earlier video databases. These distortions are very
difficult to simulate because they are not only dependent on the
optical systems of the capturing devices but also on the signal
processing and sensor characteristics. The raw signal from a
sensor includes artifacts, such as photon noise, thermal noise,
pixel defects, pixel saturation and spatial under-sampling. A
low temporal sampling rate results in a jerkiness artifact, which
can be perceived as discontinuities of movements. The optics
introduce several optical aberrations, such as lens shading and
geometrical distortions.

The signal control adjusts the 3A of the camera: auto-focus
(AF), auto-exposure (AE) and automatic white balance (AWB)
algorithms [33]. A failed exposure or a failed focus induce
dark or overexposed video and loss in detail and sharp edges.
Global color errors, such as a green, red or yellow shade in
the final video, are often caused by unsuccessful AWB.

Signal processing is divided into dedicated sequential
blocks, and each block is tuned depending on characteristics
of the sensor and optics [22]. According to [22], [23], typical
operations are defective pixel correction, noise removal, black
level adjustment and color correction. De-mosaicking is the
process of interpolating missing color filter array-sampled
pixel values. Finally, a compression algorithm is applied on the
digital video stream. The key principle of video compression
is to eliminate spatial and temporal redundancy without visible
artifacts. Typical artifacts are, e.g., blocking, basis image
effect, staircase effect, ringing effect, motion compensation
mismatch and mosquito effect [54].

Figure 3 shows typical frames from the video samples in
the CVD2014 database. The figure caption contains qualitative
descriptions for these video samples. The descriptions are
collected by the method explained in Section IIl. According
to the descriptions, the samples in Figs. 3a and 3d are sharp
and bright. The sample in Fig. 3b is grainy because of sensor
noise and/or compression artifacts. The samples in Figs. 3c
and 3e are unsharp and yellow or reddish because of spatial
under-sampling or failed AF and AWB. The sample in Fig. 3f
is grainy and shivery because of compression artifacts, such
as mosquito and ringing effects. In addition, a staircase effect
can be identified from the fence in Fig. 3f.

C. Characterization of capturing devices

In addition to test scene capturing, we obtained standard
test target measurements for the cameras. We measured the
modulation transfer function (MTF) and signal-to-noise ratio
(SNR) metrics. Modulation transfer was measured by spatial
frequency response (SFR) [34] from the slanted edge area
of the MICA test target [55]. SNR [35] was measured from
the gray patches of the MICA test target, from which the
ratio of the average signal value to the standard deviation of
the signal value was calculated. The SNR value indicates the
noise level as well as noise reduction processing. The MTF
value (line pairs per picture height, LP/PH) indicates detail
reproduction and signal sharpening [34], [40]-[42]. The 1Q-
Analyzer software (v. 5.2.7) was used for the analyses.

Figure 4 shows the histograms of the SNR and MTF values
of the capturing devices for an illumination level of 1000 lux.
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The illumination level of 1000 lux is typical outdoor lighting
conditions. From the histograms, it can be observed that the
measured values vary, which indicates the varying quality of
the cameras. Video sequences with different quality levels
are very important if video databases are to be used for the
development of VQA algorithms and benchmarking tasks. Test
target data and analysis with more details can be found on the
CVD2014 project page.

D. Video post-processing

For the subjective experiments (Section III), the videos were
post-processed to the spatial format of VGA (640x480 pixels)
or HD (1280x720 pixels) using the Avisynth script language
(v. 2.5) and VirtualDub (v. 1.10.4). The frame-rates were
maintained at their original values. The audio volume of the
videos was normalized using Audacity software (v. 2.0.5).
Note that we used these same post-processed videos for the
performance evaluation of the algorithms (Section V).

The original videos were opened in VirtualDub using the
’DirectShowSource’ command. If the video resolution was
different than VGA or HD, it was scaled using the ’Bicu-
bicResize’ command. The videos in the CVD-I database are
in VGA format, and the videos in the CVD-II and CVD-III
databases are in HD format?. If the aspect ratio of the original
video differed from that of the target, it was cropped to the
correct aspect ratio using the ’crop’ command. For example,
with the VGA format, the aspect ratio should be 3/2, and with
the HD format, it should be 16/9. If the video resolution was
lower than 720 lines (SD video), the color space of the video
was transformed to the color space of HD video using the
’ColorMatrix(mode=""rec.601—Rec.709”’)’ command.

When the video was opened in VirtualDub, the audio track
was extracted to uncompressed WAV format and normalized
in Audacity. Note that audio was captured directly by the
camera and that normalization was performed because dif-
ferent cameras can record audio at different volumes. By
normalizing the audio, we avoided the observers having to
tune the video volume settings between different test videos.
For the normalization process, the maximum amplitude value
was set to -3 dB, the number of audio channels was maintained
constant (1=mono or 2=stereo) and sampling rate was set to
48 kHz.

Finally, the videos were trimmed to the same lengths in
terms of content such that all of the test videos began from
and ended on the same actions. The videos were compressed
using the lossless Huff YUV compression with the YUY?2 color
space, and they were deposited in the AVI containers.

III. SUBJECTIVE EXPERIMENTS

The CVD2014 database is divided into four parts or sub-
databases. The sub-databases are named CVD-I, CVD-II,
CVD-III and CVD-RA. The CVD-I, CVD-II and CVD-III sub-
databases were constructed from the data of subjective tests
1-6 (Table III). Tests 1 & 2 (CVD-I), 3 & 4 (CVD-II) and

2The CVD2014 database is divided into the CVD-I, CVD-II, CVD-III and
CVD-RA sub-databases according to the experimental data
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(d)

Fig. 3: Example frames from typical video sequences in the CVD2014 database. Descriptions of the video sequences given by
subjective observers: (a) sharp and bright, (b) grainy, (c) unsharp and yellow, (d) sharp and bright, (d) unsharp and reddish,

and (e) unsharp, shivery, grainy and dark
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Fig. 4: SNR (dB) histograms (a) and MTF50 (LP/PH) his-
tograms (b) for illumination conditions of 1000 Ix

5 & 6 (CVD-III) were identical in terms of test methods and
scenes from which the video samples were captured. In other
words, the two tests of the same sub-database were always
conducted asking the same quality attributes from different
observer groups using the video samples captured by different
cameras. Note that the video samples were captured using
different cameras at different time periods for the different
tests. The columns of ”Scenes” and “Cameras” in Table III
present how cameras 1-78 and scenes 1-5 were used for
capturing test material for tests 1-6. From the table, it can
be observed that three scenes from the five were always used
in one test. The videos were presented in a random order, one
scene at a time for each observer.

CVD-RA contains the data from the additional study in
which the mappings from the 18 test-specific quality scales
(6 tests x 3 scenes) to the global quality scale were formed.

The global scale is valuable when studying and developing
VQA algorithms. With the global scale, all of the samples
(234 videos in the case of the CVD2014 database) have the
same scale, and the performance analysis for algorithms can
be conducted with a high number of samples. The experi-
mental setup and data analysis for the CVD-RA database are
described in further detail in Section IV-D.

A. Methods

Table III summarizes the scenes, cameras and asked at-
tributes in different tests. All video samples were post-
processed as described in Section II-D. The overall video
quality values were measured in all of the tests. In tests 1-2,
with data being contained in the CVD-I database, open-ended
descriptions regarding the quality differences between the test
videos were also asked from the observers. These descriptions
are clustered into the attribute classes that define the latent fac-
tors of overall video quality. This method (IBQ, interpretation-
based quality) of collecting descriptions is described in [31],
[32], [56].

In subjective tests 3-6, with the data contained in the CVD-
IT and CVD-III databases, in addition to overall quality (Q),
the pre-defined attribute scales were evaluated. The attribute
scales were sharpness (S), saturation (Sa), pleasantness of
color (PoC), obtrusiveness of change in lighting (OoCiL),
lightness (L), motion fluency (MF) and sound quality (SQ).
After a video sample was presented, observers evaluated
its overall quality. Then, the video sample was replayed,
and observers evaluated the pre-defined attribute scales. The



observers always had the option to view the video samples
again as many times as they wanted. The attribute scales of S
and color reproduction (Sa or PoC) were examined for all of
the scenes. In addition, scene-specific attributes of SQ (talking
head), MF (city), OoCiL (newspaper) and L (television) were
examined.

The scene-specific attributes were selected because, accord-
ing to our experience and previous tests, they are important
in the evaluated scenes. Note that the scene-specific attributes
were asked only for the scenes at issue, i.e., the SQ was asked
only for the video samples captured from the talking head
scene. We did not ask the scene-specific attributes from all
scenes because it would have excessively lengthened the tests.

The single stimulus (SS) evaluation method [25] was used in
all the tests when overall quality or pre-defined attribute scales
were collected. With the SS method, one video sample is
displayed at a time. The standard [25] defines categorical and
non-categorical evaluation types. We selected non-categorical
evaluation, for which the standard [25] describes continuous
and numerical scaling. With subjective tests 1-2 (CVD-I),
we used continuous scales with intermediate numerical labels
(scale of 0-100 with a step size of 10). With subjective tests
3-6 (CVD-II and CVD-III), we used continuous scales without
numerical labels. The numerical labels were removed because
they induced frequency peaks around the round numbers. The
same problem was noted in a previous study [57].

B. Test environment and display

The experiments were performed in a dark room with
controlled lighting that was directed toward a wall behind the
displays, which produced an ambient illumination of 20 lux
to avoid flare. The setup included a colorimetrically calibrated
24” 1920 x 1200 display (Eizo Color Edge CG241W), a
small display and headphones (Sennheiser HD600), (Fig. 5).
The experiments were conducted using the VQone MAT-
LAB toolbox, which is publicly available to the research
community [58]. The subjects viewing distance (80 cm) was
controlled by a weight hanging from the roof, and they were
instructed to keep their forehead steady next to the weight.

The displays were color calibrated to the sRGB color
standard. The luminance level was set to 80 cd/ m?, the white
point was set to 6500 K, and gamma was set to 2.2. Compared
to the modern LCD displays that are often used in bright office
lighting, the luminance value of 80 cd/m? appears to be low.
The low luminance value can be justified because observers
adapted quickly to the low light environment [59] (20 lux),
and dim light induces less eye fatigue.

The test videos were displayed on the calibrated display,
and the input of the observer was shown on the small display.
The videos were displayed in their native resolutions (after
post-processing) on the display to avoid distortions that might
arise from the software or hardware scaling operations. It
should be noted, that audio was always played back. Audio
track processing is presented in Section II-D. The videos were
presented in a random order, one scene at a time for each
observer. The observers used graphical sliders to evaluate the
quality and the attributes of the videos.
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Fig. 5: Illustration of the lab setup. Note: All room lights are
on in this example to better demonstrate the setup

C. Subjects

The observers (n 210) were naive in the sense that
they did not study or work with image quality or in related
fields. They were recruited through student mailing lists that
consisted mainly of humanities and behavioral science stu-
dents. They received movie tickets as compensation for their
participation. A large proportion of the observers were female
(158). The average age was 24 years (min: 18 and max: 46).

The observers vision was controlled for near visual acuity
by EDTRS (Precision Vision, La Salle, IL, USA), near contrast
vision by FA.C.T. (Stereo Optical Co. Inc., Chicago, IL, USA)
and color vision by Farnsworth D-15 (Luneau Ophtalmologie,
Chartres, France) prior to participation.

In all tests 1-6, the observers were asked to read a briefing
form, which explained the experiment to them. Before the
actual test began, the observers received a short demonstration
in which good and bad quality videos were shown. The
example videos introduced the quality scale, which reduces
the effect of the evaluation scores aggregating in the center of
the evaluation scale [60].

On average, the experiment lasted 1 h and 6 minutes.
However, that time includes the visual testing, instructions and
training for the observers. The observers were also able to take
a break if they believed that they needed one.

IV. SUBIJECTIVE DATA

Sub-sections IV-A - IV-C present the data analysis for
the CVD-I, CVD-II and CVD-III databases. The CVD-RA
database is presented and analyzed in Section IV-D.

A. Processing of the scores

The subject rejection procedure described in standard [25]
was used to check the subjects’ reliability. The procedure was
conducted for the overall quality values. After performing the
procedure for all of the observers, we found that none of
the observers needed to be excluded, and the final subjective
results for all of the test videos were calculated using the
scores of all of the observers.
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TABLE III: Overview of the databases and test methodologies. The scene numbers are 1: Traffic, 2: City, 3: Talking head, 4:
Newspaper, and 5: Television.

Database Test Scenes | Cameras | No. Attributes IBQ | Video No. sub- | Average| Age (median)
setup videos resolu- jects test
tion time
CVD-1 Test 1,2,3 1-9 27 Q Yes 640x480 | 30 (21 f, 1 h33 | 23 (min 18, max 40)
1 9m) min
CVD-1 Test 1,2,3 10-19 30 Q Yes 640x480 | 30 (27f, 1 h44 | 24 (min 18, max 38)
2 3m) min
CVD-II Test 2,3,4 | 20-32 39 Q, S, Sa and scene specific at- | No 1280x720 | 28 (23f, | 50 25 (min 21, max 39)
3 tributes (Scene 2: MF, Scene 3: S5m) min
SQ, Scene 4: OoCiL)
CVD-II Test 2,3,4 | 33-46 42 Q, S, Sa and scene specific at- | No 1280x720 | 33 (20f, 1 h 6 | 22 (min 18, max 44)
4 tributes (Scene 2: MF, Scene 3: 13m) min
SQ, Scene 4: OoCiL)
CVD-III Test 2,3,5 | 47-62 48 Q, S, PoC and scene specific | No 1280x720 | 30 (20f, 1 h 6 | 24 (min 19, max 35)
5 attributes (Scene 2: MF, Scene 3: 10m) min
SQ, Scene 5: L)
CVD-III Test 2,3,5 63-78 48 Q, S, PoC and scene specific | No 1280x720 | 32 (26f, 1 hil 23 (min 20, max 46)
6 attributes (Scene 2: MF, Scene 3: 6m) min
SQ, Scene 5: L)
CVD-RA | Test | 15 * 78 Q No | 640x480, | 27 (21T, | 34 24 (min 19, max 31)
7 1280x720 | 6m) min
B. Data statistics
If the number of observers is high, the mean opinion score 20t CVD-ll, Test5 |
(MOS) will approach the ground truth. While collecting data i CVD-ll, Test 3
for the databases, we had 27-33 observers per test. Here, we 2 18] YRl Test®
estimate the average standard deviation values as a function of é CVD-II Test 4
the number of observers, n, to investigate whether the number T 16/ CVDA, Test 2
of observers was sufficiently high. The standard deviation of 2 CVDH, Test 1
the random observer combination c¢b;, (i = 1,...,1000), was o 141
calculated for test ts € {1,..,6} as an average over the g
three scenes that were used when the samples of the ¢s were 12
captured:
% 10 20 30 40

3 m n

1 1 1
S il il L )2
Ots,n = 3 m Z n Z(Qts,c,j,k’ MOSts,c,]) (D

=1 Jj=1 k=1

where Qs ;.1 is the quality evaluation of observer k, (k =
1,...,n) for video sample Vts,c,; captured from the scene, c,
when Vis . = {vsc,; | 7 =1,...m} and m is the number of

capturing devices and

Nts

1
MOSts,c,j = E Z Qts,c,j,l (2)
5 =1

where n;s is the total number of observers in test ts. The
observer combinations of different sizes (n = 1,2, ..., n4)
were randomly selected 1000 times from the group of all of
the observers. Figure 6 shows the average standard deviation
values as a function of the number of observers for the differ-
ent tests. From this figure, we can observe that the standard
deviation values saturate before n = n;;. We conclude that
the n:s in all of our tests was adequate.

Figure 7 presents the histograms of the overall quality scores
for tests 1 - 6. According to the Shapiro-Wilk normality
test [61], the null hypotheses of normal distributions should
be rejected for tests 1-6 (p < 0.05). The kurtosis values of
the distributions are 2.36, 2.38, 2.15, 1.78, 1.93 and 2.00.
Because the kurtosis values are less than 3, the shape of
the quality score distributions is platykurtic. A platykurtic

n (number of observers)

Fig. 6: Mean standard deviation values as a function of the
number of observers

distribution is one in which many of the quality scores of the
scale share approximately the same frequency of occurrence.
When the usage of the database is to evaluate and develop
algorithms, this type of flat distribution is desired over a
normal distribution. A flat distribution contains more low- and
high-quality samples compared to a normal distribution, and
thus, algorithms are able to be tested more thoroughly.

C. Subjective quality dimensions for the videos

It is important to understand the latent factors behind the
perceived subjective quality to develop video quality assess-
ment algorithms. In this study, we collected comprehensive,
subjective data for the factors that formed the perception of
overall quality. In subjective tests 1 and 2 (CVD-I), in addition
to the overall quality evaluations, free open-ended descriptions
from the observers were collected. The analysis of the results
are presented in Section IV-C1. In subjective tests 3 - 6 (CVD-
IT and CVD-II), in addition to the overall quality, we collected
pre-defined attribute scale evaluations. The analysis of the
results is presented in Section IV-C2.
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Fig. 7: Subjective scores for all of the video sequences: CVD-
I database test setups 1 and 2; CVD-II database test setups 3
and 4; CVD-III database test setups 5 and 6

1) CVD-I: Descriptive data: To study the descriptive data,
we coded the open-ended descriptors (see [32]) that were
provided by the observers into 17 attribute classes. All of
the descriptors that depicted the same concept were coded
into the same attribute class. For example, the attribute class
unsharp included all of the descriptors that were related to
unsharpness or fuzziness. The attribute class of color balance
bad included all of the descriptors that were related to yellow,
red, green or blue global color tints in the video. The attribute
classes and their frequencies are presented in Table IV. The
frequency number indicates how many open-ended descriptors
were coded in that attribute class.

The 17 attribute classes form the distortion space for the
CVD2014 database. The term distortion space refers to n-
dimensional representations in which the dimensions indi-
cate different distortions. Because the attribute classes were
collected and coded manually, there can be redundant data,
meaning that two or more attribute classes can explain the
same attribute. We used principal component analysis to
extract the main dimensions from the data. We found that the
main principal component explained 40 % of the variance in
the entire data set. In addition, the combination of dimensions
2 and 3 explained 25 % of the variance. Dimensions 4 to 17
only explain 35 % of the variance. Therefore, we decided to
further analyze the first three principal components to obtain a
deeper understanding of the quality dimensions that generated
the overall quality perception.

Figure 8a shows the first and second principal components.
The attribute classes of sharp and unsharp are strongly pro-
jected in the direction of the first principal component. The
attribute classes of color_balance_bad and jerky are strongly
projected in the direction of the second component. The at-
tribute of color_balance_bad describes global color reproduc-
tion (color tint), and jerky describes smoothness of movement.
Figure 8b shows the first and third principal components. In
this figure, it can be observed that the attribute class dark is
projected on the third principal component.
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TABLE IV: The frequencies and descriptions of the attributes
that are used to describe video quality

Attribute Frequency Description

Unsharp 632 Low level of clarity of the details
and edges

Sharp 612 High level of clarity of the de-
tails and edges

Grainy 568 High- to low frequency and un-
wanted random- or fixed-pattern
(such as blocking) intensity dis-
tortion on the frame

Shivery 399 Or flickering

Jerky 398 Movement is irregular; jerky and
smooth are opposites

Color_balance_bad | 354 Yellow/red, green or blue global
color tint in video

Colors_bad 347 Colors are unnatural or color
flickering

Dark 298 Video is too dark or dim

Colors_good 295 Colors are natural and bright

Faded_colors 290 Video is pale or colorless

Foggy 265 Video is foggy or fuzzy

Bright 212 Video is bright and contrasted

Sound_noisy 195 abrupt audio

Clear 189 Easy to distinguish the content of
the video

Exposure_bad 177 Video is over exposed or has
flickering brightness

Smooth 156 Smooth movement; smooth and
jerky are opposites

Unclear 132 Difficult to distinguish the con-
tent of the video

Total 5519

According to the principal components extracted from the
distortion space of the open-ended descriptions, the subjective
overall quality perception can be explained by the attributes
of sharpness, graininess, color balance, jerkiness and darkness.
The quality is experienced low because a video can be unsharp,
can be noisy, can be too dark, has a color balance that is
unnatural (yellow, reddish, greenish or bluish), has movements
that are jerky or has some combination of these attributes.

2) CVD-II and CVD-III: Attribute correlations: In subjec-
tive tests 3 - 6 (CVD-II and CVD-III), we collected the scale
values for S, Sa, PoC, MF, SQ, OoCiL and L attributes. Most
of the attributes were collected only for the samples captured
from the specific scene, and for that aspect, the data are sparse.
The column of Attributes” in Table III indicates the scenes
for which the different attributes were measured.

Table V shows the Pearson linear correlation coefficients
(PLCC) between the attributes and overall quality scales. The
number of sample points is presented in brackets after the
PLCC values. The lightness (L) and saturation (Sa) scales
were bipolar. A value of O indicated neutral video, a value
of -100 indicated video that was too dark or pale, and a value
of 100 indicated a video that was too bright or saturated. For
the analysis, the bipolar values (BV) were transformed into
their distances from the neutral condition using the equation
BVioa = 2 % (50 — |50 — BV]). This transformation takes
into account that high-quality video is not, e.g., too bright or
saturated but rather something between the extreme values of
these bipolar scales.

Table VI shows the PLCC values for linear models MOS =
c1*x1+co*T2+c3xx3, where ¢; are weighting factors for the
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Fig. 8: Principal components 1 and 2 (a) and 1 and 3 (b) for
the descriptive data

attributes z; and MOS is the predicted overall quality. The
weighting factors were defined based on the root mean square
error between the predicted and measured overall quality
values. According to the results in Tables V and VI, sharpness
(S) better predicted the overall quality than did the other
attributes, which means that, in practice, high-quality videos
are always sharp. In other words, the object/subject of interest
in the video should be sharp. Note that the rest of the frame
could be blurry, due to the use of narrow depth of field, and
it could still be perceived as high-quality. Additionally, high
values in the scales of pleasantness of color (PoC), motion
fluency (MF) or sound quality (SQ) were related to a high
overall quality.

We conclude that at least five dimensions are important
when the overall quality of consumer videos is considered.
These dimensions include sharpness, pleasantness of colors
(color balance), graininess, darkness and motion fluency. In
addition, sound quality can be an important dimension if audio
has a role in the video, e.g., the audio is something other than
just background noise.

D. Realignment study

Because the quality evaluations are test and scene specific,
the original MOS values from tests 1 - 6 and from different

TABLE V: PLCC values between pre-defined scale attributes
and overall quality (MOS). The numbers of sample points are
presented in brackets.

S Sa PoC OoCiL | L MF SQ
0,01 0,38 0,82 0,57 0,59 0,69 0,71
@=177)| (@=81) | (0=96) | (=27) | (©=32) | (©=59) | (n=59)

TABLE VI: PLCC values for the linear models.

Tests 3 & 4 Model PLCC
Kelvin 0.63 * S + 0.14 * Sa + 0.24 * OoCiL 0,868
City 0.64 * S -0.02 * Sa + 0.31 * MF 0,941
Talking Head 0.65 * S + 0.12 * Sa + 0.19 * SQ 0,963
Tests 5 & 6 Model PLCC
Television 0.72 * S + 0.22 * PoC + 0.02 * L 0,976
City 0.77 * S -0.07 * PoC + 0.27 * MF 0,973
Talking Head 0.43 * S + 0.24 * PoC + 0.32 * SQ 0,994

scenes inside one test cannot be aggregated into one overall
scale without using test- and scene-specific mappings. In this
realignment study, we examined mappings, ¥ = fis.c(X),
where y are predicted MOS values for the global overall scale,
x are the original test- and scene-specific MOS values, ts is
the index of the test, and c is the index of the scene. In total,
we formed 18 mappings for 3 scenes from 6 different tests.

The realignment study consisted of 27 observers with nor-
mal or corrected-to-normal vision who evaluated 78 video
samples in a randomized order using the SS non-categorical
setup with a continuous scale without numerical labels. The
idea was that we selected 4 - 5 video samples from even MOS
distances from the original test- and scene-specific scales. We
selected 4 video samples from tests 1-4 (4 samples x 4 tests
x 3 scenes = 48 samples) and 5 samples from tests 5 and 6
(5 samples x 2 tests x 3 scenes = 30 samples). The selected
video samples and the original MOS values can be found on
the project page. Prior to the experiment, the subjects had a
training session in which they evaluated 10 videos that were
selected to represent the entire quality scale of the videos in
the experiment.

The viewing environment was, in other respects, the same
as described in Section III-B. The total experiment duration
was 34 minutes on average. Outlier screening was performed
following the recommendation of [25], and no outliers were
found. The data from the realignment study are also shared
along with the CVD2014 database.

The average PLCC between the realignment MOS and the
original test- and scene-specific MOS values is 0.94 (min:
0.72, max: 1.00, stdev: 0.07). The high PLCC demonstrates
the feasibility of the data in forming mappings from the test-
and scene-specific data at the global scale. To obtain MOS
values for the entire database on the same scale, we assume
the following linear mapping:

MOS(Z) = Qts,c,1 + Ats,c,2 * mts,c(i) (3)

where x4, . is the value of video 4 in the original test ¢s and
scene c specific scale, and M OS(Z) is the predicted overall
quality on the global scale. Fitting the parameters a;s 1 and
ats,c,2 Was performed in test- and scene-specific ways. Test-
and scene-specific mappings are presented in Figure 9. The
mappings of the CVD-I data (tests 1 and 2) are presented in



100

80r

601

40}

20;

Realignment MOS scale

% 20 40 60 80 100

Test and scene specific MOS scales
Fig. 9: Mappings between the overall scale and the original
test-and scene-specific scales (Red lines: CVD-I; Green lines:
CVD-II; Blue lines: CVD-III)

red, those of CVD-II (test 3 and 4) are presented in green, and
those of CVD-III (tests S and 6) are presented in blue. The
variations between the mappings indicate that the realignment
study is required when the samples are aggregated in the same
global scale.

The data of the realignment study are sparse because only
78 test videos were selected to avoid excessively long test
durations. For this reason, we selected simple linear mapping
(Eq. 3) because it reduces the over fitting risk. In addition, we
assumed monotonic and linear mapping from the original to
the global scale. The parameters of Eq. 3 were fitted based on
the root mean square error (RMSE). The average RMSE was
5.33 (min: 1.33 and max: 10.06) when the scale was from 0
to 100. The low error indicates, however, that the data were
fit reasonably well.

V. EVALUATION OF ALGORITHM PERFORMANCE

We evaluated the performance of several no-reference (NR)
IQA and two VQA algorithms for predicting the video evalua-
tion scores of the CVD2014 database. We selected algorithms
whose implementations were freely available from the Internet
or from the authors. Because the number of available NR VQA
algorithms is low, modern NR IQA algorithms were selected
for the study. To the best of our knowledge, the algorithms
of [51], [52] were the only publicly available modern NR
VQA algorithms when this study was conducted. Because the
CVD2014 database does not contain any reference videos, full-
or reduced-reference type algorithms (e.g., [62], [14]) were
omitted from the study. Table VII lists the selected algorithms.

The VQA algorithms of [51], [52] were applied using their
default settings. The algorithm of [52] provided output values
for three temporal pooling methods: mean, percentile and
hysteresis. In this article we report the performance for the
percentile temporal pooling. According to our tests, it gives
the best performance for the CVD2014 database among the
options.

Because IQA algorithms compute frame-specific scores,
these scores should be pooled into single scalars before the
comparisons. First, the video sequences were divided into &

segments, k = g}?ﬁg , where NoF' is the number of frames,
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TABLE VII: The NR measures for the performance study

Metric Description

BIQI [44] Image quality metric

BRISQUE [45] Image quality metric

NIQE [46] Image quality metric

DESIQUE [47] Image quality metric

FISH [48] Image sharpness metric

S3 [49] Image sharpness metric

LPC [50] Image sharpness metric

CPBD [63] Image sharpness metric

Video LIVE video database (videos and subjective
BLIINDS [51] data) has been used for training.

Video Model has been trained on all the distorted
CORNIA [52] videos from LIVE database.

fps is the number of frames per second, and ¢ is the segment
duration. The segment-specific values were computed by the
operators of min, max and mean. The overall score for the
entire video sequence was an average over all segment-specific
values. Thus, each algorithm provided three output values.

A. Performance

This performance section is divided into two sub-sections.
In the first sub-section (Mean Opinion Scores), we report
the results of the traditional performance analysis, in which
the performance is measured by comparing the algorithm
predictions with the MOS values. The other sub-section pro-
poses a new method for algorithm evaluations. The proposed
method analyzes whether the algorithm can predict the quality
order of the sample pairs that have statistically significant
quality differences. That is, the performance measure does
not account for sample pairs that do not have statistically
significant differences, according to human perception, when
evaluating the performance of algorithms.

1) Mean Opinion Scores: We calculated the PLCC values
as a measure of the algorithm’s accuracy for predicting the
MOS values. The PLCC was calculated after performing a
non-linear regression on the algorithmic scores using a logistic
function. The logistic function and the procedure that is
outlined in [64] are used to fit the algorithmic scores to the
MOS values. This 3-parameter logistic function is presented

as o 8
Y =17 exp(—Ba * (Y (1) — Bs)

where Y (7) is the quality that is predicted by an algorithm for
video i. Non-linear least squares optimization is performed
using the MATLAB function nlinfit (MATLAB R2012a) to
find the optimal parameters 3 that minimize the least squares
error between the vector of subjective scores M 08 (Eq 3)
and the vector of objective scores (Y).

Table VIII shows the performance of the metrics (for the
best segment pooling operators) in terms of the PLCC. In this
analysis, the segment duration ¢t was set to 2 s. According
to the results, the BIQI min had the highest performance in
regard to predicting M OS values. The second algorithm was
BRISQUE min. Both algorithms were developed to predict
overall quality. The third algorithm was FISH_BB ave, which
was developed to predict sharpness. It is logical that the
sharpness algorithm can predict video quality well because

“4)
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TABLE VIII: Pearson linear correlation coefficients (PLCC)
between metric scores after the nonlinear regression and the
realignment of MOS scores (segment duration = 2 s). Only
the results of the best segment pooling operators are shown.
Boldface indicates the best performers.

Metric City News- | Tele- Talking | Traffic | ALL
paper vision Head

BIQI min 0,602 0,702 0,346 0,626 0,416 0,595
BRISQUE 0,726 0,768 0,607 0,484 0,650 0,568
min

FISH_BB ave | 0,516 0,708 0,730 0,547 -0,030 | 0,516
LPC min 0,497 0,693 0,477 0,596 0,388 0,495
FISH ave 0,253 0,724 0,821 0,462 0,088 0,437
CBPD ave 0,371 0,710 0,436 0,569 0,319 0,390
S3 max 0,351 0,602 0,703 0,403 -0,086 | 0,375
video 0,125 0,126 -0,461 | 0,265 -0,095 | 0,188
CORNIA

video -0,032 | -0,041 | 0,103 0,138 0,267 0,122
BLIINDS

NIQE max 0,019 0,504 0,224 0,285 -0,035 | 0,090

according to the analysis in Section IV-C, sharpness is the
most important quality dimension when describing the overall
quality of the CVD2014 videos.

The performance of the VQA algorithms (video BLIINDS
and video CORNIA) was rather low. According to a previous
study [52], the PLCC values of the video BLIINDS and
video CORNIA were 0.752 and 0.768 for the LIVE VQA
database [11] in which the test videos are processed from the
reference using different compression levels and transmission
error simulations. The higher PLCC values for the LIVE
VQA database than for CVD2014 are logical because the
algorithms were developed for the processes of video encoding
and transmission. Also, it should be noted, that the videos in
the CVD2014 database contain audio and in the subjective
experiments the participants were asked to rate overall quality
and not visual quality. However, the video BLIINDS and video
CORNIA algortihms have been developed only for visual
signal. They do not take audio signal into account.

2) Sample pairs: In this section, we propose a measure that
evaluates the ability of the algorithms to find the better sample
from a sample pair. This measure is based on the statistically
significant differences that are derived from the subjective
evaluation data. If the samples differ from each other at a
statistically significant level and if the algorithm can predict
the quality order, the performance of the algorithm increases.
It should be mentioned that, for example, Nachlieli and Shaked
[65] and standard ITU-T P.1401 [66] have presented alternative
methods for the traditional performance measures (PLCC and
rank order correlation coefficient (ROCC)).

First, the video pairs with statistically significant differences
in terms of subjective video quality are examined. In this study,
we computed the linear mixed models (IBM SPSS Statistics
21) to search for video pairs that have significant differences.
Because the MOS values are not from the normal distribution
(see Section IV), the linear mixed models can handle data more
effectively than can standard methods, such as ANOVA or
MANOVA [67]. ANOVA makes the assumptions that the MOS
distributions are normally distributed and that the variance
is equal between variables, e.g., the videos. Therefore, we

prefer to use linear mixed models because we can select
the covariance model that will better fit the structure of the
data. A heterogeneous compound symmetry (HCS) covariance
matrix is the best fit because it does not assume equal
variance between videos. Subjective preference data are highly
dependent on the test videos. The variance values depend on
the test video type and distortions. Variance can be low for
one video but high for another video in the same set of test
videos, which means that different camera devices and scenes
can vary considerably. To compare the statistical difference
between every possible video pair, Bonferroni correction (IBM
SPSS Statistics 21) of the target alpha value of statistical
difference is used to control the risk of Type I error that
multiple comparisons introduce [68].

The predictions of the algorithms are compared to the
subjective data that have statistically significant differences.
Figure 10 shows how the proposed measure is calculated for
a set of videos V. Let V; = {v; | i =1,..n}, where n
is the number of videos in group s. In Figure 10, n = 6.
Matrix M1 contains the p values of the paired comparisons
that are calculated from the subjective data. In matrix M2, the
cell value is 1 (-1) if the row video vy, is significantly better
(worse) than the column video v;. The cell of matrix M3 is 1
(-1) if the algorithm predicted that video vy, is better (worse)
than video v;. The cell of matrix M4 is 1 if the algorithm
predicted the better video correctly from video pair (k,!) and
if there was a statistically significant difference between the
video pair. The proposed measure, Prob, is calculated using
the following equation:

Prob = ZZ |%;1 z j &)

=1 j=1

where the sum of matrix M4 cells is divided by the sum of
the absolute values of matrix M2 cells. The proposed measure
provides the probability that an algorithm predicts the sample
pairs in the correct quality order if and only if there is a
statistically significant difference between the samples.

Table IX lists the average Prob values over all of the
scenes for the algorithms that are analyzed in this study. The
values of measure Prob are illustrative and easy to understand.
For example, according to Table IX, the BRISQUE algorithm
found the better video from the video pairs with a probability
of 0.82 when the video pairs with statistically significant
differences were taken into account.

VI. CONCLUSION

In this study, we proposed a new CVD2014 video database.
This database contains videos that are captured by many
different cameras and distortions that are related to the video
acquisition process in the video production chain. For the ear-
lier databases, the distortions are produced via post-processing
operations, in which transmission errors are simulated or
videos are compressed using different bit rates or codecs.

The performance study revealed that there is room for
improvement with regard to modern I/VQA algorithms when
they predict the quality of videos that are captured by different
cameras. We believe that the CVD2014 database will have an
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Fig. 10: The probability of a metric to find the statistically
significant video pairs is calculated by dividing the number of
video pairs found by the metric and the number of video pairs
with statistically significant differences

TABLE IX: Average probability over all of the scenes to
predict the better video from video pairs with statistically
significant subjective evaluation differences

Metric Average probability
BRISQUE min 0,82
LPC min 0,80
BIQI min 0,74
FISH ave 0,72
FISH_BB ave 0,71
CBPD ave 0,69
S3 max 0,68
NIQE max 0,64
video CORNIA 0,58
video BLIINDS 0,50

important role in developing next-generation VQA algorithms
capable of predicting the perceived quality of videos captured
by different cameras. A good starting point for algorithm
development is the quality dimensions that we found and
analyzed in this study. According to the subjective opinions,
the overall quality of the CVD2014 videos is constructed
by the dimensions of sharpness, graininess, darkness, color
balance and jerkiness.

Next-generation VQA algorithms can be applied for many
real-world applications. Two use-case examples are research
and developing work of imaging devices and video searching
and retrieval. Research and developing tool optimizes the
signal processing parameters of camera prototypes according
to the feedback of VQA algorithm. In video searching and
retrieval VQA algorithms are used for filtering low quality
video files from the search result and only the high quality
videos are presented to users.

The videos in the CVD2014 database contain audio. In
many earlier published databases, audio is disabled. However,
most of the real life videos include audio, and its effect on
the overall quality perception is obvious [69], [70]. The video
quality may be rated remarkable low if the audio is bad. Thus,
the audio that is available in the CVD2014 videos can be
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valuable, and it should be taken into account when developing
new VQA algorithms.

In this study, we also proposed a new performance measure
for evaluating the performance of the I/VQA algorithms. The
proposed method rectifies two drawbacks in the traditional
performance measures, such as PLCC or ROCC. The first
shortcoming of the traditional performance measures is that
they do not take the dispersion in the subjective data into
account. The traditional performance measures assume that
the algorithm should predict the MOS values as accurately
as possible regardless of the level of dispersion. The second
shortcoming in the traditional performance measures is the
noninformative units of the measure scales. If the LCC or
ROCC value is, e.g., higher than 0.9, it can be assumed that
the performance of the algorithm is high, but compared to
what? The proposed method provides the probability that an
algorithm predicts the sample pairs in the correct quality order
if and only if there is a statistically significant difference
between the samples.

REFERENCES

[1] J. Apostolopoulos and A. Reibman, “The challenge of estimating video
quality in video communication applications [in the spotlight],” IEEE
Signal Processing Magazine, vol. 29, no. 2, pp. 160-158, March 2012.
P. Merkle, K. Muller, and T. Wiegand, “3D video: Acquisition, coding,
and display,” in Proc. International Conference on Consumer Electronics
(ICCE), Jan 2010, pp. 127-128.

J. Unger and S. Gustavson, “High-dynamic-range video for photometric
measurement of illumination,” in Proc. SPIE 6059, Sensors, Cameras,
and Systems for Scientific/Industrial Applications VIII, vol. 6501, San
Jose, CA, USA, Jan. 2007, p. 65010E.

M. D. Tocci, C. Kiser, N. Tocci, and P. Sen, “A versatile HDR video
production system,” ACM Trans. Graph., vol. 30, no. 4, pp. 41:1-41:10,
Jul. 2011.

F. De Simone, M. Tagliasacchi, M. Naccari, S. Tubaro, and T. Ebrahimi,
“A H.264/AC video database for the evaluation of quality metrics,” in
Proc. IEEE Int. Conf. Acoustics Speech and Signal Process (ICASSP),
Dallas, TX, March 2010, pp. 2430-2433.

M. Vranjes, S. Rimac-Drlje, and K. Grgic, “Review of objective video
quality metrics and performance comparison using different databases,”
Signal Processing: Image Communication, vol. 28, no. 1, pp. 1 — 19,
2013.

Y.-F. Ou, Y. Zhou, and Y. Wang, “Perceptual quality of video with frame
rate variation: A subjective study,” in Proc. IEEE Int. Conf. Acoustics
Speech and Signal Processing (ICASSP), Dallas, TX, Mar. 2010, pp.
2446-2449.

Y.-F. Ou, Y. Xue, and Y. Wang, “Q-star: A perceptual video quality
model considering impact of spatial, temporal, and amplitude resolu-
tions,” IEEE Transactions on Image Processing, vol. 23, no. 6, pp.
2473-2486, June 2014.

T. Liu, Y. Wang, J. Boyce, H. Yang, and Z. Wu, “A novel video quality
metric for low bit-rate video considering both coding and packet-loss
artifacts,” IEEE Journal of Selected Topics in Signal Processing, vol. 3,
no. 2, pp. 280-293, April 2009.

F. Boulos, W. Chen, U. Engelke, M. Barkowsky, P. L. Callet, H.-J.
Zepernick, Y. Pitrey, R. Pepion, H. Hlavacs, N. Staelens, L. Janowski,
Y. Koudotaand, M. Leszczuk, M. Urvoy, P. Hummelbrunner, I. Sedano,
K. Brunnstrom, S. Pechard, and M. Carnec. Image and video quality
assessment, resources and databases: Video databases. Institut de
Recherche en Comminications et Cybernetique de Nantes. (24 March
2015). [Online]. Available: http://130.66.64.103/spip.php?article491&
lang=

K. Seshadrinathan, R. Soundararajan, A. Bovik, and L. Cormack,
“Study of subjective and objective quality assessment of video,” IEEE
Transactions on Image Processing, vol. 19, no. 6, pp. 1427-1441, June
2010.

A. Moorthy, L. K. Choi, A. Bovik, and G. de Veciana, “Video quality
assessment on mobile devices: Subjective, behavioral and objective
studies,” IEEE Journal of Selected Topics in Signal Process, vol. 6,
no. 6, pp. 652-671, Oct 2012.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

(11]

[12]



NUUTINEN et al.: CVD2014 - A DATABASE FOR EVALUATING NO-REFERENCE VIDEO QUALITY ASSESSMENT ALGORITHMS 13

(13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]

J.-S. Lee, F. De Simone, and T. Ebrahimi, “Subjective quality evaluation
via paired comparison: Application to scalable video coding,” IEEE
Transactions on Multimedia, vol. 13, no. 5, pp. 882-893, Oct 2011.

P. V. Vu and D. M. Chandler, “ViS3: an algorithm for video quality
assessment via analysis of spatial and spatiotemporal slices,” Journal of
Electronic Imaging, vol. 23, no. 1, p. 01316, Feb 2014.

F. Zhang, S. Li, L. Ma, Y. C. Wong, and K. N. Ngan. IVP Subjective
Quality Video Database. The Chinese University of Hong Kong. (24
March 2015). [Online]. Available: http://ivp.ee.cuhk.edu.hk/research/
database/subjective/

C. Keimel, J. Habigt, T. Habigt, M. Rothbucher, and K. Diepold, “Visual
quality of current coding technologies at high definition IPTV bitrates,”
in Proc. IEEE International Workshop on Multimedia Signal Processing
(MMSP), Oct. 2010, pp. 390 —393.

C. Keimel, A. Redl, and K. Diepold, “The TUM high definition video
datasets,” in Proc. International Workshop on Quality of Multimedia
Experience (QoMEX), July 2012, pp. 97-102.

N. Staelens, G. Van Wallendael, R. Van de Walle, F. De Turck, and
P. Demeester, “High definition H.264/AVC subjective video database for
evaluating the influence of slice losses on quality perception,” in Proc.
International Workshop on Quality of Multimedia Experience (QoMEX),
July 2013, pp. 130-135.

VQEG. (20000 VQEG FR-TV Phase I Database. Video Quality
Experts Group (VQEG). (24 March 2015). [Online]. Available:
http://www.its.bldrdoc.gov/vgeg/projects/frtv-phase-i/frtv-phase-i.aspx
VQEG HDTV Group. (2009) VQEG HDTYV Database. Video Quality
Experts Group (VQEG). (24 March 2015). [Online]. Available:
http://www.its.bldrdoc.gov/vgeg/projects/hdtv/hdtv.aspx

J. Nakamura, Image Sensors and Signal Processing for Digital Still
Cameras, 1st ed. CRC Press, 2006.

R. Ramanath, W. Snyder, Y. Yoo, and M. Drew, “Color image processing
pipeline,” IEEE Signal Processing Magazine, vol. 22, no. 1, pp. 34-43,
Jan 2005.

Z. Jianping and J. Glotzbach, “Image pipeline tuning for digital cam-
eras,” in Proc. IEEE Int. Symp. Consumer Electronics (ISCE), Min-
neapolis, May 2007.

J. Nikkanen, T. Gerasimow, and L. Kong, “Subjective effects of white-
balancing errors in digital photography,” Optical Engineering, vol. 47,
no. 11, p. 113201, 2008.

ITU-R BT.500. Methodology for the subjective assessment of the quality
of television pictures, ITU Norm ITU-R Recommendation BT.500-13,
Rev. 2012.

ITU-R P.910. Subjective video quality assessment methods for multime-
dia applications, ITU Norm ITU-R Recommendation P.910, Rev. 2008.
ISO 20462-1 Photography — Psychophysical experimental methods for
estimating image quality — Part 1: Overview of psychophysical elements,
ISO Std. ISO 20462-1, Rev. 2005, 2005.

1SO 20462-2 Photography — Psychophysical experimental methods for
estimating image quality — Part 2: Triplet comparison method, ISO Std.
ISO 20462-2, Rev. 2005, 2005.

1SO 20462-3 Photography — Psychophysical experimental methods for
estimating image quality — Part 3: Quality ruler method, ISO Std. ISO
20462-3, Rev. 2005, 2005.

E. W. Jin and B. W. Keelan, “Slider-adjusted softcopy ruler for calibrated
image quality assessment,” Journal of Electronic Imaging, vol. 19, no. 1,
p- 011009, 2010.

T. Virtanen, J. Radun, P. Lindroos, S. Suomi, T. Sddminen, T. Vuori,
M. Vaahteranoksa, and G. Nyman, “Forming valid scales for subjective
video quality measurement based on a hybrid qualitative/quantitative
methodology,” in Proc. SPIE 6808, Image Quality and System Perfor-
mance V, vol. 6808, San Jose, CA, January 2008, p. 68080M.

J. Radun, T. Leisti, T. Virtanen, J. Hékkinen, T. Vuori, and G. Ny-
man, “Evaluating the multivariate visual quality performance of image-
processing components,” ACM Trans. Appl. Percept., vol. 7, no. 3, pp.
16:1-16:16, Jun. 2008.

M. Nuutinen, T. Virtanen, V. Valkonen, and P. Oittinen, “Automatic
exposure and white balance control in video cameras: Time course
characterization and preference,” in Proc. International Symposium on
Image and Signal Processing and Analysis 2013, Trieste, Italy, Sep 2013,
pp. 25-29.

1SO 12233 Photography — Electronic still-picture cameras — Resolution
measurements, ISO Std. ISO 12233, Rev. 2000, 2000.

ISO 15739 Photography — Electronic still-picture cameras — Noise
measurements, ISO Std. ISO 15739, Rev. 2003, 2003.

1SO 9039 Optics and optical instruments — Quality evaluation of optical
systems, 1SO Std. ISO 9039, Rev. 1994, 1994.

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

1SO 14524 Photography — Electronic still-picture cameras — Methods

for measuring opto-electronic conversion functions (OECFs), 1SO Std.

ISO 14524, Rev. 1999, 1999.

ISO 17321 Graphic technology and photography — Colour characteri-
zation of digital still cameras (DSCs) — Part 1: Stimuli, metrology and
test procedures, ISO Std. ISO 17321, Rev. 2006, 2006.

M. Nuutinen, “Reduced-reference methods for measuring quality at-
tributes of natural images in imaging systems,” Ph.D. dissertation,
Aalto-University, School of Science, Department of Media Technology,
Unigrafia Oy Helsinki, 2012.

N. Koren, “The Imatest program: comparing cameras with different
amounts of sharpening,” in Proc. SPIE 6069, Digital Photography II,
San Jose, CA, January 2006, p. 60690L.

O. Yukio, “MTF analysis and its measurements for digital still cam-
era,” in Proc. 50th Annual Conference: A Celebration of All Imaging,
Cambridge, Massachusetts, May 1997, pp. 383-387.

C. Loebich, D. Wueller, and A. Klingen, Brunoand Jaeger, “Digital
camera resolution measurement using sinusoidal siemens stars,” in Proc.
SPIE 6502, Digital Photography III, San Jose, CA, January 2007, p.
65020N.

U. Artmann and D. Wueller, “Differences of digital camera resolution
metrology to describe noise reduction artifacts,” in Proc. SPIE 7529,
Image Quality and System Performance VII, San Jose, CA, January 2010,
p. 75290L.

A. Moorthy and A. Bovik, “A two-step framework for constructing blind
image quality indices,” IEEE Signal Processing Letters, vol. 17, no. 5,
pp. 513-516, May 2010.

A. Mittal, A. Moorthy, and A. Bovik, “No-reference image quality
assessment in the spatial domain,” IEEE Transactions on Image Pro-
cessing, vol. 21, no. 12, pp. 4695—4708, Dec 2012.

A. Mittal, R. Soundararajan, and A. Bovik, “Making a “completely
blind” image quality analyzer,” IEEE Signal Processing Letters, vol. 20,
no. 3, pp. 209-212, March 2013.

Y. Zhang and D. M. Chandler, “No-reference image quality assessment
based on log-derivative statistics of natural scenes,” Journal of Electronic
Imaging, vol. 22, no. 4, p. 043025, 2013.

P. V. Vu and D. M. Chandler, “A fast wavelet-based algorithm for global
and local image sharpness estimation.” IEEE Signal Processing Letters,
vol. 19, no. 7, pp. 423-426, 2012.

C. T. Vu, T. D. Phan, and D. M. Chandler, “S3: a spectral and
spatial measure of local perceived sharpness in natural images,” IEEE
Transactions on Image Processing, vol. 21, no. 3, pp. 934-945, March
2012.

R. Hassen, Z. W., and M. Salama, “Image sharpness assessment based
on local phase coherence,” IEEE Transactions on Image Processing,
vol. 22, no. 7, pp. 2798-2810, July 2013.

M. Saad, A. Bovik, and C. Charrier, “Blind prediction of natural video
quality,” IEEE Transactions on Image Processing, vol. 23, no. 3, pp.
1352-1365, March 2014.

J. Xu, P. Ye, Y. Liu, and D. Doermann, “No-reference video quality
assessment via feature learning,” in Proc. IEEE International Conference
on Image Processing (ICIP), Oct 2014, pp. 491-495.

T. Virtanen, M. Nuutinen, M. Vaahteranoksa, P. Oittinen, and
J. Hékkinen, “CID2013: a database for evaluating no-reference image
quality assessment algorithms,” IEEE Transactions on Image Processing,
vol. 24, no. 1, pp. 390-402, Jan 2015.

H. R. Wu and K. R. Rao, Digital Video Image Quality and Perceptual
Coding (Signal Processing and Communications). Boca Raton, FL,
USA: CRC Press, Inc., 2005.

A. Tervonen, I. Nivala, P. Ryytty, H. Saari, H. Ojanen, and J. Viinikanoja,
“Proc. integrated measurement system for miniature camera modules,”
in SPIE 6196, Photonics in Multimedia, 61960L, Strasbourg, France,
2006, p. 61960L.

G. Nyman, J. Radun, T. Leisti, J. Oja, H. Ojanen, J.-L. Olives, T. Vuori,
and J. Hékkinen, “What do users really perceive: probing the subjective
image quality,” in Proc. SPIE 6059, Image Quality and System Perfor-
mance 111, vol. 6059, San Jose, CA, January 2006, p. 605902.

Q. Huynh-Thu, M. N. Garcia, F. Speranza, P. Corriveau, and A. Raake,
“Study of rating scales for subjective quality assessment of high-
definition video,” IEEE Transactions on Broadcasting, vol. 57, no. 1,
pp. 1-14, March 2011.

M. Nuutinen, T. Virtanen, O. Rummukainen, and J. Hikkinen, “VQone
MATLAB toolbox: A graphical experiment builder for image and video
quality evaluations,” Behavior Research Methods, vol. 48, pp. 138-150,
March 2016.

D. Hood, “Lower-level visual processing and models of light adapta-
tion,” Annu Rev Psychol., vol. 49, pp. 503-535, 1998.



[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]
[68]

[69]

[70]

S. Winkler, “Analysis of public image and video databases for quality
assessment,” IEEE Journal of Selected Topics in Signal Processing,
vol. 6, no. 6, pp. 616-625, Oct 2012.

S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality
(complete samples),” Biometrika, vol. 52, no. 3-4, pp. 591-611, 1965.

K. Seshadrinathan and A. Bovik, “Motion tuned spatio-temporal quality
assessment of natural videos,” IEEE Transactions on Image Processing,
vol. 19, no. 2, pp. 335-350, Feb 2010.

N. Narvekar and L. Karam, “A no-reference perceptual image sharpness
metric based on a cumulative probability of blur detection,” in Proc.
International Workshop on Quality of Multimedia Experience (QoMEX),
July 2009, pp. 87-91.

VQEG Final Report of FR-TV Phase Il Validation Test, Video Quality
Expert Group Std. Phase II, Rev. 2003, 2003, draft. [Online]. Available:
http://www.vqeg.org

H. Nachlieli and D. Shaked, “Measuring the quality of quality mea-
sures,” Image Processing, IEEE Transactions on, vol. 20, no. 1, pp.
76-87, Jan 2011.

ITU-T P.1401. Methods, metrics and procedures for statistical eval-
uation, qualification and comparison of objective quality prediction
models, Rec. ITU-T Recommendation P.1401, 2013.

E. Bagiella, R. Sloan, and D. Heitjan, “Mixed-effects models in psy-
chophysiology,” Psychophysiology, vol. 37, no. 1, pp. 13-20, Jan 2000.
M. Bland, An Introduction to Medical Statistics. Oxford: Oxford
University Press, 2000.

M. Pinson, C. Schmidmer, L. Janowski, R. Pepion, Q. Huynh-Thu,
P. Corriveau, A. Younkin, P. Le Callet, M. Barkowsky, and W. Ingram,
“Subjective and objective evaluation of an audiovisual subjective dataset
for research and development,” in Proc. International Workshop on
Quality of Multimedia Experience (QoMEX), July 2013, pp. 30-31.

L. Gaston, J. Boley, S. Selter, and J. Ratterman, “The influence of
individual audio impairments on perceived video quality,” in Proc. Audio
Engineering Society Convention 128, May 2010.

IEEE TRANSACTION ON IMAGE PROCESSING, VOL. XX, NO. XX, XXXX XXXX



