Other Open Access

Inferring knowledge acquisition through Web navigation behaviours


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Navigation behaviour</subfield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Knowledge acquisition</subfield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">MOOC</subfield>
  <controlfield tag="005">20200120173402.0</controlfield>
  <controlfield tag="001">2640890</controlfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">874654</subfield>
    <subfield code="z">md5:1e9908bc39a1c9d6b938918808ca8174</subfield>
    <subfield code="u">https://zenodo.org/record/2640890/files/DCECTEL2018_paper_24.pdf</subfield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2018-09-03</subfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-moving-h2020</subfield>
    <subfield code="o">oai:zenodo.org:2640890</subfield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">The University of Manchester</subfield>
    <subfield code="a">Yu</subfield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Inferring knowledge acquisition through Web navigation behaviours</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-moving-h2020</subfield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;As we witness the growing popularity of online learning, we address the problem of knowing if users are actually learning. The traditional assessment approaches involve tests, assignments and peer assessments. We explore if there is a way to measure learning and personalise the user learning experience in an unobtrusive manner. My PhD proposes using data-driven methods to measure learning by mining user interaction data to identify regularities that could be indicators of learning.&lt;/p&gt;</subfield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.2640889</subfield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.2640890</subfield>
    <subfield code="2">doi</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">other</subfield>
All versions This version
Views 5656
Downloads 2222
Data volume 19.2 MB19.2 MB
Unique views 5353
Unique downloads 2121


Cite as