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Abstract—A growing trend for information technology is to not
just react to changes, but anticipate them as much as possible.
This paradigm made modern solutions, such as recommendation
systems, a ubiquitous presence in today’s digital transactions.
Anticipatory networking extends the idea to communication tech-
nologies by studying patterns and periodicity in human behavior
and network dynamics to optimize network performance. This
survey collects and analyzes recent papers leveraging context
information to forecast the evolution of network conditions and,
in turn, to improve network performance. In particular, we
identify the main prediction and optimization tools adopted in
this body of work and link them with objectives and constraints
of the typical applications and scenarios. Finally, we consider
open challenges and research directions to make anticipatory
networking part of next generation networks.

Index Terms—Anticipatory, Prediction, Optimization, 5G, Mo-
bile Networks.

I. INTRODUCTION

Evolving from one generation to the next, wireless networks
have been constantly increasing their performance in many
different ways and for diverse purposes. Among them, commu-
nication efficiency has always been paramount to increase the
network capabilities without updating the entire infrastructure.
This survey investigates anticipatory networking, a recent
research direction that supports network optimization through
system state prediction.

The core concept of anticipatory networking is that, nowa-
days, tools exist to make reliable prediction about network
status and performance. Moreover, information availability is
increasing every day as human behavior is becoming more
socially and digitally interconnected. In addition, data centers
are becoming more and more important in providing services
and tools to access and analyze huge amounts of data.

As a consequence, not only can researchers tailor their
solutions to specific places and users, but also they can
anticipate the sequence of locations a user is going to visit or
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to forecast whether connectivity might be worsening, and to
exploit the forecast information to take action before the event
happens. This enables the possibility to take full advantage of
good future conditions (such as getting closer to a base station
or entering a less loaded cell) and to mitigate the impact of
negative events (e.g., entering a tunnel).

This survey covers a body of recent works on anticipatory
networking, which share two common aspects:
• Anticipation: they either explore prediction techniques

directly or consider some future knowledge as given.
• Networking: they aim to optimize communications in

mobile networks.
In addition, this survey delves into the following questions:
How can prediction support wireless networks? Which type
of information is possible to predict and which applications
can take advantage of it? Which tools are the best for a
given scenario or application? Which scenarios, among the
ones envisioned for 5G networks, can benefit the most from
anticipatory networking? What is yet to be studied in order for
anticipatory networking to be implemented in 5G networks?

The main contributions of this survey are the following:
• A thorough context-based analysis of the literature

classified according to the information exploited in the
predictive framework.

• Two handbooks on the prediction and optimization
techniques used in the literature, which allow the reader
to get familiar with them and critically assess the different
approaches.

• An analysis of the applicability of anticipatory network-
ing techniques to different types of wireless networks
and at different layers of the protocol stack.

• Summaries of all the main parts of the survey, highlight-
ing most popular choices and best practices.

• A final section analyzing open challenges and potential
issues to the adoption of anticipatory networking solu-
tions in future generation mobile networks.

A. Background and Guidelines

Anticipatory networking is the engineering branch that fo-
cuses on communication solutions that leverage the knowledge
of the future evolution of a system to improve its operation. For
instance, while a standard networking solution would answer
the question “which is the best user to be served?”, an antici-
patory equivalent would answer “which are the best users to
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Probabilistic: [125-127, 129, 130, 132, 135, 136, 157, 159] Heuristic: [40, 121-125, 132, 148, 149]
aconvex optimization bMarkov decision process cmodel predictive control

be served in the next time frames given the predicted evolution
of their channel condition and service requirements?”

A typical anticipatory networking solution is usually charac-
terized by the following three attributes, which also determine
the structure of this survey:
• Context defines the type of information considered to

forecast the system evolution.
• Prediction specifies how the system evolution is forecast

from the current and past context.
• Optimization describes how prediction is exploited to

meet the application objectives.
To continue with the access selection example, the an-

ticipatory networking solution might exploit the history of
Global Positioning System (GPS) information (the context)
to train an AutoRegressive (AR) model (the prediction) to
predict the future positions of the users and their channel
conditions to solve an Integer Linear Programming (ILP)
problem (the optimization) that maximizes their Quality-of-
Experience (QoE).

The main body of the anticipatory networking literature
can be split into four categories based on the context used to
characterize the system state and to determine its evolution:
geographic, such as human mobility patterns derived from
location-based information; link, such as channel gain, noise
and interference levels obtained from reference signal feed-
back; traffic, such as network load, throughput, and occupied
physical resource blocks based on higher-layer performance
indicators; social, such as user’s behavior, profile, and informa-
tion derived from user-generated contents and social networks.

In order to determine which techniques are the most suitable
to solve a given problem, it is important to analyze the
following:
• Properties of the context:

1) Dimension describes the number of variables predicted
by the model, which can be uni- or multivariate.
2) Granularity and precision define the smallest variation
of the parameter considered by the context and the
accuracy of the data: the lower the granularity, the higher
the precision and vice versa. Temporal and spatial granu-
larities are crucial to strike a balance between efficiency

and accuracy.
3) Range characterizes the distance (usually time or
space) between known data samples and the farthest
predicted sample. It is also known as prediction (or
optimization) horizon.

• Constraints of the prediction or optimization model:
1) Availability of physical model states whether a closed-
form expression exists to describe the phenomenon.
2) Linearity expresses the quality of the functions linking
inputs and outputs of a problem.
3) Side information determines whether the main context
can be supported by auxiliary information.
4) Reliability and validity of information specifies the
noisiness of the data set, depending on which the pre-
diction robustness should be calibrated.

The classification section will help the reader to understand
the link between the different contexts and the solutions
adopted to satisfy the given application requirements. Also,
it is meant to provide a complete panorama of anticipatory
networking. The two handbooks have the twofold objective of
providing the reader with a short overview of the tools adopted
in the literature and to analyze them in terms of variables of
interest and constraints of the models. We believe that not only
will this survey help researchers studying anticipatory net-
working, but also it will ease its adoption in future generation
networks by providing a comprehensive overview of research
directions, available solutions and application scenarios.

Table I provides a mapping between the techniques de-
scribed in Section IV and V (columns) and the context
discussed in Section III (rows). Each main category is further
split into subcategories according to its internal structure.
Namely, the prediction category is subdivided into ideal (per-
fect prediction is assumed to be available), time series pre-
dictive modeling, similarity-based classification and regression
analysis, and probabilistic methods. The optimization category
is split into Convex Optimization (ConvOpt), Markov Decision
Process (MDP) and Model Predictive Control (MPC), game
theoretic and, heuristic approaches.

The rest of the survey consists of a quick overview of other
surveys on related topics in Section II, a context-based classi-
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TABLE II
RELATED WORKS

Topic Content
Big Data [1] studies big data analytics for network optimization.
Context Information [2], [3] discuss acquisition, modeling, exchange and usage of contextual information for different

scenarios.
Data Classification [4] surveys a variety of classifiers and uses them to predict unknown data.

Traffic & Throughput [5] uses trace-driven simulation to compare prediction errors obtained using different techniques.
[6] uses real network traffic to evaluate prediction techniques and to discuss their practical challenges.

Social Patterns [7] uses social network information to study traffic patterns.
[8] investigates the impact of prediction on QoE

Cognitive Radios [9] investigates spectrum occupancy models and their reliability.
[10] focus on spectrum occupancy and channel status prediction.

fication of the anticipatory networking literature in Section III,
two handbooks on prediction and optimization techniques in
Section IV and Section V, respectively. Section VI and VII
discuss how the anticipatory networking paradigm can be
applied in a variety of network types and at different layers of
the protocol stack. Section VIII and IX conclude the survey
reporting the impact of anticipatory networking on future
networks, the envisioned hindrances to its implementation and
the open challenges.

II. RELATED WORK

This section discusses a few recent survey on topics close
to anticipatory networking and is summarized in Table II.

Applying big data analytics for network optimization is
studied in [1]. Based on the papers they reviewed, the authors
propose a generic framework to support big data based opti-
mization of mobile networks. Using traffic patterns derived
from case studies, they argue that their framework can be
used to optimize resource allocation, base station deployment,
and interference coordination in such networks. In [2], [3],
the ability to extract and process contextual information by
entities in a network is identified as a key factor in improving
network performance. In [2], the procedure of using context
information in wireless networks is broken down into acqui-
sition, modeling, exchanging and evaluating stages, where the
first two deal with gathering information and predicting the
future behavior, and the latter two perform self-optimization
and decision making. A similar taxonomy is provided in [3]
and various examples of different techniques are reviewed for
each phase. In addition to that, the authors provide a thorough
survey on potential use cases of anticipatory networks and
their respective challenges.

Predicting future states of network attributes is an essential
task in designing anticipatory networks. Data classification, a
popular prediction technique, has been thoroughly surveyed
in [4]. Among other attributes, the prediction of data traffic
and throughput has been the subject of [5], [6]. In [5], the
authors consider seven algorithms for throughput prediction,
ranging from mean-based and linear regression methods to Ar-
tificial Neural Networks (ANNs) and Support Vector Machines
(SVMs) and compare their performance using a trace-driven
simulator. Furthermore, they develop an information theoretic
lower bound for the prediction error. In a similar attempt, [6]
reviews real time Internet traffic classification. Here, the au-
thors not only review prediction algorithms, but also try to

shed light on practical challenges in deploying different kinds
of techniques under different network scenarios. For instance,
they argue that algorithms that require packet inspection either
in the form of port number or payload, might have limited
applicability due to potential encryption compared to methods
that rely on statistical traffic properties.

The capability to extract user behavior in online social
networks and use it to learn the evolution of traffic patterns
in mobile networks is the subject of another survey [7]. The
general approach of the papers included in that review is to
use social graphs and classify different types of interactions
between users on social networks in order to monitor the
corresponding network traffic. Another important attribute for
network performance is modeling the Quality of Experience
(QoE) or how the service is perceived by the user. The authors
of [8] provide a thorough survey including various methods for
modeling QoE for different applications and also discuss tools
for estimating and predicting QoE values by probing network
parameters.

Cognitive Radio (CR) and Radio Environment Map (REM)
are two very important technologies to measure, estimate and
predict spectrum availability and occupancy. For instance, [9],
[10] provide two independent taxonomies of methodologies,
campaigns and models. In addition, they review the reliability
of these types of measurements [9] and they illustrate how to
predict the system evolution thanks to available information
and regression analysis [10].

To the best of our knowledge, this survey is the first to
specifically address anticipatory techniques for mobile net-
works. We believe that, while the topic is undeniably hot, an
overarching review of the body of work is still missing and
greatly needed to facilitate the adoption of such a promising
direction.

III. A CONTEXT-BASED CLASSIFICATION OF
ANTICIPATORY NETWORKING SOLUTIONS

In this section, we classify the different types of context that
can be predicted and exploited. For each one, we highlight the
most popular prediction techniques as well as the applications
for which an anticipatory optimization is performed.

A. Geographic Context

Geographic context refers to the geographic area associated
to a specific event or information. In wireless communications,



4

12 12.2 12.4 12.6 12.8 13
Longitude

41.4

41.6

41.8

42

42.2

42.4
La

tit
ud

e

Fig. 1. Geographic context example: an example of estimated trajectories of
6 mobile users.

it refers to the location of the mobile users, often enriched
with speed information as well as past and future trajectories.
Understanding human mobility is an emergent research field
that especially in the last few years has significantly benefited
from the rapid proliferation of wireless devices that frequently
report status and location updates. Fig. 1 illustrates an example
of estimated trajectories of 6 mobile users.

The potential predictability in user mobility can be as high
as 93% [11]1. Along the same line, [12] investigates both the
maximal predictability and how close to this value practical
algorithms can come when applied to a large mobile phone
dataset. Those results indicate that human mobility is very
far from being random. Therefore, collecting, predicting and
exploiting geographic context is of crucial importance.

In the rest of this section we organize the papers dealing
with geographic context according to their main focus: the
majority of them deals with pure geographical prediction and
differs on secondary aspects such as whether they predict a
single future location, a sequence of places or a trajectory.
The second largest group of papers deals with multimedia
streaming optimization.

1) Next location prediction: The simplest approach is to
forecast where a given user will be at a predetermined instant
of time in the future. The authors of [13] propose to track
mobile nodes using topological coordinates and topology
preserving maps. Nodes’ location is identified with a vector
of distances (in hops) from a set of nodes called anchors and
a linear predictor is used to estimate the mobile nodes’ future
positions. Evaluation is performed on synthetic data and nodes
are assumed to move at constant speed. Results show that the
proposed method approaches an accuracy above 90% for a
prediction horizon of some tens of seconds.

A more general approach that exploits ANNs is discussed
in [14]. Extreme Learning Machines (ELMs), which do not
require any parameter tuning, are used to speed up the learning

1Value obtained for a high-income country with stable social conditions.
The percentage can decrease for different countries, e.g., low-income country
or natural disaster situation.

process. The method is evaluated using synthetic data over
different mobility models.

To extend the prediction horizon [15] exploits users’ loca-
tions and short-term trajectories to predict the next handover.
The authors use Channel State Information (CSI) and han-
dover history to solve a classification problem via supervised
learning, i.e., employing a multi-class SVM. In particular, each
classifier corresponds to a possible previous cell and predicts
the next cell. A real-time prediction scheme is proposed and
the feedback is used to improve the accuracy over time.
Simulation results have been derived using both synthetic and
real datasets. The longer moves along a given path, the higher
the accuracy of forecasting the rest.

Location information can be extracted from cellular network
records. In this way the granularity of the prediction is coarser,
but positioning can be obtained with little extra energy. In
particular, [16] aims at predicting a given user location from
those of similar users. Collective behavioral patterns and a
Markovian predictor are used to compute the next six locations
of a user with a one-hour granularity, i.e., a six-hour prediction
horizon. Evaluation is done using a real dataset and shows that
an accuracy of about 70% can be achieved in the first hour,
decreasing to 40− 50% for the sixth hour of prediction.

2) Space and time prediction: Prediction of mobility in a
combined space-time domain is often modeled using statistical
methods. In [17], the idea is to predict not only the future
location a user will reach, but also when and for how long
the user will stay there. To incorporate the sojourn time
during which a user remains in a certain location, mobility is
modeled as a semi-Markov process. In particular, the transition
probability matrix and the sojourn time distribution are derived
from the previous association history. Evaluation is done on a
real dataset and shows approximately 80% accuracy. A similar
approach is presented in [18], where the prediction is extended
from single to multi-transitions (estimating the likelihood of
the future event after an arbitrary number of transitions). Both
papers provide also some preliminary results on the benefits
of the prediction on resource allocation and balancing.

In [19], the authors represent the network coverage and
movements using graph theory. The user mobility is modeled
using a Continuous Time Markov (CTM) process where the
prediction of the next node to be visited depends not only on
the current node but also on the previous one (i.e., second-
order Markovian predictor). Considering both local as well as
global users’ profiles, [20] extends the previous Markovian
predictor and improves accuracy by about 30%. As pointed
out in [21], sojourn times and transition probabilities are
inhomogeneous. Thus, an inhomogeneous CTM process is
exploited to predict user mobility. Evaluation on a real dataset
shows an accuracy of 67% for long time scale prediction.

The interdependence between time and space is investi-
gated also in [22] by examining real data collected from
smartphones during a two-month deployment. Furthermore,
[23] shows the benefit of using a location-dependent Markov
predictor with respect to a location-independent model based
on nonlinear time series analysis. Additionally, it is shown that
information on arrival times and periodicity of location visits is
needed to provide accurate prediction. A system design, named
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SmartDC, is presented in [24]–[26]. SmartDC comprises a
mobility learner, a mobility predictor and an adaptive duty
cycling. The proposed location monitoring scheme optimizes
the sensing interval for a given energy budget. The system has
been implemented and tested in a real environment. Notably,
this is also one of the few papers that takes into account the
cost of prediction, which in this case is evaluated in terms
of energy. Namely, the authors detect approximately 90% of
location changes, while reducing energy consumption at the
expense of higher detection delay.

3) Location sequences and trajectories: A natural exten-
sion of the spatio-temporal perspective is the prediction of
the location patterns and trajectories of the users. User mo-
bility profiles have been introduced in [27] to optimize call
admission control, resource management and location updates.
Statistical predictors are used to forecast the next cell to which
a mobile phone is going to connect. The validation of the so-
lution is done via simulation. In [28], an approach for location
prediction based on nonlinear time series analysis is presented.
The framework focuses on the temporal predictability of users’
location, considering their arrival and dwell time in relevant
places. The evaluation is done considering four different real
datasets. The authors evaluate first the predictability of the
considered data and then show that the proposed nonlinear pre-
dictor outperforms both linear and Markov-based predictors.
Precision approaches 70 − 90% for medium scale prediction
(5 minutes) and decreases to 20 − 40% for long scale (up to
8 hours).

In order to improve the accuracy of time series techniques,
in [29] the authors exploit the movement of friends, people,
and, in general, entities, with correlated mobility patterns.
By means of multivariate nonlinear time series prediction
techniques, they show that forecasting accuracy approaches
95% for medium time scale prediction (5 to 10 minutes) and
is approximately 50% for 3 hour prediction. Confidence bands
show a significant improvement when prediction exploits
patterns with high correlation. Evaluation is done considering
two different real datasets.

Trajectory analysis and prediction also benefit from exploit-
ing specific constraints such as streets, roads, traffic lights
and public transportation routes. In [30] the authors adapt
the local Markovian prediction model for a specific coverage
area in terms of a set of roads, moving directions, and traffic
densities. When applying Markov prediction schemes, the
authors consider a road compression approach to avoid dealing
with a large number of locations, reduce the size of the state
space, and minimize the approximation error. A more attractive
candidate for trajectory prediction is the public transportation
system, because of known routes and stops, and the large
amount of generated mobile data traffic. In [31], the authors
investigate the predictability of mobility and signal variations
along public transportation routes, to examine the viability of
predictive content delivery. The analysis on a real dataset of
a bus route, covering both urban and sub-urban areas, shows
that modeling prediction uncertainty is paramount due to the
high variability observed, which depends on combined effects
of geographical area, time, forecasting window and contextual
factors such as signal lights and bus stops.

Moving from discrete to continuous trajectories, Kalman
filtering is used to predict the future velocity and moving
trends of vehicles and to improve the performance of broad-
casting [32]. The main idea is that each node should send
the message to be broadcast to the fastest candidate based on
its neighbors’ future mobility. Simulation results show modest
gains, in terms of percentage of packet delivery and end-to-end
delay, with respect to non-predictive methods.

An alternative to Kalman filters is the use of regression
techniques [33], which analyze GPS observations of past trips.
A systematic methodology, based on geometrical structures
and data-mining techniques, is proposed to extract meaningful
information for location patterns. This work characterizes the
location patterns, i.e., the set of locations visited, for several
millions of users using nationwide call data records. The
analysis highlights statistical properties of the typical covered
area and route, such as its size, average length and spatial
correlation.

Along the same line, [34] shows how the regularity of
driver’s behavior can be exploited to predict the current end-
to-end route. The prediction is done by exploiting clustering
techniques and is evaluated on a real dataset. A similar
approach, named WhereNext, is proposed in [35]. This method
predicts the next location of a moving object using past
movement patterns that are based on both spatial and temporal
information. The prediction is done by building a decision
tree, whose nodes are the regions frequently visited. It is then
used to predict the future location of a moving object. Results
are shown using a real dataset provided by the GeoPKDD
project [36]. The authors show the trade-off between the
fraction of predicted trajectories and the accuracy. Both [34]
and [35] show similar performance with an accuracy of
approximately 40% and medium time scale prediction (order
of minutes).

4) Dealing with errors: The impact of estimation and
prediction errors is modeled in [37]. The authors propose a
comprehensive overview of several mobility predictors and
associated errors and investigate the main error sources and
their impact on prediction. Based on this, they propose a
stochastic model to predict user throughput that accounts for
uncertainty. The method is evaluated using synthetic data while
assuming that prediction’s errors have a truncated Gaussian
distribution. The joint analysis on the predictability of location
and signal strength, which in this case is simply quantified
by the standard deviation of the random variable, shown
in [31] indicates that location-awareness is a key factor to
enable accurate signal strength predictions. Location errors
are also considered in [38] where both temporal and spatial
correlation are exploited to predict the average channel gain.
The proposed method combines an AR model with functional
linear regression and relies on location information. Results
are derived using real data taken from the MOMENTUM
project [39] and show that the proposed method outperforms
SVM and AR processes.

5) Mobility-assisted handover optimization: Seamless mo-
bility requires efficient resource reservation and context trans-
fer procedures during handover, which should not be sensi-
tive to randomness in user movement patterns. To guarantee
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the service continuity for mobile users, the conventional
in-advance resource reservation schemes make a bandwidth
reservation over all the cells that a mobile host will visit
during its active connection. With mobility pattern prediction,
it is possible to prepare resources in the most probable cells
for the moving users. Using a Markov chain-based pattern
prediction scheme, the authors in [30] propose a statistical
bandwidth management algorithm to handle proactive resource
reservations to reduce bandwidth waste. Along similar lines,
[19], [40] investigate mobility prediction schemes, considering
not only location information but also user profiles, time-of-
day, and duration characteristics, to improve the handover per-
formance in terms of resource utilization, handover accuracy,
call dropping and call blocking probabilities.

6) Geographically-assisted video optimization: One of the
main applications that has been used to show the benefits
of geographic context is video streaming. A pioneer work
showing the benefit of a long-term location-based scheduling
for streaming is [41]. The authors propose a system for
bandwidth prediction based on geographic location and past
network conditions. Specifically, the streaming device can use
a GPS-based bandwidth-lookup service in order to predict
the expected bandwidth availability and to optimally schedule
the video playout. The authors present simulation as well as
experimental results, where the prediction is performed for the
upcoming 100 meters. The predictive algorithm reduces the
number of buffer underruns and provides stable video quality.

Application-layer video optimization based on prediction
of user’s mobility and expected capacity, is proposed also
in [42]–[44]. In [42], the authors minimize a utility function
based on system utilization and rebuffering time. For the single
user case they propose an online scheme based on partial
knowledge, whereas the multiuser case is studied assuming
complete future knowledge. In [43], different types of traffic
are considered: full buffer, file download and buffered video.
Prediction is assumed to be available and accurate over a
limited time window. Three different utility functions are com-
pared: maximization of the network throughput, maximization
of the minimum user throughput, and minimization of the
degradations of buffered video streams. Both works show
results using synthetic data and assuming perfect prediction
of the future wireless capacity variations over a time window
with size ranging from tens to hundreds of seconds. In
contrast, [44] introduces a data rate prediction mechanism
that exploits mobility information and is used by an enhanced
Proportionally Fair (PF) scheduler. The performance gain is
evaluated using a real dataset and shows a throughput increase
of 15%-55%.

Delay tolerant traffic can also benefit from offloading and
prefetching as shown in [45]. The authors propose methods to
minimize the data transfer over a mobile network by increasing
the traffic offloaded to WiFi hotspots. Three different algo-
rithms are proposed for both delay tolerant and delay sensitive
traffic. They are evaluated using empirical measurements and
assuming errors in the prediction. Results show that offloaded
traffic is maximized when using prediction, even when this is
affected by errors.

A geo-predictive streaming system called GTube, is pre-

sented in [46]. The application obtains the user’s GPS loca-
tions and informs a server which provides the expected con-
nection quality for future locations. The streaming parameters
are adjusted accordingly. In particular, two quality adaptation
algorithms are presented, where the video quality level is
adapted for the upcoming 1 and n steps, respectively, based
on the estimated bandwidth. The system is tested using a real
dataset and shows that accuracy reaches almost 90% for very
short time scale prediction (few seconds), but it decreases very
fast approaching zero for medium time scale prediction (few
minutes). However, the proposed n-step algorithm improves
the stability of the video quality and increases bandwidth
utilization.

B. Link Context

Link context refers to the prediction of the evolution of
the physical wireless channel, i.e., the channel quality and
its specific parameters, so that it is possible either to take
advantage of future link improvements or to counter bad
conditions before they impact the system. As an example
of link context, Fig. 2 shows a pathloss map of the center
of Berlin realized with the data of the MOMENTUM [39]
project.

1) Channel parameter prediction: One possible approach
to anticipate the evolution of the physical channel state is to
predict the specific parameters that characterize it. In general,
the variations of the physical channel can be caused by large-
scale and small-scale fading. While predicting small-scale
fading is quite challenging, if not impossible, several papers
focuses on predicting path loss and shadowing effects. In [47],
the time-varying nonlinear wireless channel model is adopted
to predict the channel quality variation anticipating distance
and pathloss exponent. The performance evaluation is done
using both an indoor and an outdoor testbed. The goodput
obtained with the proposed bitrate control scheme can be
almost doubled compared to other approaches.

Pathloss prediction in urban environments is investigated
in [48]. The authors propose a two-step approach that com-
bines machine learning and dimensional reduction techniques.
Specifically, they propose a new model for generating the
input vector, the dimension of which is reduced by apply-
ing linear and nonlinear principal component analysis. The
reduced vector is then given to a trained learning machine. The
authors compare ANNs and SVMs using real measurements
and conclude that slightly better results can be achieved using
the ANN regressors.

Supporting the temporal prediction with spatial information
is proposed in, e.g., [49] to study the evolution of shadow fad-
ing. The authors suggest to implement a Kriged Kalman Filter
(KKF) to track the time varying shadowing using a network
of CRs. The prediction is used to anticipate the position of
the primary users and the expected interference and, conse-
quently, to maximize the transmission rate of CR networks.
Errors with the proposed model approach 2 dB (compared
to 10 dB obtained with the pathloss based model). Targeting
the same objective, but using a different methodology, [50]
formulates the CR throughput optimization problem as an
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Fig. 2. Link context example: a pathloss map of Berlin downtown obtained
from the data of the MOMENTUM project [39], where the triangles represent
base stations. Pathloss maps are frequently used to predict the evolution of
the connection quality in mobile networks.

MDP. In particular, the predicted channel availability is used
to maximize the throughput and to reduce the time overhead
of channel sensing. Predictors robust to channel variations are
investigated also in [51]. A clustering method with supervised
SVM classification is proposed. The performance is shown
for bulk data transport via Transport Control Protocol (TCP)
and it is also shown that the predictive approach outperforms
non-predictive ones.

Finally, maps can be used to summarize predicted infor-
mation; for instance, algorithms to build pathloss maps are
proposed in [52]. In this paper, the authors propose two kernel-
based adaptive algorithms, namely the adaptive projected sub-
gradient method and the multikernel approach with adaptive
model selection. Numerical evaluation is done for both a
urban scenario and a campus network scenario, using real
measurements. The performance of the algorithms is evaluated
assuming perfect knowledge of the users’ trajectories.

2) Combined channel and mobility context: Channel qual-
ity and mobility information are jointly predicted in [53].
The authors combine information on visited locations and
corresponding achieved link quality to provide connectivity
forecast. A Markov model is implemented in order to forecast
future channel conditions. Location prediction accuracy is
approximately 70% for a prediction window of 20 seconds.
However, the location information has quite a coarse granu-
larity (of about 100 m). In terms of bandwidth, the proposed
model, evaluated on a real dataset, shows an accuracy within
10 KB/s for over 50% of the evaluation period, and within 50
KB/s for over 80% of the time. In [54], prediction is employed
to adjust the routing metrics in ad hoc wireless networks. In
particular, the metrics considered in the paper are the average
number of retransmissions needed and the time expected to
transmit a data packet. The solution anticipates the future
signal strength using linear regression on the history of the
link quality measurements. Simulations show that the packet
delivery ratio is close to 100%, even though it drops to 20%
using classical methods.

When the information used to drive the prediction is affected
by errors, it is important to account for the magnitude of the
error. This has been considered, for instance, in [55] and [56],
where the impact of location uncertainties is taken into ac-
count. Namely, the authors of [55] show that classical Gaussian

Process (GP) wrongly predicts the channel gain in presence
of errors, while uncertain GP, which explicitly accounts for
location uncertainty, outperforms the former in both learning
and predicting the received power. Gains are shown also for
a simple proactive resource allocation scenario. Similarly, the
same authors propose in [57] a proactive scheduling mech-
anism that exploits the statistical properties of user demand
and channel conditions. Furthermore, the model captures the
impact of prediction uncertainties and assesses the optimal
gain obtained by the proactive resource scheduler. The authors
also propose an asymptotically optimal policy that attains the
optimal gain rapidly as the prediction window size increases.
Uncertainties are also dealt with in [58], where a resource
allocation algorithm for mobile networks that leverages link
quality prediction is proposed. Time series filtering techniques
(AutoRegressive and Moving Average (ARMA)) are used
to predict near term link quality, whereas medium to long
term prediction is based on statistical models. The authors
propose a resource allocation optimization framework under
imperfect prediction of future available capacity. Simulations
are done using a real dataset and show that the proposed
solution outperforms the limited horizon optimizer (i.e., when
the prediction is done only for the upcoming few seconds) by
10−15%. Resource allocation is also addressed in [44], which
extends the standard PF scheduler of 4G networks to account
for data rate prediction obtained through adaptive radio maps.

3) Channel-assisted video optimization: In [59], the authors
propose an adaptive mobile video streaming framework, which
stores video in the cloud and offers to each user a continuous
video streaming adapted to the fluctuations of the link quality.
The paper proposes a mechanism to predict the potential avail-
able bandwidth in the next time window (of a duration of a few
seconds) based on the measurements of the link quality done
in the previous time window. A prototype implementation of
the proposed framework is used to evaluate the performance.
This shows that the prediction has a relative error of about
10% for very short time windows (a couple of seconds) but
becomes relatively poor for larger time windows. The video
performance is evaluated in terms of “click-to-play” delay,
which is halved with the proposed approach. A Markov model
is used in [60], where information on both channel and buffer
states is combined to optimize mobile video streaming. Both
an optimal policy as well as a fast heuristic are proposed.
A drive test was conducted to evaluate the performance of
the proposed solution. In particular, the authors show the
proportional dependency between utility and buffer size, as
well as the complexity of the two algorithms. Furthermore,
a Markov model is adopted to represent different user’s
achievable rates [61] and channel states [62]. The transition
matrix is derived empirically to minimize the number of video
stalls and their duration over a 10-second horizon.

Video calls are considered in [63]. Namely, a cross-layer
design for proactive congestion control, named Rebera, is
proposed. The system measures the real-time available band-
width and uses a linear adaptive filter to estimate the future
capacity. Furthermore, it ensures that the video sending rate
never exceeds the predicted values, thereby preventing self-
congestion and reducing delays. Performance results with
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respect to today’s solutions are given for both a testbed
and a real cellular network. In [64], the authors propose
a hop-by-hop video quality adaptation scheme at the router
level to improve the performance of adaptive video streaming
in Content Centric Networks (CCNs). In this context, the
routers monitor network conditions by estimating the end-
to-end bandwidth and proactively decrease the video quality
when network congestion occurs. Performance is evaluated
considering a realistic large-scale network topology and it is
shown that the proposed solution outperforms state of the art
schemes in terms of both playback quality and average delay.

4) Video optimization under uncertainty: For the video
optimization use case, some works also assess the impact of
uncertain predictions. In [65], the authors propose a stochastic
model of prediction errors, based on [37], and introduce an
online scheduler that is aware of prediction errors. Namely,
based on the expected prediction accuracy, the algorithm de-
termines whether to consider or discard the predicted data rate.
A similar model for prediction errors is introduced in [66]. In
this case, a Linear Programming (LP) formulation is proposed
to trade off spectral efficiency and stalling time. The proposed
solution shows good gains with respect to the case without
prediction, even when errors occur. LP is used also in [67]
to minimize the base station airtime with the constraint of
no video interruption. In this case, uncertainties are modeled
by using a fuzzy approach. Furthermore, in order to keep
track of the previous values of the error, a Kalman filter is
used. Simulations are run using synthetic data and show the
effect of channel variability on video degradation and average
airtime. In [68], bandwidth prediction is exploited to increase
the quality of video streaming. Both perfect and uncertain
prediction are considered and a robust heuristic is proposed
to mitigate the effect of prediction errors when adapting the
video bitrate. In [69], [70], a predictive resource allocation
robust to rate uncertainties is proposed. The authors propose a
framework that provides quality guarantees with the objective
of minimizing energy consumption. Both optimal gradient-
based and real-time guided heuristic solutions are presented.
In [69] both Gaussian and Bernstein approximation are used
to model rate uncertainties, whereas [70] considers only the
former one. Similarly, [71] provides predictive Quality-of-
Service (QoS) over wireless Asynchronous Transfer Mode
(ATM) networks: given the TDMA nature of these networks,
these schemes optimize the number of allocated time slots
depending on the characteristics of the traffic stream and the
wireless link.

5) Efficiency bounds and approximations for multimedia
streaming applications: A few papers ([72]–[79]) investigate
resource allocation optimization assuming that the future
channel state is perfectly known. While addressing different
objectives, these papers share similar methods: they first devise
a problem formulation from which an optimal solution can
be obtained (using standard optimization techniques), then
they propose sub-optimal approaches and on-line algorithms to
obtain an approximation of the optimal solution. Furthermore,
all these papers leverage a buffer to counteract the randomness
of the channel. For instance, in case a given amount of
information has to be gathered within a deadline, the buffer

allows the system to optimize (for a given objective function)
the resource allocation while meeting the deadline.

In this regard, energy-efficiency is the primary objective
in [72], [73], which is optimized by allowing the network
base stations to be switched off once the users’ streaming
requirements have been satisfied. Simulations show that an
energy saving up to 80% with respect to the baseline approach
can be achieved and that the performance of the heuristic
solution is quite close to the optimal (but impractical) Mixed-
Integer Linear Programming (MILP) approach. Buffer size
is investigated in [78], where the author introduces a linear
formulation that minimizes the amount for resources assigned
to non-real time video streaming with constraints on the user’s
playout buffer. Results are shown for a scenario with both
video and best effort users and highlight the gain in terms of
required resources to serve the video users as well as data rate
for the best effort users.

The trade-off between streaming interruption time and av-
erage quality is investigated in [76], [77] by devising a mixed-
integer quadratically constrained problem which computes the
optimal download time and quality for video segments. Then,
the authors propose a set of heuristics tailored to greedily
optimize segment scheduling according to a specific objective
function, e.g., maximum quality, minimum streaming interrup-
tion, or fairness. Similar objectives are tackled in [74], [75] in a
lexicographic approach, so that streaming continuity is always
prioritized over quality. They first propose a heuristic for the
lateness-quality problem that performs almost as good as the
MILP formulation. Then, they extend the MILP formulation
to include QoS guarantees and they introduce an iterative
approximation based on a simpler LP formulation. A further
heuristic approach is devised in [79] and accounts for the
buffer and channel state prediction. The proposed approach
maximizes the streaming quality while guaranteeing that there
are no interruptions.

6) Cognitive radio maps: CRs are context-aware wireless
devices that adapt their functionalities to changes in the envi-
ronment. They have been recently used [80]–[82] to obtained
the so-called REM: a multi-dimensional database containing a
wide set of information ranging from regulations to spectrum
usage.

For instance, REM are used to predict spectrum availability
in CR [80]: the paper exploits cognitive maps to provide con-
textual information for predictive machine learning approaches
such as Hidden Markov Models (HMM), ANN and regression
techniques. The construction of these maps is discussed in [81]
and the references therein, while their use as enabler for CR
networks is analyzed in [82].

In the context of anticipatory networking, REMs are often
used as a source of contextual information for the actual
prediction technique adopted, rather than as prediction tools
themselves. [9], [10] present two surveys of methodolo-
gies and measurement campaigns of spectrum occupancy. In
particular, [9] proposes a conservative approach to account
for measurement uncertainty, while [10] exploits predictors
to provide the future channel status. In addition, prediction
through machine learning approaches is addressed in [83],
where different techniques are compared to assess future
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channel availability.
Imperfect measurements are dealt with in [84], which mod-

els the problem as a repeated game and maximizes the total
network payoff. However, in cognitive networks, the channel
status depends on the activity of primary users. [85] surveys
the models proposed so far to describe primary users activity
and that can be used to drive prediction in this area. Once
the activity of primary users is available or predicted, it is
possible to control the activity of secondary users in order
to guarantee the agreed QoS to the former [86], [87]. These
papers compute the feasible cognitive interference region in
order to allow secondary users’ communication respecting
primary users’ rights. The utilization of spectrum opportunity
describes the probability of a secondary user to exploit a free
communication slot [88].

A similar form of opportunistic spectrum usage goes under
the name of white space [89]: i.e., channels that are unused
at specific location and time. CRs can take advantage of these
frequencies thanks to dynamic spectrum access. Finally, [90]
describes how to exploit CR to realize a complete smart grid
scenario; [91] describes how to exploit channel bonding to
increase the bandwidth and decrease the delay of CR.

C. Traffic Context

This section overviews some of the approaches that focus
on traffic and throughput prediction. Although related to the
previous context, the papers discussed in this section leverage
information collected from higher layers of the protocol stack.
For instance, solutions falling in this category try to predict,
among other parameters, the number of active users in the
network and the amount of traffic they are going to produce.
Similarly, but from the perspective of a single user, the
prediction can target the data rate that a streaming application
is going to achieve in the near term.

We grouped these papers in three main classes: pure analysis
of mobile traffic; traffic prediction for networking optimiza-
tion; and direct throughput prediction.

1) Traffic analysis and characterization: The analysis of
mobile traffic is fundamental for long-term network optimiza-
tion and re-configuration. To this end, several pieces of work
have addressed such research topics in the recent past.

The work in [92] targets the creation of regressors for
different performance indicators at different spatio-temporal
granularity for mobile cellular networks. Namely, the authors
focus on the characterization of per-device throughput, base
station throughput and device mobility. A one-week nation-
wide cellular network dataset is collected through proprietary
traffic inspection tools placed in the operator network and are
used to characterize the per-user traffic, cell-aggregate traffic
and to perform further spatio-temporal correlation analysis.

A similar scope is addressed by [93] which, on the other
hand, focuses more on core network measurements. Flow
level mobile device traffic data are collected from a cellular
operator’s core network and are used to characterize the IP
traffic patterns of mobile cellular devices.

More recently, the authors of [94] studied traffic predic-
tion in cloud analytics and prove that optimizing the choice

of metrics and parameters can lead to accurate prediction
even under high latency. This prediction is exploited at the
application/TCP layer to improve the performance of the
application avoiding buffer overflows and/or congestion.

2) Traffic prediction: Several applications can benefit from
the prediction of traffic performance features. For instance, a
predictive framework that anticipates the arrival of upcoming
requests is used in [95] to prefetch the needed content at the
mobile terminal. The authors propose a theoretical framework
to assess how the outage probability scales with the prediction
horizon. The theoretical framework accounts for prediction
errors and multicast delivery. Along the same line, queue
modeling [96] and analysis [97] is used to predict the up-
coming workloads in a lookahead time window. Leveraging
the workload prediction, a multi-slot joint power control
and scheduling problem is formulated to find the optimal
assignment that minimizes the total cost [96] or maximizes
the QoS [97].

Multimedia optimization is the focus in [98]. By predicting
throughput, packet loss and transmission delay half a sec-
ond in advance, the authors propose to dynamically adjust
application-level parameters of the reference video streaming
or video conferencing services including the compression ratio
of the video codec, the forward error correction code rate
and the size of the de-jittering buffer. Traffic prediction is
also addressed in [99], where the authors propose to use
a database of events (concerts, gatherings, etc.) to improve
the quality of the traffic prediction in case of unexpected
traffic patterns and in [100], where a general predictive control
framework along with Kalman filter is proposed to counteract
the impact of network delay and packet loss. The objective
of [101] is to build a model for user engagement as a function
of performance metrics in the context of video streaming
services. The authors use a supervised learning approach based
on average bitrate, join time, buffering ratio and buffering to
estimate the user engagement. Finally, inter-download time
can be modeled [102] and subsequently predicted for quality
optimization.

The work in [103] targets energy-efficient resource schedul-
ing in mobile radio networks. The authors introduce a Mixed
Non-Linear Program (MNLP) which returns on a slot basis the
optimal allocation of resources to users and the optimal users-
cell association pattern. The proposed model leverages optimal
traffic predictors to obtain the expected traffic conditions in
the following slots. Radio resource allocation in mobile radio
networks is addressed also in [104] and later by the same
authors in [105]; the target is to design a predictive framework
to optimally orchestrate the resource allocation and network
selection in case one operator owns multiple access networks.
The predictive framework aims at minimizing the expected
time average power consumption while keeping the network
(user queues) stable. The core contribution of [106], [107] is
the use of deep learning techniques to predict the upcoming
video traffic sessions; the prediction outcome is then used to
proactively allocate the resources of video servers to these
future traffic demands.

3) Throughput prediction: Rather than predicting the ex-
pected traffic or optimizing the network based on traf-
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fic prediction, the work in this section targets the predic-
tion/optimization based on the expected throughput. A com-
mon characteristic of the work described here is that the spatio-
temporal correlation is exploited in the prediction phase of the
expected throughput.

Quite a few early works studied how to effectively pre-
dict the obtainable data rate. In particular, long term pre-
diction [108] with 12-hour granularity allows to estimate
aggregate demands up to 6 months in advance. Shorter and
variable time scales are studied in [109], [110] adopting
AutoRegressive Integrated and Moving Average (ARIMA)
and Generalized AutoRegressive Conditionally Heteroskedas-
tic (GARCH) techniques.

In [111], the authors propose a dynamic framework to
allocate downlink radio resources across multiple cells of 4G
systems. The proposed framework leverages context informa-
tion of three types: radio maps, user’s location and mobility,
as well as application-related information. The authors assume
that a forecast of this information is available and can be
used to optimize the resource allocation in the network. The
performance of the proposed solution is evaluated through
simulation for the specific use case of video streaming. Geo-
localized radio maps are also exploited in [112]. Here the
optimization is performed at the application layer by letting
adaptive video streaming clients and servers dynamically
change the streaming rate on the basis of the current bandwidth
prediction from the bandwidth maps. The empirical collection
of geo-localized data rate measures is also addressed in [113]
which introduces a dataset of adaptive Hypertext Transfer
Protocol (HTTP) sessions performed by mobile users.

The work in [114] considers the problem of predicting
end-to-end quality of multi-hop paths in community WiFi
networks. The end-to-end quality is measured by a linear
combination of the expected transmission count across all the
links composing the multi-hop path. The authors resort to a
real data set of a WiFi community network and test several
predictors for the end-to-end quality.

The anticipation of the upcoming throughput values is
often applied to the optimization of adaptive video streaming
services. In this context, Yin et al. [115] leverage throughput
prediction to optimally adapt the bit rate of video encoders;
here, prediction is based on the harmonic mean of the last k
throughput samples.

In [116], [117] the authors build on the conjecture that
video sessions sharing the same critical features have similar
QoE (e.g., re-buffering, startup latency, etc.). Consequently,
first clustering techniques are applied to group similar video
sessions, and then throughput predictors based on HMMs are
applied to each cluster to dynamically adapt the bit rate of the
video encoder to the predicted throughput samples.

The work in [118] resorts to a model-based throughput
predictor in which the throughput of a Dynamic Adaptive
Streaming over HTTP (DASH)-based video streaming service
is assumed to be a random variable with Beta-like distribution
whose parameters are empirically estimated within an obser-
vation time window. Building on this estimate, the authors
propose a MNLP with a concave objective function and linear
constraints. The program is implemented as a multiple choice

knapsack problem and solved using commercial solvers. Along
the same lines, the optimization of a DASH-based video
streaming service is addressed in [119], where the authors
propose an adaptive video streaming framework based on a
smoothed rate estimate for the video sessions.

The work in [120] considers the scenario where a small
cell is used to deliver video content to a highly dense set of
users. The video delivery can also be supported in a distributed
way by end-user devices storing content locally. A control-
theoretic framework is proposed to dynamically set the video
quality of the downloaded content while enforcing stability of
the system.

D. Social Context
The work on anticipatory networking leveraging social

context exploits ex ante or ex post information on social-type
relationships between agents in the networking environment.
Such information may include: the network of social ties and
connections, the user’s preference on contents, measures on
user’s centrality in a social network, and measures on users’
mobility habits. The aforementioned context information is
leveraged in three main application scenarios: caching at the
edge of mobile networks, mobility prediction, and downlink
resource allocation in mobile networks.

1) Social-assisted caching: Motivated by the need of limit-
ing the load in the backhaul of 5G networks, references [121]–
[123] propose two schemes to proactively move contents closer
to the end users. In [121], caching happens at the small
cells, whereas in [122], [123] contents can be proactively
downloaded by a subset of end users which then re-distribute
them via device-to-device (D2D) communication. The authors
first define two optimization problems which target the load
reduction in the backhaul (caching at small cells) and in the
small cell (caching at end users), respectively, then heuristic
algorithms based on machine learning tools are proposed to
obtain sub-optimal solutions in reasonable processing time.
The heuristic first collects users’ content rating/preferences to
predict the popularity matrix Pm. Then, content is placed at
each small cell in a greedy way starting from the most popular
ones until a storage budget is hit. The first algorithmic step of
caching at the end users is to identify the K most connected
users and to cluster the remaining ones in communities. Then it
is possible to characterize the content preference distributions
within each community and greedily place contents at the
cluster heads. In [123], the prediction leverages additional
information on the underlying structure of content popularity
within the communities of users. Joint mobility and popularity
prediction for content caching at small cell base stations
is studied in [124]. Here, the authors propose a heuristic
caching scheme that determines whether a particular content
item should be cached at a particular base station by jointly
predicting the mobility pattern of users that request that item as
well as its popularity, where popularity prediction is performed
using the inter-arrival times of consecutive requests for that
object. They conclude that the joint scheme outperforms
caching with only mobility and only popularity models.

A similar problem is addressed in [125]: the authors con-
sider a distributed network of femto base stations, which can
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be leveraged to cache videos. The authors study where to
cache videos such that the average sum delay across all the
end users is minimized for a given video content popularity
distribution, a given storage capacity and an arbitrary model
for the wireless link. A greedy heuristic is then proposed to
reduce the computational complexity.

In [126], [127], it is argued that proactive caching of delay
intolerant content based on user preferences is subject to
prediction uncertainties that affect the performance of any
caching scheme. In [126], these uncertainties are modeled
as probability distributions of content requests over a given
time period. The authors provide lower bounds on the content
delivery cost given that the probability distribution for the
requests is available. They also derive caching policies that
achieve this lower bound asymptotically. It is shown that
under uniform uncertainty, the proposed policy breaks down to
equally spreading the amount of predicted content data over
the horizon of the prediction window. Another approach to
solve the same problem is used in [127], where personalized
content pricing schemes are deployed by the service provider
based on user preferences in order to enhance the certainty
about future demand. The authors model the pricing problem
as an optimization problem. Due to the non-convex nature of
their model, they use an iterative sub-optimal solution that
separates price allocation and proactive download decisions.

2) Social-assisted matching game theory: Matching game
theory [128] can be used to allocate networks resources
between users and base stations, when social attributes are
used to profile users. For instance, by letting users and base
stations rank one another to capture users’ similarities in terms
of interests, activities and interactions, it is possible to cre-
ate social utility functions controlling a distributed matching
game. In [129], a self-organizing, context-aware framework
for D2D resource allocation is proposed that exploits the like-
lihood of strongly connected users to request similar contents.
The solution is shown to be computationally feasible and to
offer substantial benefits when users’ social similarities are
present. A similar approach is used in [130] to deal with
joint millimeter and micro wave dual base station resource
allocation, in [131] for user base station association in small
cell networks, and in [132] to optimize D2D offloading tech-
niques. Caching in small cell networks can also be addressed
as a many-to-many matching game [133]: by matching video
popularity among users most frequently served by a given
server it is possible to devise caching policies that minimize
end-users’ delays. Simulations show the approach is effective
in small cell networks.

3) Social-assisted mobility prediction: Motivated by the
need to reduce the active scanning overhead in IEEE 802.11
networks, the authors of [40] propose a mobility prediction
tool to anticipate the next access point a WiFi user is moving
to. The proposed solution is based on context information on
the handoffs which were performed in the past; specifically, the
system stores centrally a time varying handoff table which is
then fed into an ARIMA predictor which returns the likelihood
of a given user to handoff to a specific access point. The
quality of the predictor is measured in terms of signaling
reduction due to active scanning.

The prediction of user mobility is also addressed in [134].
The authors leverage information coming from the social plat-
form Foursquare to predict user mobility on coarse granularity.
The next check-in problem is formulated to determine the
next place in an urban environment which will be most likely
visited by a user. The authors build a time-stamped dataset of
“check-ins” performed by Foursquare users over a period of
one month across several venues worldwide. A set of features
is then defined to represent user mobility including user
mobility features (e.g., number of historical visits to specific
venues or categories of venues, number of historical visits
that friends have done to specific venues), global mobility
features (e.g., popularity of venues, distance between venues,
transition frequency between couples of venues), and temporal
features which measures the historical check-ins over specific
time periods. Such a feature set is then used to train a
supervised classification problem to predict the next check-
in venue. Linear regression and M5 decision trees are used
in this regard. The work is mostly speculative and does not
address directly any specific application/use of the proposed
mobility prediction tool.

Along the same lines, the mobility of users in urban
environments is characterized in [135]. Different from the
previous work which only exploits social information, the
authors also leverage physical information about the current
position of moving users. A probabilistic model of the mobile
users’ behavior is built and trained on a real life dataset
of user mobility traces. A social-assisted mobility prediction
model is proposed in [136], where a variable-order Markov
model is developed and trained on both temporal features (i.e.,
when users were at specific locations) and social ones (i.e.,
when friends of specific users were at a given location). The
accuracy of the proposed model is cross-validated on two user-
mobility datasets.

4) Social-assisted radio resource allocation: The optimiza-
tion of elastic traffic in the downlink of mobile radio networks
is addressed in [137], [138]. The key tenet is to provide
to the downlink scheduler “richer” context to make better
decisions in the allocation of the radio resources. Besides
classical network-side context including the cell load and the
current channel quality indicator which are widely used in
the literature to steer the scheduling, the authors propose
to include user-side features which generically capture the
satisfaction degree of the user for the reference application.
Namely, the authors introduce the concept of a transaction,
which represents the atomic data download requested by the
end user (e.g., a web page download via HTTP, an object
download via HTTP or a file download via File Transfer
Protocol (FTP)). For each transaction and for each application,
a utility function is defined capturing the user’s sensitivity with
respect to the transmission delay and the expected completion
time. The functional form of this utility function depends on
the type of application which “generated” the transaction; as
an example, the authors make the distinction between trans-
actions from applications which are running in the foreground
and the background on the user’s terminal. For the sake of
presentation, a parametric logistic function is used to represent
the aforementioned utility. The authors then formulate an
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TABLE III
CONTEXT CLASSIFICATION SUMMARY: EACH CONTEXT IS ASSOCIATED TO ITS MOST POPULAR APPLICATIONS, PREDICTION TECHNIQUES,

OPTIMIZATION METHODS AND MAIN NOTABLE CHARACTERISTICS.

Context Applications Predictiona Optimization Remarks
Geographic
[11-26, 28,
29, 31-35, 37,
38, 41-46,
131]

Mobility prediction
Multimedia streaming
Broadcast
Resource allocation
Duty cycling

1st Probabilistic
2nd Regression
3rd Time series
4th Classification

1) Prediction to define convex
optimization problems
2) Prediction as the optimization
objective

1) Prediction accuracy is inversely proportional to
the time scale and granularity
2) High prediction accuracy can be obtained on long
time scales if periodicity and/or trends are present
3) Prediction is more effectively used in delay
tolerant applications

Link
[30, 47-70,
72-79, 129,
158]

Channel forecast
Resource allocation
Network mapping
Routing
Multimedia streaming

1st Regression
2nd Time series
3rd Probabilistic
4th Classification

1) Markov decision process is
used when statistical knowledge
of the system is available
2) Convex optimization is pre-
ferred when it is possible to per-
form accurate forecast

1) Channel quality maps can be effectively used to
improve networking
2) Mobility dynamics affect the prediction effective-
ness
3) Channel is most often predicted by means of
functional regression or Markovian models

Traffic
[92-102,
104-120, 138,
145, 156,
165]

Traffic analysis
Resource allocation
Multimedia streaming

1st Regression
2nd Classification
3rd Probabilistic

1) Maps are used to deterministi-
cally guide the optimization
2) Convex optimization prob-
lems can be formulated to obtain
bounds

1) Improved long-term network optimization and
reconfiguration
2) Traffic distribution is skewed both with regards
to users and locations
3) Traffic has a strong time periodicity
4) Geo-localized information can be used as inputs
for optimization

Social
[40, 121-140,
148, 149,
154, 157,
159]

Network caching
Mobility prediction
Resource allocation
Multimedia streaming

1st Classification
2nd Regression
3rd Time series
4th Probabilistic

1) Formal optimization problems
can be defined, but they are usu-
ally impractical to be solved
2) Game theory and heuristics are
the preferable online solutions

1) A fraction of social information can be accurately
predicted
2) Prediction obtained from social information is
usually coarse
3) Social information prediction can effectively im-
prove application performance

aRanking based on the number of papers reviewed in this survey using the predictor.

optimization problem to maximize the sum utility across all
the users and transactions in a given mobile radio cell and
design a greedy heuristic to obtain a sub-optimal solution
in reasonable computing time. The proposed algorithm is
validated against state-of-the-art scheduling solutions (PF /
weighted PF scheduling) through simulation on synthetic data
mimicking realistic user distributions, mobility patterns and
traffic patterns.

In order to predict the spatial traffic of base stations in a
cellular network, [139] applies the idea of social networks
to base stations. Here, the base stations themselves create a
social network and a social graph is created between them
based on the spatial correlation of the traffic of each of them.
The correlation is calculated using the Pearson coefficient.
Based on the topology of the social graph, the most important
base stations are identified and used for traffic prediction of
the entire network, which is done using SVM. The authors
conclude that with the traffic data of less than 10% of the
base stations, effective prediction with less than 20% mean
error can be achieved.

Social-oriented techniques related to the popularity of the
end users are leveraged also in [140] where the authors target
the performance optimization of downlink resource allocation
in future generation networks. The utility maximization prob-
lem is formulated with the utility being a combination (prod-
uct) of a network-oriented term (available bandwidth) and a
social-oriented term (social distance). The social-oriented term
is defined to be the degree centrality measure [141] for a
specific user. The proposed problem is sub-optimally solved
through a heuristic which is finally validated using synthetic
data.

E. Summary

Hereafter, we summarize the main takeaways of the section
in terms of application and objective for which different
context types can be used. Table III provides a synthesis of the
main considerations: each context is associated with its typical
applications, prediction methodologies (ordered by decreasing
popularity), optimization approaches and general remarks.

1) Mobility prediction: It has been shown that predictability
of user mobility can be potentially very high (93% potential
predictability in user mobility as stated in [11]), despite the
significant differences in the travel patterns. As a matter of
fact, many papers study how to forecast users’ mobility by
means of a variety of techniques. For predicting trajectories,
characterized by sequences of discretized locations indicated
by cell identities (IDs) or road segments, fixed-order Markov
models or variable-order Markov models are the most promis-
ing tools, while for continuous trajectories, regression tech-
niques are widely used. To enhance the prediction accuracy,
the most popular ones leverage geographic information: GPS
data, cell records and received signal strength are used to
obtain precise and frequent data sampling to locate users on
a map. However, the movements of an individual are largely
influenced by those of other individuals via social relations.
Several papers analyze social information and location check-
ins to find recurrent patterns. For this second case usually a
sparser dataset is available and may limit the accuracy of the
prediction.

2) Network efficiency: Predicting and optimizing network
efficiency (i.e., increasing the performance of the network
while using the same amount of resources) is the most
frequent objective in anticipatory networking. We found papers
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exploiting all four types of context to achieve this. As such,
objectives and constraints cover the whole attribute space.
Improving network efficiency is likely to become the main
driver for including anticipatory networking solutions in next
generation networks.

3) Multimedia streaming: The main source of data traffic in
4G networks has been multimedia streaming and, in particular,
video on demand. 5G networks are expected to continue and
even increase this trend. As a consequence, several anticipatory
networking solutions focus on the optimization of this service.
All the context types have been used to this extent and each has
a different merit: social information is needed to predict when
a given user is going to request a given content, combined
geographic and social information allows the network to cache
that content closer to where it will be required and physical
channel information can be used to optimize the resource
assignment.

4) Network offloading: Mobility prediction can be used to
handover communications between different technologies to
decrease network congestion, improve user experience, reduce
users’ costs and increase energy efficiency.

5) Cognitive networking: Physical channel prediction can
be exploited for cognitive networking and for network map-
ping. The former application allows secondary users to access
a shared medium when primary subscribers left resource un-
used, thus, predicting when this is going to happen will highly
improve the effectiveness of the solution. The latter, instead,
exploits link information to build networking maps that can
provide other applications with an estimate of communication
quality at a given time and place.

6) Throughput- and traffic-based applications: Traffic in-
formation is usually studied to be, first, modeled and, sub-
sequently, predicted. Traffic models and predictors are then
used to improve networking efficiency by means of resource
allocation, traffic shaping and network planning.

IV. PREDICTION METHODOLOGIES FOR ANTICIPATORY
NETWORKING

In this section, we present some selected prediction methods
for the types of context introduced in Section I-A. The selected
methods are classified into four main categories: time series
methods, similarity-based classification, regression analysis,
and statistical methods for probabilistic modeling. Their math-
ematical principles and the application to inferring and predict-
ing the aforementioned contextual information are introduced
in Sections IV-A, IV-B, IV-C, and IV-D, respectively.

The goal of the prediction handbook is to show which meth-
ods work in which situation. In fact, selecting the appropriate
prediction method requires to analyze the prediction variables
and the model constraints with respect to the application
scenario (see Section I-A). This section concludes with a
series of takeaways that summarize some general principles for
selection of prediction methods based on the scenario analysis.

A. Time Series Predictive Modeling

A time series is a set of time-stamped data entries which
allows a natural association of data collected on a regular or
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(a) Uplink and downlink traffic load in a cell grid in Rome, Italy.
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(b) Aggregated uplink and downlink traffic load in Rome, Italy.

Fig. 3. Example of time series: Traffic load (aggregated every 15 minutes)
for a week in March 2015 in Rome, Italy. Data source from Telecom Italia’s
Big Data Challenge [142].

irregular time basis. In wireless networks, large volumes of
data are stored as time series and frequently show temporal
correlation. For example, the trajectory of the mobile device
can be characterized by successive time-stamped locations
obtained from geographical measurements; individual social
behavior can be expressed through time-evolving events; traffic
loads modeled in time series can be leveraged for network
planning and controlling. Fig. 3(a) and 3(b) illustrate two time
series of per-cell and per-city aggregated uplink and downlink
data traffic, where temporal correlation is clearly recognizable.

In the following, we introduce the two most widely used
time series models based on linear dynamic systems: 1)
AutoRegressive and Moving Average (ARMA), and 2) Kalman
filters. Examples of context prediction in wireless networks
are given and their extensions to nonlinear systems are briefly
discussed.

1) Autoregressive and moving average models: Consider a
univariate time series {Xt : t ∈ T }, where T denotes the
set of time indices. The general ARMA model, denoted by
ARMA(p, q), has p AR terms and q Moving Average (MA)
terms, given by

Xt = Zt +

p∑
i=1

φiXt−i +

q∑
j=1

θjZt−j (1)

where Zt is the process of the white noise errors, and {φi}pi=1

and {θj}qj=1 are the parameters. The ARMA model is a
generalization of the simpler AR and MA models that can
be obtained for q = 0 and p = 0 respectively. Using the lag
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operator LiXt := Xt−i the model becomes

φ(L)Xt = θ(L)Zt (2)

where φ(L) := 1−
∑p
i=1 φiL

i and θ(L) := 1 +
∑q
j=1 θjL

j .
The fitting procedure of such processes assumes stationar-

ity. However, this property is seldom verified in practice and
non-stationary time series need to be stationarized through
differencing and logging. The ARIMA model generalizes
ARMA models for the case of non-stationary time series: a
non seasonal ARIMA model ARIMA(p, d, q) after d differ-
entiations reduces to an ARMA(p, q) of the form

φ(L)∆dXt = θ(L)Zt, (3)

where ∆d = (1− L)d denotes the dth difference operator.
Numerous studies have been done on prediction of traffic

load in wireless or IP backbone networks using autoregres-
sive models. The stationarity analysis often provides impor-
tant clues for selecting the appropriate model. For instance,
in [108] a low-order ARIMA model is applied to capture the
non-stationary short memory process of traffic load, while
in [109] a Gegenbauer ARMA model is used to specify
long memory processes under the assumption of stationarity.
Similar models are applied to mobility- or channel-related
contexts. In [40], an exponential weighted moving average,
equivalent to ARIMA(0, 1, 1), is used to forecast handoffs.
In [13], [47], AR models are applied to predict future signal-
to-noise ratio values and user positions, respectively. If the
variance of the data varies with time, as in [110] for data
traffic, and can be expressed using an ARMA, then the whole
model is referred to as GARCH.

2) Kalman filter: Kalman filters are widely applied in time
series analysis for linear dynamic systems, which track the
estimated system state and its uncertainty variance. In the
anticipatory networking literature, Kalman filters have been
mainly adopted to model the linear dependence of the system
states based on historical data.

Consider a multivariate time series {xt ∈ Rn : t ∈ T }, the
Kalman filter addresses the problem of estimating state xt that
is governed by the linear stochastic difference equation

xt = Atxt−1 + Btut + wt, t = 0, 1, . . . , (4)

where At ∈ Rn×n expresses the state transition, and Bt ∈
Rn×l relates the optional control input ut ∈ Rl to the state
xt ∈ Rn. The random variable wt ∼ N (0,Qt) represents
a multivariate normal noise process with covariance matrix
Qt ∈ Rn×n. The observation zt ∈ Rm of the true state xt is
given by

zt = Htxt + vt, (5)

where Ht ∈ Rm×n maps the true state space into the observed
space. The random variable vt is the observation noise process
following vt ∼ N (0,Rt) with covariance Rt ∈ Rn×n.
Kalman filters iterate between 1) predicting the system state
with Eq. (4) and 2) updating the model according to Eq. (5) to
refine the previous prediction. The interested reader is referred
to [143] for more details.

In [32], [144], Kalman filters are used to study users’
mobility. Wireless channel gains are studied in [49] with KKF,

while the authors of [145] adopt the technique to predict
short-term traffic volume. The extended Kalman filter adapts
the standard model to nonlinear systems via online Taylor
expansion. According to [146], this improves shadow/fading
estimation.

B. Similarity-based Classification

Similarity-based classification aims to find inherent struc-
tures within a dataset. The core rationale is that similarity
patterns in a dataset can be used to predict unknown data
or missing features. Recommendation systems are a typical
application where users give a score to items and the system
tries to infer similarities among users and scores to predict the
missing entries.

These techniques are unsupervised learning methods, since
categories are not predetermined, but are inferred from the
data. They are applied to datasets exhibiting one or more of
the following properties: 1) entries of the dataset have many
attributes, 2) no law is known to link the different features, and
3) no classification is available to manually label the dataset.

In what follows, we briefly review the similarity-based
classification tools that have been used in the anticipatory
networking literature accounted for in this survey.

1) Collaborative filtering: Recommendation systems usu-
ally adopt Collaborative Filtering (CF) to predict unknown
opinions according to user’s and/or content’s similarities.
While a thorough survey is available in [147], here, we just
introduce the main concepts related to anticipatory networking.

CF predicts the missing entries of a nc × nu matrix
Y ∈ Anc×nu , mapping nc users to nu contents through their
opinions which are taken from an alphabet A of possible
ratings. Thus, the entry yik, i ∈ {1, . . . , nc}, k ∈ {1, . . . , nu}
expresses how much user k likes content i. An auxiliary matrix
R ∈ [0, 1]nc×nu expresses whether user k evaluated content i
(rik = 1) or not (rik = 0).

To predict the missing entries of Y the feature learning ap-
proach exploits a set of nf features to represent contents’ and
users’ similarities and defines two matrices X ∈ [0, 1]nc×nf

and Θ ∈ Anu×nf , whose entries xij and θkj represent how
much content i is represented by feature j and how high
user k would rate a content completely defined by feature
j, respectively. The new matrices aim to map Y in the feature
space and they can be computed by:

argmin
X,Θ

∑
i,k:rik=1

(xi∗θ
T
k∗ − yik)2, (6)

where xi∗ := (coliX
T )T denotes the i-th row of matrix

X. Note that in (6) the regularization terms are omitted.
Solving (6) amounts to obtain a matrix Ỹ = XΘT which
best approximates Y according to the available information
(i, k : rik = 1). Finally, ỹik = xi∗θ

T
k∗ predicts how user k

with parameters θk∗ rates content i having feature vector xi∗.
Other applications of CF are, for instance, network caching

optimization [148], [149], where communication efficiency
is optimized by storing contents where and when they are
predicted to be consumed. Similarly, location-based ser-
vices [134] predict where and what to serve to a given user.
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Fig. 4. Example of a functional dataset: WiFi traffic in Rome depending on
hour of the day. Data source from Telecom Italia’s Big Data Challenge [142].

2) Clustering: Clustering techniques are meant to group
elements that share similar characteristics. The following
provides an introduction to K-means, which is among the
most commonly-used clustering techniques in anticipatory
networking. The interested reader is referred to [150] for a
complete review.
K-means splits a given dataset into K groups without any

prior information about the group structure. The basic idea is
to associate each observation point from a dataset X := {xi ∈
Rn : i = 1, . . . ,M}, to one of the centroids in set M :=
{µj ∈ Rn : j = 1, . . . ,K}. The centroids are optimized by
minimizing the intra-cluster sum of squares (sum of distance
of each point in the cluster to the K centroids), given by

minimize
C,M

K∑
j=1

M∑
i=1

cij‖xi − µj‖2, (7)

where C := {cij ∈ {0, 1} : i = 1, . . . ,M, j = 1, . . . ,K}
associates entry xi to centroid µj . No entry can be associated
to multiple centroids (

∑K
j=1 cij = 1,∀i ∈M).

Clustering is applied in anticipatory networking to build
a data-driven link model [51], to find similarities within
vehicular paths [34], to identify social events [99] that might
impact network performance, and to identify device types [93].

3) Decision Trees: A supervised version of clustering is
decision tree learning (the interested reader is referred to [151]
for a survey on the topic). Assuming that each input observa-
tion is mapped to a consequence on its target value (such as
reward, utility, cost, etc.), the goal of decision tree learning is
to build a set of rules to map the observations to their target
values. Each decision branches the tree into different paths
that lead to leaves representing the class labels. With prior
knowledge, decision trees can be exploited for location-based
services [134], for identifying trajectory similarities [35], and
for predicting the QoE for multimedia streams [101]. For
continuous target variables, regression trees can be used to
learn trends in network performance [98].

C. Regression Analysis

When the interest lies in understanding the relationship
between different variables, regression analysis is used to
predict dependent variables from a number of independent
variables by means of so-called regression functions. In the
following, we introduce three regression techniques, which
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Fig. 5. Examples of SVM, where different datasets are analyzed according
to a linear (left) and a Gaussian (right) kernel.

are able to capture complex nonlinear relationships, namely
functional regression, support vector machines and artificial
neural networks.

1) Functional regression: Functional data often arise from
measurements, where each point is expressed as a function
over a physical continuum (e.g., Fig. 4 illustrates the example
of aggregated WiFi traffic as a function of the hour of the
day). Functional regression has two interesting properties:
smoothness allows to study derivatives, which may reveal
important aspects of the processes generating the data, and
the mapping between original data and the functional space
may reduce the dimensionality of the problem and, as a con-
sequence, the computational complexity [152]. The commonly
encountered form of function prediction regression model
(scalar-on-function) is given by [153]:

Yi = B0 +

∫
Xi(z)B(z)dz + Ei (8)

where Yi, i = 1, . . . ,M is a continuous response, Xi(z) is a
functional predictor over the variable z, B(z) is the functional
coefficient, B0 is the intercept, and Ei is the residual error.

Functional regression methods are applied in [94] to pre-
dict traffic-related Long Term Evolution (LTE) metrics (e.g.,
throughput, modulation and coding scheme, and used re-
sources) showing that cloud analytics of short-term LTE
metrics is feasible. In [154], functional regression is used to
study churn rate of mobile subscribers to maximize the carrier
profitability.

2) Support vector machines: SVM is a supervised learning
technique that constructs a hyperplane or set of hyperplanes
(linear or nonlinear) in a high- or infinite-dimensional space,
which can be used for classification, regression, or other tasks.
In this survey we introduce the SVM for classification, and
the same principle is used by SVM for regression. Consider
a training dataset {(xi, yi) : xi ∈ Rn, yi ∈ {−1, 1}, i =
1, . . . ,M}, where xi is the i-th training vector and yi the
label of its class. First, let us assume that the data is lin-
early separable and define the linear separating hyperplane as
w · x − b = 0, where w · x is the Euclidean inner product.
The optimal hyperplane is the one that maximizes the margin
(i.e., distance from the hyperplane to the instances closest to it
on either side), which can be found by solving the following
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optimization problem:

minimize
1

2
||w||2

subject to yi(xi ·w + b)− 1 ≥ 0 ∀i ∈ {1, . . . ,M}.(9)

Fig. 5(a) shows an example of linear SVM classifier separating
two classes in R2.

If the data is not linearly separable, the training points are
projected to a high-dimensional space H through a nonlinear
transformation φ : Rn → H. Then, a linear model in the
new space is built, which corresponds to a nonlinear model in
the original space. Since the solution of (9) consists of inner
products of training data xi · xj , for all i, j, in the new space
the solution is in the form of φ(xi) · φ(xj). The kernel trick
is applied to replace the inner product of basis functions by a
kernel function K(xi,xj) = φ(xi) ·φ(xj) between instances
in the original input space, without explicitly building the
transformation φ.

The Gaussian kernel K(x,y) := exp(γ||x−y||2) is one of
the most widely used kernels in the literature. For example,
it is used in [15] to predict user mobility. In [52], the authors
propose an algorithm for reconstructing coverage maps from
path-loss measurements using a kernel method. Nevertheless,
choosing an appropriate kernel for a given prediction task
remains one of the main challenges.

3) Artificial neural networks: ANN is a supervised machine
learning solution for both regression and classification. An
ANN is a network of nodes, or neurons, grouped into three
layers (input, hidden and output), which allows for nonlinear
classification. Ideally, it can achieve zero training error.

Consider a training dataset {(xi, yi) : xi ∈ Rn, i =
1, . . . ,M}. Each hidden node hl approximates a so-called
logistic function in the form hl = 1/(1 + exp(−ωl · x)),
where ωl is a weight vector. The outputs of the hidden nodes
are processed by the output nodes to approximate y. These
nodes use linear and logistic functions for regression and
classification, respectively. In the linear case, the approximated
output is represented as:

ŷ =

L∑
l=1

hlvl =

L∑
l=1

1

1 + exp(−ωl · x)
vl, (10)

where L is the number of hidden nodes and vl is the weight
vector of the output layer. The training of an ANN can be
performed by means of the backpropagation method that finds
weights for both layers to minimize the mean squared error
between the training labels y and their approximations ŷ. In the
anticipatory networking literature, ANNs have been used for
example to predict mobility in mobile ad-hoc networks [14],
[155].

For both SVMs and ANNs, as for other supervised learning
approaches, no prior knowledge about the system is required
but a large training set has to be acquired for parameter
setting in the predictive model. A careful analysis needs to
be performed while processing the training data in order to
avoid both overfitting and underlearning.

D. Statistical Methods for Probabilistic Forecasting

Probabilistic forecasting involves the use of information
at hand to make statements about the likely course of fu-
ture events. In the following subsections, we introduce two
probabilistic forecasting techniques: Markovian models and
Bayesian inference.

1) Markovian models: These models can be applied to any
system for which state transitions only depend on the current
state. In the following we briefly discuss the basic concepts of
discrete, and continuous time Markov Chains (MCs) and their
respective applications to anticipatory networking.

A Discrete Time Markov Chain (DTMC) is a discrete time
stochastic process Xn(n ∈ N), where a state Xn takes a
finite number of values from a set X in each time slot. The
Markovian property for a DTMC transitioning from any time
slot k to k + 1 is expressed as follows:

P (Xk+1 = j|Xk = i) = pij(k). (11)

For a stationary DTMC, the subscript k is omitted and the
transition matrix P, where pij represents the transition proba-
bility from state i to state j, completely describes the model.
Empirical measurements on mobility and traffic evolution can
be accurately predicted using a DTMC with low computational
complexity [19], [23], [26], [93], [136]. However, obtaining
the transition probabilities of the system requires a variable
training period, which depends on the prediction goal. In
practice, the data collection period can be in the order of
one [93] or even multiple weeks [20], [53].

A DTMC assumes the time the system spends in each state
is equal for all states. This time depends on the prediction
application and can range from a few hundred milliseconds
to predict wireless channel quality [62], to tens of seconds
for user mobility prediction [19], [53], to hours for Internet
traffic [93]. For tractability reason, the state space is often
compressed by means of simple heuristics [20], [53], [102],
K-means clustering [62], [136], equal probability classifica-
tion [102], and density-based clustering [136].

Eq. (11) defines a first order DTMC and can be extended
to the l-th order (i.e., transition probabilities depend on the l
previous states). By Using higher order, DTMCs can increase
the accuracy of the prediction at the expense of a longer
training time and an increased computational complexity [19],
[23], [136].

If the sojourn time of each state is relevant to the prediction,
the system can be modeled as a Continuous Time Markov
Chain (CTMC). The Markovian property is preserved in
CTMC when the sojourn time is exponentially distributed, as
in [21]. When the sojourn time has an arbitrary distribution, it
becomes a Markov renewal process as described in [17], [18].

If the transition probabilities cannot be directly measured,
but only the output of the system is quantifiable (dependent on
the state), hidden Markov models allow to map the output state
space to the unobservable model that governs the system. As
an example, the inter-download times of video segments are
predicted in [102], where the output sequences are the inter-
download times of the already downloaded segments and the
states are the instants of the next download request.
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TABLE IV
SELECTED PREDICTION METHODS: VARIABLES OF INTEREST AND CONSTRAINTS OF MODELING.

Prediction Method Properties of the Context Constraints
Class Methodology Dimension Granularity Range Type Linearity Side Info. Quality

Time series
ARIMA univariate M/L S data Y N weak
Kalman filter multivariate M/L S data Y N weak
References ARIMA: [13], [38], [40], [46], [47], [54], [58], [59], [63], [100], [119] Kalman: [32], [49]

Classification

CF multivariate L M/L data Y both robust
Clustering multivariate L M/L data both both robust
Decision trees multivariate L any data both Y robust
References CF: [16], [134], [149] Cluster: [15], [34], [51], [117], [122], [123], [148], [156] Decision trees: [35], [98], [101]

Regression

Functional multivariate any M/L models both Y robust
SVM multivariate any any both both both weak
ANN multivariate any any data both both weak
References Functional: [28], [29], [38], [64], [99], [104], [105] SVM: [51], [114], [139] ANN: [14], [48], [106], [107]

Probabilistic

Markovian multivariate M/L any both both both weak
Bayesian multivariate any any both both Y weak

References Probabilistic: [12], [16]–[21], [23]–[26], [30], [50], [53], [60], [61], [93], [102], [116], [136], [157]
Bayesian: [33], [37], [58], [126], [127], [129], [130], [132], [135], [158], [159]

2) Bayesian inference: This approach allows to make state-
ments about what is unknown, by conditioning on what is
known. Bayesian prediction can be summarized in the follow-
ing steps: 1) define a model that expresses qualitative aspects
of our knowledge but has unknown parameters, 2) specify a
prior probability distribution for the unknown parameters, 3)
compute the posterior probability distribution for the param-
eters, given the observed data, and 4) make predictions by
averaging over the posterior distribution.

Given a set of observed data D := {(xi,yi) : i =
1, . . . ,M} consisting of a set of input samples X := {xi ∈
Rp : i = 1, . . . ,M} and a set of output samples Y := {yi ∈
Rq : i = 1, . . . ,M}, inference in Bayesian models is based
on the posterior distribution over the parameters, given by the
Bayes’ rule:

p(θ|D) =
p(Y|X ,θ)p(θ)

p(Y|X )
∝ p(Y|X ,θ)p(θ), (12)

where θ is the unknown parameter vector.
Two recent works adopting the Bayesian framework are [55]

and [38]. The former focuses on spatial prediction of the
wireless channel, building a 2D non-stationary random field
accounting for pathloss, shadowing and multipath. The latter
exploits spatial and temporal correlation to develop a general
prediction model for the channel gain of mobile users.

E. Summary

Hereafter, we provide some guidelines for selecting the
appropriate prediction methods depending on the application
scenario or context of interest.

1) Applications and data: The predicted context is the
most important information that drives decision making in
anticipatory optimization problems (see Section V). Thus, the
selection of the prediction method shall take into consideration
the objectives of the application and the constraints imposed
by the available data.

a) Choosing the outputs: Applications define the proper-
ties of the predicted variables, such as dimension, granularity,
accuracy, and range. For example, large granularity or high

data aggregation (such as frequently visited location, social be-
havior pattern) is best dealt with similarity-based classification
methods which provide sufficiently accurate prediction without
the complexity of other model-based regression techniques.

b) System model and data: The application environment
is equally important as its outputs, which determines the
constraints of modeling. Often, an accurate analysis of the
scenario might highlight linearity, deterministic and/or causal
laws among the variables that can further improve the predic-
tion accuracy. Moreover, the quality of dataset heavily affects
the prediction accuracy. Different methods exhibit different
level of robustness to noisy data.

2) Guidelines for selecting methods: To choose the correct
tool among the aforementioned set, we study the rationale for
adopting each of them in the literature and derive the following
practical guidelines.

a) Model-based methods: When a physical model exists,
model-based regression techniques based on closed-form ex-
pressions can be used to obtain an accurate prediction. They
are usually preferable for long-term forecast and exhibit good
resilience to poor data quality.

b) Time series-based methods: These are the most con-
venient tools when the information is abundant and shows
strong temporal correlation. Under these conditions, time
series methods provide simple means to obtain multiple scale
prediction of moderate to high precision.

c) Causal methods: If the data exhibits large and fast
variations, causality laws can be key to obtain robust predic-
tions. In particular, if a causal relationship can be observed
between the variables of interest and the other observable data,
causal models usually outperform pure data-driven models.

d) Probabilistic models: If the physical model of the
prediction variable is either unavailable or too complex to be
used, probabilistic models offer robust prediction based on the
observation of a sufficient amount of data. In addition, proba-
bilistic methods are capable of quantifying the uncertainty of
the prediction, based on the probability density function of the
predicted state.

3) Prediction summary: Table IV characterizes each pre-
diction method with respect to properties of the context and
constraints presented in Section I-A. Note that the methods for
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predicting a multivariate process can be applied to univariate
processes without loss of generality. The granularity of vari-
ables and the prediction range are described using qualitative
attributes such as Short, Medium, Large, and any instead of
explicit values. For example, for the time series of traffic load
per cell, S, M and L time scales are generally defined by
minutes, tens of minutes and hours, respectively, while for the
time series of channel gain, they can be seen as milliseconds,
hundreds of milliseconds and seconds, respectively. The sixth
column reports the prediction type, that can be driven by data,
models or both. Linearity indicates whether it is required (Y)
or not (N) or applicable in both cases. The side information
column states whether out-of-band information can (both),
cannot (N) or must (Y) be used to build the model. Finally,
the quality column reports whether the predictor is weak or
robust against insufficient or unreliable dataset.

V. OPTIMIZATION TECHNIQUES FOR ANTICIPATORY
NETWORKING

This section identifies the main optimization techniques
adopted by anticipatory networking solutions to achieve their
objectives. Disregarding the particular domain of each work,
the common denominator is to leverage some future knowl-
edge obtained by means of prediction to drive the system
optimization. How this optimization is performed depends
both on the ultimate objectives and how data are predicted
and stored.

In general, we found two main strategies for optimization:
(1) adopting a well-known optimization framework to model
the problem and (2) designing a novel solution (most often)
based on heuristic considerations about the problem. The two
strategies are not mutually exclusive and often, when known
approaches lead to too complex or impractical solutions, they
are mixed in order to provide feasible approximation of the
original problem.

Heuristic approaches usually consist of (1) algorithms that
allow for fast computation of an approximation of the solution
of a more complex problem (e.g., convex optimization) and
(2) greedy approaches that can be proven optimal under
some set of assumptions. Both approaches trade optimality
for complexity and most often are able to obtain performance
quite close to the optimal one. However, heuristic approaches
are tailored to the specific application and are usually difficult
to be generalized or to be adapted for different scenarios, thus
they cannot be directly applied to new applications if the new
requirements do not match those of the original scenario.

In what follows, we focus on optimization methods only
and we will provide some introductory descriptions of the
most relevant ones used for anticipatory networking. The
objective is to provide the reader with a minimum set of tools
to understand the methodologies and to highlight the main
properties and applications.

A. Convex Optimization

Convex optimization is a field that studies the problem of
minimizing a convex function over convex sets. The interested
reader can refer to [160] for convex optimization theory and

algorithms. Hereafter, we will adopt Boyd’s notation [160] to
introduce definitions and formulations that frequently appear
in anticipatory networking papers.

The inputs are often referred to as the optimization variables
of the problem and defined as the vector x = (x1, . . . , xn).
In order to compute the best configuration or, more precisely,
to optimize the variables, an objective is defined: this usually
corresponds to minimizing a function of the optimization vari-
ables, f0 : Rn → R. The feasible set of input configurations
is usually defined through a set of m constraints fi(x) ≤ bi,
i = 1, . . . ,m, with fi : Rn → R. The general formulation of
the problem is

minimize f0(x)

subject to fi ≤ bi, i = 1, . . . ,m. (13)

The solution to the optimization problem is an optimal
vector x∗ that provides the smallest value of the objective
function, while satisfying all the constraints.

The convexity property (i.e., objective and constraint func-
tions satisfy fi(ax+(1−a)y) ≤ afi(x)+(1−a)fi(y) for all
x,y ∈ Rn and a ∈ [0, 1]) can be exploited in order to derive
efficient algorithms that allows for fast computation of the
optimal solution. Furthermore, if the optimization function and
the constraints are linear, i.e., fi(ax + by) = afi(x) + bfi(y)
for all x,y ∈ Rn and a, b ∈ R, the problem belongs to
the class of linear optimization. For this class, highly effi-
cient solvers exist, thanks to their inherently simple structure.
Within the linear optimization class, three subclasses are of
particular interest for anticipatory networking: least-squares
problems, linear programs and mixed-integer linear programs.

Least-squares problems can be thought of as distance min-
imization problems. They have no constraints (m = 0) and
their general formulation is:

minimize f0(x) = ||Ax− b||22, (14)

where A ∈ Rk×n, with k ≥ n and ||x||2 is the Euclidean
norm. Notably, problems of this class have an analytical
solution x = (ATA)−1ATb (where superscript T denotes
the transpose) derived from reducing the problem to the set of
linear equations ATAx = ATb.

Linear programming (LP) problems are characterized by
linear objective function and constraints and are written as

minimize cTx

subject to ATx ≤ b, (15)

where c ∈ Rn, A ∈ Rn×m and b ∈ Rn are the parameters
of the problem. Although, there is no analytical closed-form
solution to LP problems, a variety of efficient algorithms
are available to compute the optimal vector x∗. When the
optimization variable is a vector of integers x ∈ Zn, the class
of problems is called integer linear programming (ILP), while
the class of mixed-integers linear programming (MILP) allows
for both integer and real variables to co-exist. These last two
classes of problems can be shown to be NP-hard (while LP
is P complete) and their solution often implies combinatorial
aspects. See [161] for more details on integer optimization.



19

In anticipatory networking, we find that resource allocation
problems are often modeled as LP, ILP or MILP, by setting
the amount of resources to be allocated as the optimization
variable and accounting for prediction in the constraints of the
problem. In [72], prediction of the channel gain is exploited
to optimize the energy efficiency of the network. Time is
modeled as a finite number of slots corresponding to the look-
ahead time of the prediction. When dealing with multimedia
streaming, the data buffer is usually modeled in the constraints
of the problem by linking the state at a given time slot to
the previous slot. The solver will then choose whether to use
resources in the current slot or use what has been accumulated
in the buffer, as in, e.g., [77]. Admission control is often
used to enforce quality-of-service, e.g., [74], [156], with the
drawback of introducing integer variables in the optimization
function. In these cases, the optimal ILP/MILP formulation is
followed by a fast heuristic that enables the implementation
of real-time algorithms.

B. Model Predictive Control

Model Predictive Control (MPC) is a control theoretic
approach that optimizes the sequence of actions in a dynamic
system by using the process model of that system within a
finite time horizon. Therefore, the process model, i.e., the
process that turns the system from one state to the next, should
be known. In each time slot t, the system state, x(t), is defined
as a vector of attributes that define the relevant properties of
the system. At each state, the control action, u(t), turns the
system to the next state x(t + 1) and results in the output
y(t+ 1). In case the system is linear, both the next state and
the output can be determined as follows:

x(t+ 1) = Ax(t) + Bu(t) +ψ(t) (16)
y(t) = Cx(t) + ε(t), (17)

where ψ(t) and ε(t) are usually zero mean random variables
used to model the effect of disturbances on the input and
output, respectively, and A, B, and C are matrices determined
by the system model.

At each time slot, the next N states and their respective
outputs are predicted and a cost function J(·) is minimized to
determine the optimal control action u∗(t) at t = t0:

u∗(t0) = arg min
u(t0)

J(x̂(t0),u(t0)), (18)

where x̂(t0) is the set of all the predicted states from t = t0+1
to t = t0 + N , including the observed state at t = t0. The
expression in (18) essentially states that the optimal action
of the current time slot is computed based on the predicted
states of a finite time horizon in the future. In other words,
in each time slot the MPC sequentially performs a N step
lookahead open loop optimization of which only the first step
is implemented [162].

This approach has been adopted for on-line prediction and
optimization of wireless networks [100], [158]. Since the
process model (for the prediction of future states and outputs)
is available in this kind of systems, autoregressive methods can
be used along with Kalman filtering [100], or max-min MPC

formulation [159]. In [158], Kalman filtering is compared to
other methods such as mean and median value estimation,
Markov chains, and exponential averaging filters.

Optimization based on MPC relies on a finite horizon.
The length of the horizon determines the trade-off between
complexity and accuracy. Longer horizons need further look
ahead and more complex prediction but in turn result in a more
foresighted control action [159]. Reducing the horizon reduces
the complexity while resulting in a more myopic action. This
trade-off is examined in [158] by proposing an algorithm that
adaptively adjusts the horizon length. In general, the prediction
horizon is kept to a fairly low number (1 step in [159] and 6
steps in [100]) to avoid high computation overhead.

It is worth noting that MPC methods can be extended to the
nonlinear case. In this case, the prediction accuracy and control
optimality increase at the cost of more complex algorithms to
find the solution [162]. Another benefit of these approaches is
their applicability to non-stationary problems.

C. Markov Decision Process

Markov Decision Process (MDP) is an efficient tool for opti-
mizing sequential decision making in stochastic environments.
Unlike MPCs, MDPs can only be applied to stationary systems
where a priori information about the dynamics of the system
as well as the state-action space is available.

A MDP consists of a four tuple (X ,U ,P, r), where X
and U represent the set of all achievable states in the system
and the set of all actions that can be performed in each of
the states, respectively. Time is assumed to be slotted and in
any time slot t, the system is in state xt ∈ X from which
it can take an action ut from the set Uxt ∈ U . Due to the
assumption of stationarity, we can omit the time subscript for
states and actions. Upon taking action u in state x, the system
moves to the next state x′ ∈ X with transition probability
P(x′|x, u) and receives a reward equal to r(x, u, x′). The
transition probabilities are predicted and modeled as a Markov
Chain prior to solving the MDP and preserve the Markovian
behavior of the system.

The goal is to find the optimal policy π∗ : X → U (i.e.,
optimal sequence of actions that must be taken from any initial
state) in order to maximize the long term discounted average
reward E (

∑∞
t=0 γ

tr(xt, ut, xt+1)), where 0 ≤ γ < 1 is called
discount factor and determines how myopic (if closer to zero)
or foresighted (if closer to 1) the decision process should be.
In order to derive the optimal policy, each state is assigned
to a value function V π(x), which is defined as the long term
discounted sum of rewards obtained by following policy π
from state x onwards. The goal of MDP algorithms is to find
V π
∗
(x)(∀x ∈ X ). Given that the Markovian property holds,

it has been proved that the optimal value functions follow the
Bellman optimality criterion described below [163] :

V π
∗
(x) =

= max
u∈U

∑
x′∈X ′

(
r(x, u, x′) + γP(x′|x, u)V π

∗
(x′)

)
∀x ∈ X , (19)
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where X ′ ⊂ X is the set of states for which P(x′|x, u) > 0.
In order to solve the above equation set, linear programming
or dynamic programming techniques can be used, in which the
optimal policy is derived by simple iterative algorithms such
as policy iteration and value iteration [163].

MDPs are very efficient for several problems, especially
in the framework of anticipatory networking, due to their
wide applicability and ease of implementation. MDP-based
optimized download policies for adaptive video transmission
under varying channel and network conditions are presented
in [60], [62], [157].

In order to avoid large state spaces (which limit the ap-
plicability of MDPs), there are cases where the accuracy of
the model must be compromised for simplicity. In [157],
a large video receiver buffer is modeled for storing video
on demand but only a small portion of the buffer is used
in the optimization, while the rest of the buffer follows a
heuristic download policy. [60], [62] solve this problem by
increasing the duration of the time slot such that more video
can be downloaded in each slot and, therefore, the buffer
is filled entirely based on the optimal policy. This, in turn,
comes at the cost of lower accuracy, since the assumption
is that the system is static within the duration of a time slot.
Heuristic approaches are also adopted for on-line applications.
For instance, creating decision trees with low depth from the
MDP outputs is proposed in [62]. Simpler heuristics are also
applied to the MDP outputs in [60], [149], [157].

If any of the assumptions discussed above does not hold,
or if the state space of the system is too large, MDPs and
their respective dynamic programming solution algorithms fail.
However, there are alternative techniques to solve this kind
of problems. For instance, if the system dynamics follow
a Markov Renewal Process instead of a MC, a semi MDP
is solved instead of the regular one [163]. In non-stationary
systems, for which the dynamics cannot be predicted a priori
or the reward function is not known beforehand, reinforcement
learning [164] can be applied and the optimization turns into
an on-line unsupervised learning problem. Large state spaces
can be dealt with using value function approximation, where
the value function of the MDP is approximated as a linear
function, a neural network, or a decision tree [164]. If different
subsets of state attributes have independent effects on the
overall reward, i.e., multi user resource allocation, the problem
can be modeled as a weakly coupled MDP [165] and can be
decomposed into smaller and more tractable MDPs.

D. Game theoretic approaches

Although small in number, the papers adopting a game
theoretic framework offer an alternative approach to optimiza-
tion. In fact, while the approaches described in the previous
subsections strive to compute the optimal solution of an often
complex problem formulation, game theory defines policies
that allow the system to converge towards a so-called equi-
librium, where no player can modify her action to improve
her utility. In mobile networks, game theory is applied in the
form of matching games [128], where system players (e.g.
users) have to be matched with network resources (e.g. base

stations or resource blocks).
Three types of matching games can be used depending on

the application scenario: 1) one-to-one matching, where each
user can be matched with at most one resource (as in [129],
which optimizes D2D communication in small cell scenarios);
2) many-to-one matching, where either multiple resources can
be assigned to a single user (as in [130] for small cell resource
allocation), or multiple users can be matched to a single
resource (as in [131] for user-cell association); 3) many-to-
many matching, where multiple users can be matched with
multiple resource (as in [133] where videos are associated to
caching servers).

E. Summary

This section (and Table VI) summarizes the main takeaways
of this optimization handbook.

1) Convex Optimization methods: These methods are often
combined with time series analysis or ideal prediction. The
main reason is that they are used to determine performance
bounds when the solving time is not a system constraint.
Thus, convex optimization is suggested as a benchmark for
large scale prediction. This may have to be replaced by fast
heuristics in case the optimization tool needs to work in real-
time. An exception to this is LP for which very efficient algo-
rithms exist that can compute a solution in polynomial time.
In contrast, convex optimization methods should be preferred
when dealing with high precision and continuous output. They
require the complete dataset and show a reliability comparable
to that of the used predictor.

2) Model Predictive Control: MPC combines prediction
and optimization to minimize the control error by tuning both
the prediction and the control parameters. Therefore, it can
be coupled with any predictor. The main drawback of this
approach is that, by definition, prediction and optimization
cannot be decoupled and must be evaluated at each iteration.
This makes the solution computationally very heavy and it
is generally difficult to obtain real-time algorithms based on
MPC. The close coupling between prediction and optimization
makes it possible to adopt the method for any application for
which a predictor can be designed with the only additional
constraint being the execution time. Objectives and constraints
are usually those imposed by the used predictor.

3) Markov Decision Processes: MDPs are characterized by
a statistical description of the system state and they usually
model the system evolution through probabilistic predictors.
As such, they best fit to scenarios that show similar objective
functions and constraints as those of probabilistic predictors.
Thus, MDPs are the ideal choice when the optimization
objective aims at obtaining stationary policies (i.e., policies
that can be applied independently of the system time). This
translates to low precision and high reliability. Moreover, even
though they require a computationally heavy phase to optimize
the policies, once the policies are obtained, fast algorithms can
easily be applied.

4) Game theory: Matching games prove to be effective
solutions that, without struggling to compute an overly com-
plex optimal configuration, let the system converge towards
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TABLE V
OPTIMIZATION METHODS SUMMARY

Methodology Properties of context Modeling constraints
ConvOpt Can support any context property, but larger system states

slow the solver performance. The solution accuracy is linked
to the context precision.

Linearity can be exploited to improve the solver efficiency,
while data reliability impacts the solution optimality.

MPC Usually offers the highest precision by coupling prediction
and optimization.

The most computationally intensive technique.

MDP Limited range and precision. The most robust approach to low data reliability. Although
the system setup can be computationally intensive, it allows
for lightweight policies to be implemented.

Game theory Limited granularity to allow the system to converge to an
equilibrium.

Very low computational complexity. Fast dynamics hinder the
system convergence.

a stable equilibrium which satisfies all the players (i.e., no
action can be taken to improve the utility of any player). These
are the preferable solutions for those applications where the
computational capability is a stringent constraint and where
fairness is important for the system quality.

VI. APPLICABILITY OF ANTICIPATORY NETWORKING TO
OTHER WIRELESS NETWORKS

So far this survey mainly focused on current cellular net-
works. In this section we analyze how different types of mobile
wireless networks can take advantage of anticipatory network-
ing solutions. Although each type would deserve a dedicated
survey, in what follows we provide brief summaries of the
distinctive features, the application scenarios, the expected
benefits and the challenges related to the implementation of
anticipatory networking for each of them. Table VI summa-
rizes the discussion of this section.

A. 5G Cellular Networks

LTE and LTE-advanced represent the fourth generation
of mobile cellular networks and, as it emerged from the
analyses of the previous sections, they can already benefit from
predictive optimization. Since the fifth generation is expected
to improve on its predecessors in every aspect [166], not only
is anticipatory networking applicable, but also it will provide
even greater benefits.

1) Characteristics: The next generation of mobile cellular
networks will provide faster communications, improved users
QoE, shorter communication delays, higher reliability and
improved energy savings. Among the solutions envisioned
to realize these improvements, cell densification, mm-wave
bands, massive MIMO, unified multi-technology frame struc-
ture and architecture and network function virtualization are
the ones that are going to have a substantial impact on existing
and future use case scenarios. In fact, a denser infrastructure
is going to decrease the average time mobile users spend
in a specific cell; the directionality of communications in
higher portion of the spectrum will increase the importance
of localization and tracking functionalities; while the increase
of communicating elements and the de-localization of radio
access functionalities are going to impact on channel models
and network resource management.

2) Advantages: The performance of 5G cellular networks
will strongly depend on their knowledge of the exact user
positions (e.g., localization for mm-wave, resource manage-
ment for network function virtualization). As a consequence,
predictive solutions that provide the system with accurate
information about users’ current and future positions, trajecto-
ries, traffic profiles and content request probabilities are likely
to be the most desirable aspects of anticipatory solutions.

For what concerns 5G applications, we believe network
caching and cloud Radio Access Network (RAN) will also
greatly benefit from this. In fact, the former can exploit
prediction to decide which content to store in which specific
part of the network to serve a given user profile, while the
latter can, for instance, forecast when to instantiate a number
of virtual machines to face an increase of the network traffic.

3) Challenges: The upcoming 5G technologies will also
bring new challenges to the basic mechanisms of anticipatory
networking. In particular, we see mm-wave, massive MIMO
and cell densification as disruptive technologies for the current
methods used for predictive optimization. In this regard, mm-
waves channel model is going to impact how to forecast future
signal quality and achievable data rates while network densi-
fication and massive MIMO will challenge the scalability of
prediction techniques due to the sheer size of the information
needed to describe and exchange them.

B. Mobile ad hoc networks

Mobile Ad-hoc Networks (MANET) consist of mobile
wireless devices connected to one another without a fixed
infrastructure [167]. As a consequence, they share some
characteristics with cellular networks but have some unique
features due to the variable topology. These networks are the
most practical form of communication when an infrastructure
is absent or it has been compromised by a disruptive event.

1) Characteristics: The dynamic nature of MANETs
causes the path between any two nodes to vary over time and
require adaptive routing mechanisms that allow, on one hand,
to maintain the connectivity among all the network nodes and,
on the other hand, to balance the load in the different areas of
the network. In addition, adaptive discovery and management
functionalities are needed to allow new devices and services
to be added to an existing network and to report problems
and missing links/nodes. When a MANET extends over an
area larger than the communication range of the devices,
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TABLE VI
ANTICIPATORY NETWORKING APPLICABILITY TO DIFFERENT NETWORK TYPES

Type Features Advantages Challenges
5G Cellular mm-waves

Massive MIMO
Cloud-RAN

Localization and tracking prediction
Load space-time distribution
Resource management

Channel models
Amount of data

MANET Variable topology
Multi-hop communication
Self-management

Routing improvement
Load balancing

Infrastructure absence
Distributed optimization
Variable topology

Cognitive Primary/Secondary users
Sensing capabilities

Spectrum availability prediction
Load prediction and management
Transmission/Sensing ratio

Impact on models

D2D Complex topology
Multi-RAN

Interference management
Resource allocation

Models complexity
Interference

IoT Mostly deterministic traffic
High overhead
Sparse communication
Low-latency control loops

Prediction for compression
Models for anomaly detection
Overhead decrease

Amount of data and devices
Scalability
Constrained devices

transmissions must be relayed from one node to another in
order to allow messages to reach their destinations.

2) Advantages: Knowing nodes’ positions in advance and
being able to track their trajectories enable advanced routing
functionalities: in fact, additional paths can be created before
a missing link interrupts a route without waiting for a new
discovery procedure to be performed. Also, routing tables can
be readily adapted when shorter routes appear. In a similar
way, management procedure can be enhanced by knowing in
advance the traffic being produced by a given node or area
of the network or by forecasting which service is going to be
needed in a given part of the network.

3) Challenges: The absence of a fixed infrastructure is the
main source of challenges that are distinctive of MANETs. For
instance, it is not possible to have known databases collecting
users’ and devices’ information to build prediction models nor
centralized optimization services can be provided or they may
suffer from delays in delivering solutions and/or information to
the whole network. Moreover, the topology variability makes
map-based prediction techniques difficult or impossible to
apply.

C. Cognitive Radio Networks

CR networks consist of devices that exploit channels that are
unused at specific locations and times [10], but that are usually
allocated to primary users (i.e. users that can legitimately
communicate using a given channel). CR devices are usually
referred to as secondary users as their operations must not
interfere with those performed by the primary users.

1) Characteristics: The main distinctive feature of CR
devices is that they need to scan for primary users’ activity
before attempting any communication in order not to disrupt
legitimate transmissions. This scanning/sensing activity de-
creases the amount of time secondary users’ can spend on
actual communications and, thus, it reduces their throughput.
On the other hand, a CR network is usually able to build
accurate spectrum occupancy models fusing the information
coming from different devices.

2) Advantages: Prediction capabilities are already envi-
sioned for CR networks, in fact, it is easily understandable
that being able to predict when primary users are going to

occupy their channel will decrease the amount of sensing
needed to decide when a secondary user is allowed to transmit.
Not only can spectrum occupancy maps be used to predict
the upcoming channel state, but also, content information and
predictive models available to primary users can be exploited
by secondary users to reduce their interference probability.
Therefore, allowing secondary users to access primary user
information is profitable for both: if CR are able to improve
their throughput by more precisely picking spectrum holes,
primary users will be more protected from secondary interfer-
ence.

3) Challenges: Although anticipatory CR can be seen as
symbiotic to primary users, their operations introduce a non
trivial feedback in the resulting system. In fact, those models
that are valid when primary users operate only may be no
longer valid when secondary users contribute. However, given
that those models are usually built using information about
primary users only, it will be impossible with the current
techniques to create or modify prediction and optimization
solutions that take into consideration secondary users. As such,
the whole anticipatory infrastructure needs to account for CR
in order to allow prediction-based schemes to work for primary
and secondary users.

D. Device-to-Device

D2D communication refers to the use of direct communi-
cation between mobile phones to support the operations of a
cellular network [168]. In addition, since D2D must not inter-
fere with the regular cellular network operations it can be seen
as secondary users to the main communications. Therefore,
they share characteristics that are specific to MANETs and
CR networks.

1) Characteristics: D2D communications are characterized
by a complex topology where the usual star network overlies
a mesh network. Also, the devices may use different RANs
in the mesh network: for instance they can exploit the same
cellular technology (inband) or other wireless solutions such
as direct-WiFi.

2) Advantages: Given the similarities to MANETs and
CRs, D2D communications can take advantage from anti-
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cipatory networking mostly to mitigate interference related
problems and to improve the resource and power allocation.

3) Challenges: While we do not expect D2D communica-
tions to pose distinctive challenges to the implementation of
anticipatory networking that are not listed in the previous sec-
tions, that will make the adoption of current prediction models
less straightforward. In fact, prediction-based optimization and
other anticipatory schemes will be made more complex due
to the possible coexistence of multiple technologies and the
primary/secondary interference and interactions, which will
require to also predict D2D channels, in addition to primary.

E. Internet of Things

Nowadays, thanks to the miniaturization and the progressive
decrease of computational and communicating chipsets, more
and more ordinary objects are being equipped with micro-
CPUs and are connected to the Internet [169]–[171]: in such
a way smart cities and smart industries, among a variety of
other enhanced scenarios, can be realized. The typical device
in the Internet-of-Things (IoT) is capable of performing one
or a set of measurements and/or actuations on the real world.
They are usually constrained in their capabilities: for instance,
they can be battery powered or equipped with low data rate
radios or their computational power may be limited.

1) Characteristics: Due to the wide definition of the enti-
ties that populate the IoT, many of its features have been al-
ready described in the preceding subsections. For instance, IoT
communications often involve D2D aspects, they can be CR if
they are able to sense spectrum and they can be considered part
of a MANET if they are mobile. However, the most unique
features that are only present in IoT devices are that they
involve Machine-to-Machine (M2M) type communication and
that devices are typically constrained. Moreover, although the
number of smart things is expected to grow exponentially in
the next decade, their traffic is not going to grow as fast as that,
e.g., the one generated by mobile cellular networks. In fact,
IoT traffic is expected to be mainly due to monitoring, control
and detection activities, which are characterized by limited
throughput and almost deterministic transmission frequency.

2) Advantages: Anticipatory networking and prediction-
based optimization can be applied to many aspects of the IoT.
For instance, devices that harvest their energy from renewable
sources may predict the source availability and optimize their
operations according to that. Furthermore, data prediction
models can be used to compress the data produced by devices
by sending only the difference from the forecast or the same
models can be used to identify anomalies or prevent disruptive
events before they can cause serious problems. Finally, due to
the almost deterministic periodicity of data production, their
communication can be easily modeled and accounted for to
mitigate their impact on the overall system.

3) Challenges: Scalability is one of the main challenges in
IoT. In fact, due to the variety of device types, the difference
in their capabilities, requirements and applications, the amount
of information needed to represent and model the IoT is huge
and the obtained benefits must more than compensate for the
cost related to its realization. Moreover, the IoT is impacted

by most of the challenges and problems discussed above for
the other network types.

VII. ON THE IMPACT OF ANTICIPATORY NETWORKING ON
THE PROTOCOL STACK

In this section, we address another important aspect of
anticipatory networking solutions: where to implement them in
the ISO/OSI protocol stack [172] and which layers contribute
to their realizations.

A. Physical
We do not expect anticipatory networking solutions to

modify how the physical layer is designed and managed. In
fact, in order to apply prediction-based schemes, some form
of interaction is required between two or more entities of the
system. As a consequence, the physical layer, which defines
how information is transferred to bits and wave-form [172],
might provide different profiles to allow for predictive tech-
niques to be applied in the higher layers, but will not directly
implement any of them.

B. Data Link
The data link layer is the first entry point for predictive

solutions. In particular, this layer implements Medium Access
Control (MAC) functionalities. Therefore, resource manage-
ment [42] and admission control [75] procedures are likely to
greatly benefit from anticipatory optimization. Also, we envi-
sion that anticipatory networking to be even more important
in next generation networks: in particular, channel estimation
and beam steering solutions are going to be key for the success
of mm-wave a massive MIMO communications [166].

C. Network
The network layer contains two of the functionalities that

can benefit the most from prediction: routing and caching [54],
[122]. In fact, by knowing users’ mobility and traffic in
advance it is possible to optimize routes and caching location
to maximize network performance and save resources. For
instance, it is possible to build alternative paths before the
existing ones deteriorate and break and popular contents may
be moved across the network according to where they will be
requested with higher probability.

D. Transport
This layer is mainly concerned with end-to-end message

delivery and the two most popular protocols are TCP and
User Datagram Protocol (UDP): the former guarantees reliable
communications, while the latter is a lightweight best-effort
solution. Anticipatory networking solutions are easily imple-
mented here [31], [135], in particular, when error correction
and retransmissions are driven by network metrics such as,
among others, Round Trip Time (RTT) and Bit Error Rate
(BER). Prediction models can be used to react to changes
in the network conditions before they reach a disruptive
state and recovery actions have to be taken. In addition,
modern transport solutions, such as multipath-TCP, can exploit
predictive optimization to manage the traffic flows along the
different routes and improve the QoS.
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E. Session, Presentation and Application

Since these layers are concerned with connection manage-
ment between end-points (session), syntax mapping between
different protocols (presentation) and interaction with users
and software (application), they are the least preferable to
implement anticipatory networking solutions. However, in
order to allow applications to exploit predictive mechanisms,
these three layers will act as a connection point to provide
application with the needed context information and to allow
them to configure the needed services and parameters for
the application requirements. For instance, in Section III.A.6
we described geographically-assisted video optimization [62],
[77] where mobile phone applications modulated the request
video bit rate to optimize the playback of the video itself,
or geo-assisted applications [134] that exploits social and
contextual information to enhance their services.

VIII. ISSUES, CHALLENGES, AND RESEARCH DIRECTIONS

We conclude the paper by providing some insights on how
anticipatory optimization will enable new 5G use cases and
by detailing the open challenges of anticipatory networking in
order to be successfully applied in 5G.

A. Context related analyses

1) Geographic context: Geographic context is essential
to achieve seamless service. Depending on the optimization
objective, a mobility state can be defined with different gran-
ularity in multiple dimensions (location, time, speed, etc.). For
example, for handover optimization it is sufficient to predict
the staying time in the current serving cell and the next serving
cell of the user. Medium to large spatial granularity such as
cell ID or cell coverage area can be considered as a state,
and a trajectory can be characterized by a discrete sequence
of cell IDs over time. State-space models such as Markov
chains, HMM and Kalman filters fit the system modeling,
while requiring large training samples and considerable insight
to make the model compact and tractable. An alternative is the
variable-order Markov models, including a variety of lossless
compression algorithms (some of the most used belong to
Lempel-Ziv family), where Shannon’s entropy measure is
identified as a basis for comparing user mobility models. Such
an information-theoretic approach enables adaptive online
learning of the model, to reduce update paging cost. Moving
from discrete to continuous models, which are applied to assist
the prediction of other system metrics with high granularity,
e.g., link gain or capacity, regression techniques are widely
used. To enhance the prediction accuracy, a priori knowledge
can be exploited to provide additional constraints on the
content and form of the model, based on street layouts, traffic
density, user profiles, etc. However, finding the right trade-off
between the model accuracy and complexity is challenging.
An effective solution is to decompose the state space and to
introduce localized models, e.g., to use distinct models for
weekdays and weekends, or urban and rural areas.

Although mobility prediction has been shown to be viable,
it has not been widely adopted in practical systems. This
is because, unlike location-aware applications with users’

permission to use their location information, mobile service
providers must not violate the privacy and security of mo-
bile users. To facilitate the next generation of user-centric
networks, new interaction protocols and platforms need to be
developed for enabling more user-friendly agreements on the
data usage between the service providers and the mobile users.

Furthermore, next generation wireless networks introduce
ultra-dense small cells and high frequencies such as mmWaves.
The transmission range gets shorter and transmission often oc-
curs in line-of-sight conditions. Thus, 2D geographic context
with a coarse level of accuracy is not sufficient to fully utilize
the future radio techniques and resources. This trend opens the
door for new research directions in inference and prediction
of 3D geographic context, by utilizing advanced feedback
from sensors in user equipments such as accelerometers,
magnetometers, and gyroscopes.

2) Link context: When predicting link context, i.e., channel
quality and its parameters, linear time series models have the
potential to provide the best tradeoff between performance and
complexity. When the channel changes slowly, e.g., because
users are static or pedestrian, it is convenient to exploit the
temporal correlation of historic measurements of the users’
channel and implement linear auto-regressive prediction. This
can be quite accurate for very short prediction horizons and at
the same time simple enough to be implemented in real time
systems. Kalman filters can also be used to track errors and
their variance, based on previous measurements, thus handling
uncertainties. However, time series and linear models are not
robust to fast changes. Therefore, in high mobility scenarios,
more complex models are needed. One possible approach is
to exploit the spatio-temporal correlation between location and
channel quality. By combining the prediction of the channel
qualities with the prediction of the user’s trajectory, regression
analysis, e.g., SVMs, can be employed to build accurate radio
maps to estimate the long term average channel quality, which
accounts for pathloss and slow fading, but neglects fast fading
variations. Ideally, one should have two predictions available:
a very accurate short term prediction and an approximate long
term prediction.

Usually, such prediction is exploited to optimize the
scheduling, i.e., resource allocation over time or frequency.
Convex and linear optimization are often used when prediction
is assumed to be perfect. In contrast, Markov models are
applied when a probabilistic forecasting is available. Despite
the great benefits that link context can potentially bring to
resource (and more generally network) optimization, today’s
networks do not yet have the proper infrastructure to collect,
share, process and distribute link context. Furthermore, proper
methods are needed not only to gather data from users, but
also, to discard irrelevant or redundant measurements as well
as to handle sparsity or gaps in the collected data.

3) Traffic context: Traffic and throughput prediction has a
concrete impact on the optimization of different services of
different networks at different time scales.

Network-wide and for long time scales, linear time series
models are already used to predict the macroscopic traffic
patterns of mobile radio cells for medium/long-term manage-
ment and optimization of the radio resources. At faster time
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scales and for specific radio cells or groups of radio cells,
the probabilistic forecasting of the upcoming traffic, e.g., by
using Markovian models, can be exploited to solve short-term
problems including the radio resource allocation among users
and the cell assignment problem.

Throughput prediction tools are then naturally coupled with
video streaming services in mobile radio networks which
have embedded rate adaptation capabilities. In this context,
a good practice is to use simple yet effective look-ahead
video throughput predictors based on time windows which
are often coupled with clustering approaches to group similar
video sessions. Deep learning techniques are also proposed to
predict the throughput of video sessions, which offer improved
performance at the price of a much higher complexity.

The data coming from traffic/throughput prediction can
be effectively coupled with application/scenario-specific opti-
mization frameworks. When targeting network-wide efficiency,
centralized optimization approaches seem to be superior and
more widely used. As an example, the problem of radio
resource allocation in mobile radio networks is effectively rep-
resentable and solvable though convex optimization techniques
in semi-real-time scenario. In contrast, when the optimization
has to be performed with the granularity of the technology-
specific time slot, sub-optimal heuristics are preferable. Be-
sides resorting to optimization approaches, control theoretic
modeling is extremely powerful in all those cases where the
optimization objective includes traffic (and queue) stability.

4) Social context: We can conclude that leveraging the
social context of data transmission results in gains for proac-
tive caching of multimedia content and can improve resource
allocation by predicting the social behavior of users. For
the former, determining the popularity of content plays a
crucial role. Collaborative filtering is a well-known approach
for this purpose. However, due to the heavy tail nature of
content popularity, trying to use this kind of models for a
broad class of content will usually not lead to good results.
However, for more specific and limited classes of content, i.e.,
localized advertisement, where a particular item is likely to be
requested by a large number of users, popularity prediction is
an appealing solution. In general, proactive caching requires
that content is stored on caches close to the edge network
in order not to put excessive load on the core network.
For optimizing resource allocation using social behavior, the
social interaction of different users can be used to create
social graphs that determine the level of activity of each
user and thereby make it possible to predict the amount of
resources each user will need. Network utility maximization
and heuristic methods are the most popular techniques for this
context. Due to the complexity of modeling the social behavior
of users, they are useful for wireless networks that either
expose a great deal of measurable social interaction (device-
to-device communication, dense cellular networks with small
cells, local wireless networks in a sports stadium), or when
resources are very scarce.

B. Anticipation-enabled use cases
Future networks are envisioned to cater to a large variety

of new services and applications. Broadband access in dense

areas, massive sensor networks, tactile Internet and ultra-
reliable communications are only a few of the use cases
detailed in [173]. The network capabilities of today’s systems
(i.e., 4G systems) are not able to support such requirements.
Therefore, 5G systems will be designed to guarantee an
efficient and flexible use (and sharing) of wireless resources,
supported by a native software defined network and/or network
function virtualization architecture [173]. Big data analysis
and context awareness are not only enablers for new value
added services but, combined with the power of anticipatory
optimization, can play a role in the 5G technology.

1) Mobility management: Network densification will be
used in 5G systems in order to cope with the tremendous
growth of traffic volume. As a drawback, mobility manage-
ment will become more difficult. Additionally, it is foreseen
that mobility in 5G will be on-demand [173], i.e., provided
for and customized to the specific service that needs it. In this
sense, being able to predict the user’s context (e.g., requested
service) and his mobility behavior can be extremely useful in
order to speed up handover procedures and to enable seamless
connectivity. Furthermore, since individual mobility is highly
social, social context and mobility information will be jointly
used to perform predictions for a group of socially related
individuals.

2) Network sharing: 5G systems will support resource and
network sharing among different stakeholders, e.g., operators,
infrastructure providers, service providers. The effectiveness of
such sharing mechanisms relies on the ability of each player
to predict the evolution of his own network, e.g., expected
network load, anticipated user’s link quality and prediction
of the requested services. Wireless sharing mechanisms can
strongly benefit from the added value provided by anticipation,
especially when prediction is available at fine granularity, e.g.,
in a multi-operator scheduler [174].

3) Extreme real-time communications: Tactile Internet is
only one of the applications that will require a very low
latency (i.e., in the order of some milliseconds). Allocating
resources and guaranteeing such low end-to-end delay will be
very challenging. 5G systems will support such requirements
by means of a new physical layer (e.g., a new air interface).
However, this will not be enough if not combined with context
information used to prioritize control information (e.g., used
to move virtual or real objects in real time) over content [175].
Knowledge about the information that is transmitted and
its specific requirements will be crucial in order to assign
priorities and meet the expected quality-of-experience in a
combined effort of physical and higher layers.

4) Ultra-reliable communications: Reliability is mentioned
in several 5G white papers, e.g. in [173], as necessary prere-
quisite for lifeline communications and e-health services, e.g.,
remote surgery. A recent work [176] proposed a quantified def-
inition of reliability in wireless access networks. As outlined
here, a posteriori evaluation of the achieved reliability is not
enough in order to meet the expected target, which in some
cases is as high as 99.999%. To this end, it is mandatory to
design resource allocation mechanisms that account for (and
are able to anticipate the impact on) reliability in advance.
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C. Open challenges

While the literature surveyed so far clearly points out how
anticipatory networking can enhance current networks, this
section discusses several problems that need to be solved for its
wider adoption. In particular, we identified four functionalities
that are going to play an important role in the adoption of
anticipatory networking in 5G networks:
• Measurements and information collection: in order to

provide means to obtain and share context information,
future networks need to provide trusted mechanisms to
manage the information exchange.

• Data analysis and prediction: information databases
need interoperable procedures to make sure that process-
ing and forecasting tools are usable with many possible
information sources .

• Optimization and decision making: data and procedures
are then exploited to derive system management policies.

• Execution: finally, in contrast to current procedures,
anticipatory execution engines need to take into account
the impact of the decisions made in the past and re-
evaluate their costs and rewards in hindsight of the actual
evolution of the system.

For instance, scheduling and load balancing are two processes
that greatly profit from anticipatory networking and cannot
be realized without a comprehensive integration of the four
aforementioned functionalities in future generation networks.
The realization of these functionalities poses the following
important challenges.

1) Privacy and security: In our opinion, one of the main
hindrances for anticipatory networking to become part of next
generation networks is related to how users feel about sharing
data and being profiled. While voluntarily sharing personal
information has become a daily habit, many disapprove that
companies create profiles using their data [177]. In a sim-
ilar way, there might be a strong resistance against a new
technology that, even though in an anonymous way, collects
and analyzes users’ behavior to anticipate users’ decisions.
Standards and procedures need to be studied to enforce users’
privacy, data anonymity and an adequate security level for
information storage. In addition, data ownership and control
need to be defined and regulated in order to allow users
and providers to interact in a trusted environment, where the
former can decide the level of information disclosure and the
latter can operate within shared agreements.

2) Network functions and interfaces: Many of the applica-
tions that are likely to benefit from anticipatory networking ca-
pabilities (i.e. decision making and execution) require unprece-
dented interactions among information producers, analyzers
and consumers. A simple example is provided by predictive
media streaming optimizers, which need to obtain content
information from the related database and user streaming
information from the user and/or the network operator. This
information is then analyzed and fed to a streaming provider
that optimizes its service accordingly. While ad hoc services
can be realized exploiting the current networking functional-
ities, next generation applications, such as the extreme real-
time communications mentioned above, will greatly benefit

from a tighter coupling between context information and
communication interfaces. We believe that the potential of
anticipatory functionalities can be used in communication
system and they could be applied to other domains, such as
public transportation and smart city management.

3) Next generation architecture: 5G networks are currently
being discussed and, while much attention is paid to in-
creasing the network capacity and virtualizing the network
functions, we believe that the current infrastructure should
be enhanced with repositories for context information and
application profiles [178] to assist the realization of novel
predictive applications. As per the previous concerns above,
sharing sensible information, even in an anonymized way, will
require particular care in terms of users’ privacy and database
accessibility. We believe that anticipatory networking can
potentially improve every kind of mobile networks: cellular
networks will likely be the first to exploit this paradigm,
because they already own the information needed to enable
the predictive frameworks and it is only a matter of time and
regulations to make it a reality. Once it will be integrated
in cellular networks, other systems, such as public WiFi
deployments, device-to-device solutions and the Internet of
Things, will be able to participate in the infrastructure to
exploit forecasting functionalities; in particular, we believe this
will be applied to smart cities and multi-modal transportation.

4) Impact of prediction errors: When making and using
predictions, one should carefully estimate its accuracy, which
is itself a challenge. It might be potentially more harmful
to use a wrong prediction than not using prediction at all.
Usually, a good accuracy can be obtained for a short prediction
horizon, which, however, should not be too short, otherwise
the optimization algorithms cannot benefit from it. Therefore,
a good balance between prediction horizon and accuracy
must be found in order to provide gains. In contrast, over
medium/long term periods, metrics can usually be predicted in
terms of statistical behavior only. Furthermore, to build robust
algorithms that are able to deal with uncertainties, proper
prediction error models should be derived. In the existing lit-
erature, uncertainties are mainly modeled as Gaussian random
variables. Despite the practicability of such an assumption,
more complex error models should be derived to take into
account the source (e.g., location and/or channel quality) as
well as the cause (e.g., GPS accuracy and/or fast fading effect)
of errors.

IX. CONCLUSIONS

This survey analyzed the literature on anticipatory network-
ing for mobile networks. We provided a thorough analysis
of application scenarios categorized by the contextual infor-
mation used to build the predictive framework. The most
relevant prediction and optimization techniques adopted in
the literature have been described and commented in two
handbooks that have the twofold objective of supporting re-
searchers to advance in the field and providing standardization
and regulation bodies with a common ground on anticipatory
networking solutions. While the core of this survey is devoted
to mobile cellular networks, we also analyzed applicability and
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advantages of anticipatory networking solution to other types
of wireless networks and at the different layers of the protocol
stack. Finally, we analyzed benefits and disadvantages of the
proposed solutions, the most promising application scenarios
for 5G networks, and the challenges that are yet to be faced
to adopt anticipatory networking paradigms.

To conclude, while the literature reviewed in this works
suggests that anticipatory networking is a quite mature ap-
proach to improve the performance of mobile networks, we
believe that issues (mainly at the system level) still need to be
solved to realize its potential. In particular, most of the work
which has been evaluated in this survey tends to focus on the
benefit of anticipation, while overlooking possible problems
and disadvantages in the anticipatory networking framework.

All the main components of anticipatory networking, the
context database and the prediction/anticipation intelligence,
must be effectively integrated into the mobile network archi-
tecture which poses challenges at different levels. First, new
interfaces and communication paradigms must be defined for
data collection from both end users and sources external to
the mobile network itself; second, the management of the
context databases brings an additional burden in terms of
required bandwidth and processing power for several network
elements which may lead to scalability issues as well as
security and privacy concerns. To this extent, a thorough and
comprehensive cost-benefit analysis for specific anticipatory
networking scenarios is, in our opinion, a required next step
for the research in the field.

X. LIST OF ACRONYMS

ANN Artificial Neural Network
AR AutoRegressive
ARIMA AutoRegressive Integrated and Moving Average
ARMA AutoRegressive and Moving Average
ATM Asynchronous Transfer Mode
BER Bit Error Rate
CCN Content Centric Network
CF Collaborative Filtering
ConvOpt Convex Optimization
CR Cognitive Radio
CSI Channel State Information
CTM Continuous Time Markov
CTMC Continuous Time Markov Chain
D2D device-to-device
DASH Dynamic Adaptive Streaming over HTTP
DTMC Discrete Time Markov Chain
ELM Extreme Learning Machine
FTP File Transfer Protocol
GARCH Generalized AutoRegressive Conditionally

Heteroskedastic
GP Gaussian Process
GPS Global Positioning System
HMM Hidden Markov Models
HTTP Hypertext Transfer Protocol
ID identity
ILP Integer Linear Programming
IoT Internet-of-Things

KKF Kriged Kalman Filter
LTE Long Term Evolution
LP Linear Programming
LZ Lempel-Ziv
M2M Machine-to-Machine
MA Moving Average
MAC Medium Access Control
MANET Mobile Ad-hoc Networks
MC Markov Chain
MILP Mixed-Integer Linear Programming
MNLP Mixed Non-Linear Program
MPC Model Predictive Control
MDP Markov Decision Process
PF Proportionally Fair
QoE Quality-of-Experience
QoS Quality-of-Service
RAN Radio Access Network
REM Radio Environment Map
RTT Round Trip Time
SVM Support Vector Machine
TCP Transmission Control Protocol
TCP Transport Control Protocol
UDP User Datagram Protocol
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[122] E. Baştuğ, M. Bennis, and M. Debbah, “Living on the edge: The role
of proactive caching in 5G wireless networks,” IEEE Communications
Magazine, vol. 52, no. 8, pp. 82–89, 2014.

[123] ——, “Anticipatory caching in small cell networks: A transfer learning
approach,” in 1st KuVS Workshop on Anticipatory Networks, 2014.

[124] V. A. Siris, X. Vasilakos, and D. Dimopoulos, “Exploiting mobility
prediction for mobility & popularity caching and dash adaptation,” in
IEEE World of Wireless, Mobile and Multimedia Networks (WoWMoM),
2016, pp. 1–8.

[125] N. Golrezaei, K. Shanmugam, A. G. Dimakis, A. F. Molisch, and
G. Caire, “Femtocaching: Wireless video content delivery through
distributed caching helpers,” in IEEE INFOCOM, 2012, pp. 1107–
1115.

[126] J. Tadrous and A. Eryilmaz, “On optimal proactive caching for mobile
networks with demand uncertainties,” IEEE/ACM Transactions on
Networking, vol. 24, no. 5, pp. 2715–2727, 2015.

[127] J. Tadrous, A. Eryilmaz, and H. El Gamal, “Joint smart pricing and
proactive content caching for mobile services,” IEEE/ACM Transac-
tions on Networking, vol. 24, no. 4, pp. 2357–2371, 2015.

[128] Y. Gu, W. Saad, M. Bennis, M. Debbah, and Z. Han, “Matching theory
for future wireless networks: fundamentals and applications,” IEEE
Communications Magazine, vol. 53, no. 5, pp. 52–59, 2015.

[129] O. Semiari, W. Saad, S. Valentin, M. Bennis, and H. V. Poor, “Context-
aware small cell networks: How social metrics improve wireless
resource allocation,” IEEE Transactions on Wireless Communications,
vol. 14, no. 11, pp. 5927–5940, 2015.

[130] O. Semiari, W. Saad, and M. Bennis, “Context-aware scheduling of
joint millimeter wave and microwave resources for dual-mode base
stations,” in IEEE International Conference on Communications (ICC),
2016.

[131] N. Namvar, W. Saad, B. Maham, and S. Valentin, “A context-aware
matching game for user association in wireless small cell networks,” in
2014 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2014, pp. 439–443.

[132] Y. Zhang, E. Pan, L. Song, W. Saad, Z. Dawy, and Z. Han, “Social
network aware device-to-device communication in wireless networks,”
IEEE Transactions on Wireless Communications, vol. 14, no. 1, pp.
177–190, 2015.

[133] K. Hamidouche, W. Saad, and M. Debbah, “Many-to-many matching
games for proactive social-caching in wireless small cell networks,”
in IEEE International Symposium on Modeling and Optimization in
Mobile, Ad Hoc, and Wireless Networks (WiOpt), 2014, pp. 569–574.

[134] A. Noulas, S. Scellato, N. Lathia, and C. Mascolo, “Mining user
mobility features for next place prediction in location-based services,”
in IEEE International Conference on Data Mining (ICDM), 2012, pp.
1038–1043.

[135] F. Calabrese, G. D. Lorenzo, and C. Ratti, “Human mobility prediction
based on individual and collective geographical preferences,” in IEEE
International Conference on Intelligent Transportation Systems (ITSC),
2010, pp. 312–317.

[136] H. Bapierre, G. Groh, and S. Theiner, “A variable order Markov model
approach for mobility prediction,” Pervasive Computing, pp. 8–16,
2011.

[137] M. Proebster, M. Kaschub, T. Werthmann, and S. Valentin, “Context-
aware resource allocation for cellular wireless networks,” EURASIP
Journal on Wireless Communications and Networking, vol. 2012, p.
2012:216.

[138] M. Proebster, M. Kaschub, and S. Valentin, “Context-aware resource
allocation to improve the quality of service of heterogeneous traffic,” in
IEEE International Conference on Communications (ICC), 2011, pp.
1–6.

[139] Z. Yi, X. Dong, X. Zhang, and W. Wang, “Spatial traffic prediction
for wireless cellular system based on base stations social network,” in
IEEE Systems Conference (SysCon), 2016, pp. 1–5.

[140] G. Tsiropoulos, D. G. Stratogiannis, N. Mantas, and M. Louta, “The
impact of social distance on utility based resource allocation in next
generation networks,” in IEEE International Congress on Ultra Modern
Telecommunications and Control Systems and Workshops (ICUMT),
2011.

[141] M. O. Jackson, Social and economic networks. Princeton, NJ, USA:
Princeton University Press, 2008.

[142] Telecom Italia, “Big data challenge 2015.” [On-
line]. Available: http://aris.me/contents/teaching/data-mining-
2015/project/BigDataChallengeData.html

[143] A. C. Harvey, Forecasting, structural time series models and the
Kalman filter. Cambridge university press, 1990.

[144] Z. R. Zaidi and B. L. Mark, “Real-time mobility tracking algorithms
for cellular networks based on Kalman filtering,” IEEE Transactions
on Mobile Computing, vol. 4, no. 2, pp. 195–208, 2005.



31

[145] I. Okutani and Y. J. Stephanedes, “Dynamic prediction of traffic volume
through Kalman filtering theory,” Elsevier Transportation Research
Part B: Methodological, vol. 18, no. 1, pp. 1–11, 1984.

[146] G. Pappas and M. Zohdy, “Extended Kalman filtering and pathloss
modeling for shadow power parameter estimation in mobile wireless
communications,” International Journal on Smart Sensing and Intelli-
gent Systems, vol. 7, no. 2, pp. 898–924, 2014.

[147] J. Lee, M. Sun, and G. Lebanon, “A comparative study of collaborative
filtering algorithms,” arXiv preprint arXiv:1205.3193, 2012.
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