Journal article Open Access

Comparative Environmental and Cost Analysis of Alternative Production Scenarios Associated with a Helicopter's Canopy

Christos Katsiropoulos; Andreas Loukopoulos; Spiros Pantelakis


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">life cycle analysis; cost analysis; autoclave; resin transfer molding; cold diaphragm forming; composite materials; aeronautic component</subfield>
  </datafield>
  <controlfield tag="005">20190419085455.0</controlfield>
  <controlfield tag="001">2636439</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Laboratory of Technology &amp; Strength of Materials, Dept. of Mechanical Engineering &amp; Aeronautics, University of Patras</subfield>
    <subfield code="a">Andreas Loukopoulos</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Laboratory of Technology &amp; Strength of Materials, Dept. of Mechanical Engineering &amp; Aeronautics, University of Patras</subfield>
    <subfield code="a">Spiros Pantelakis</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">3352435</subfield>
    <subfield code="z">md5:580040d20e45e16a0c5e7e69661036e8</subfield>
    <subfield code="u">https://zenodo.org/record/2636439/files/Comparative Environmental and Cost Analysis of Alternative Production Scenarios Associated with a Helicopter’s Canopy.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-01-03</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-nhyte-h2020</subfield>
    <subfield code="o">oai:zenodo.org:2636439</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="v">6</subfield>
    <subfield code="p">Aerospace</subfield>
    <subfield code="n">1</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Laboratory of Technology &amp; Strength of Materials, Dept. of Mechanical Engineering &amp; Aeronautics, University of Patras</subfield>
    <subfield code="a">Christos Katsiropoulos</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Comparative Environmental and Cost Analysis of Alternative Production Scenarios Associated with a Helicopter's Canopy</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-nhyte-h2020</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">723309</subfield>
    <subfield code="a">New Hybrid Thermoplastic Composite Aerostructures manufactured by Out of Autoclave Continuous Automated Technologies</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;In the present work the carbon footprint and the financial viability of different materials, manufacturingscenarios,aswellasrecyclingscenarios,associatedwiththeproductionofaeronautical structural components are assessed. The materials considered were carbon fiber reinforced epoxy and carbon fiber reinforced PEEK (polyetheretherketone). The manufacturing techniques compared were the autoclave, resin transfer molding (RTM) and cold diaphragm forming (CDF). The recycling scenarios included mechanical recycling and pyrolysis. For this purpose, Life Cycle Analysis (LCA) and Life Cycle Costing (LCC) models were developed and implemented for the case of a helicopter&amp;rsquo;s canopy production. The results of the study pointed out that producing the canopy by using carbon fiber reinforced thermosetting composites and involving RTM as the manufacturing process is the optimalroutebothintermsofenvironmentalandfinancialefficiency. Theenvironmentalandfinancial efficiency of the scenarios including thermoplastic composites as the material of choice is impaired from both the high embodied energy and raw material cost of PEEK. The scenarios investigated do not account for potential benefits arising from the recyclability and the improved reusability of thermoplastic matrices as compared to thermosetting ones. This underlines the need for a holistic aircraft structural optimization approach including not only performance and weight but also cost and environmental criteria.&lt;br&gt;
&amp;nbsp;&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.3390/aerospace6010003</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
66
21
views
downloads
Views 66
Downloads 21
Data volume 70.4 MB
Unique views 57
Unique downloads 18

Share

Cite as